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Abstract

We show that a group admits a planar, finitely generated, Cayley graph
if and only if it admits a special kind of group presentation we introduce,
called a planar presentation. Planar presentations can be recognised al-
gorithmically. As a consequence, we obtain an effective enumeration of
the planar Cayley graphs, yielding in particular an affirmative answer
to a question of Droms et al. asking whether the planar groups can be
effectively enumerated.

1 Introduction

In this paper we complete an effort, started in [13], and building upon [10,
11], the aim of which is to understand the planar Cayley graphs. In [13] we
handled the special case of 3-connected Cayley graphs, and more generally,
Cayley graphsG that admit a consistent embedding in R2, that is, an embedding
the facial paths of which are preserved by the action on G by its group (see
Section 2.3 for a more detailed definition). The groups having such Cayley
graphs are exactly the Kleinian function groups, or equivalently, those groups
admitting a faithful, properly discontinuous, action by homeomorphisms on a
2-manifold contained in S2 [12, 17]. For more information about this classical
class of groups see e.g. [19, 20, 21, 22]. However, there are planar Cayley graphs
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the groups of which cannot act faithfully and properly discontinuously on S2
[12]. Therefore, the aforementioned groups form a proper subclass of the planar
groups, i.e. the groups admitting a planar Cayley graph. In this paper we
broaden the group presentations introduced in [13] so that we capture exactly
the planar, locally finite, Cayley graphs. In particular, we capture the planar
finitely generated groups, and we show that they can be effectively enumerated,
answering a question of Droms et al. [5, 7].

The Cayley complex X corresponding to a group presentation P = ⟨S | R⟩ is
the 2-complex obtained from the Cayley graph G of P by glueing a 2-cell along
each closed walk of G induced by a relator R ∈ R. We say that X is almost
planar, if it admits a map ρ : X → R2 such that the 2-simplices of X are nested
in the following sense. We say that two 2-simplices of X are nested, if the images
of their interiors are either disjoint, or one is contained in the other, or their
intersection is the image of a 2-cell bounded by two parallel edges corresponding
to an involution s ∈ S.1 We call the presentation P a planar presentation if its
Cayley complex is almost planar. We will show that every planar, finitely gener-
ated, Cayley graph admits a planar presentation. However, we prove something
much stronger than that. We are going to introduce a specific type of planar
presentation, called a general planar presentation, and show that every planar,
finitely generated, Cayley graph admits such a presentation and, conversely,
every general planar presentation has a planar Cayley graph (Theorem 5.10).
This converse is the hardest result of this paper. Our main result is:

Theorem 1.1. A finitely generated group admits a planar Cayley graph if and
only if it admits a general planar presentation.

The main idea of its proof is that if two relators in a presentation induce
cycles whose interiors overlap but are not nested (in a sense similar to the
nestedness of 2-simplices), then we replace a subword of one relator by a subword
of the other to produce an equivalent presentation with less overlapping; our
proof that a presentation with no such overlaps exists is based on a dual version
of the machinery of Dunwoody cuts [3], but for cycles instead of cuts.

As a corollary of Theorem 1.1 we obtain that the planar, locally finite, Cayley
graphs, and hence their groups, can be effectively enumerated (Theorem 6.3).
This answers a question of Droms et al. [5, 7] and generalises a result of Re-
nault [24] that verifies the question of Droms et al. in the case of planar Cayley
graphs that can be embedded into the plane without accumulation points of
the vertices. M. Dunwoody (private communication) informs us that the fact
that the planar groups can be effectively enumerated should also follow from
his result [8, Theorem 3.8] with a little bit of additional work (the main issue
here is whether the ‘or a subgroup of index two’ proviso can be dropped).

For more on the motivation of this work and the general background we refer
the reader to [13]. We think of this paper as a continuation of the latter, and
although we have made an effort to keep it as self-contained as possible, some

1The third option can be dropped by considering the modified Cayley complex in the sense
of [18], i.e. by representing involutions in S by single, undirected edges.
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familiarity with [13] may be necessary. The reader willing to check all details
of the backward direction of Theorem 1.1 is expected to have read the proof of
[13, Theorem 3.3] as we explain in Section 5.1.

1.1 Planar presentations

The formal definition of a general planar presentation is given in Section 6 and
it is a slight generalisation of the notion of a generic planar presentation defined
in Section 3. Here, we are going to sketch the most interesting special case of
this concept, called a special planar presentation. Such presentations always
exist for a 3-connected planar Cayley graph, or more generally, for a Cayley
graph that can be embedded in the plane in such a way that its label-preserving
automorphisms carry facial paths to facial paths.

We say that a (finite) group presentation P = ⟨S | R⟩ is a special planar
presentation, if it can be endowed with a cyclic ordering σ —from now on
called a spin— of the symmetrization S ′ = {s, s−1 | s ∈ S} of its generating
set, with the following property. Suppose W1 = sUt and W2 = s′Ut′, where
s, s′, t, t′ ∈ S ′, are two words, each contained in some rotation of a relator in R
(possibly the same relator), where U is any (possibly trivial) word with letters
in S ′. Observe that σ allows us to answer the following question: if we could
embed the Cayley graph of P in the plane in such a way that for every vertex the
cyclic ordering of the labels of its incident edges we observe coincides with σ, do
the paths induced by these words W1,W2 cross each other or not? To make this
more precise, we embed a tree consisting of a ‘middle’ path P with edges labelled
by the letters in U , and two leaves attached at each endvertex of P labelled with
s, s′, t, t′ as in Figure 1, where the spin we use at each endvertex of P is the one
induced by σ on the corresponding 3-element subset of S ′. There are essentially
two situations that can arise, both shown in that figure. Naturally, we say that
W1,W2 cross each other in the right-hand situation, and they do not in the
left-hand one.

U

s

s

t

t´ ´
U

s

s t

t

´

´

Figure 1: The definition of crossing ; W1 = sUt crosses W2 = s′Ut′ in the right, but
not in the left.

We then say that P is a special planar presentation, if there is a spin σ
on S ′ such that no two words as above cross each other. Note that this is an
abstract property of sets of words, and it is defined without reference to the
Cayley graph of P; in fact, it can be checked algorithmically. The essence of
this paper is that this is enough to guarantee the planarity of the Cayley graph,
and that a converse statement holds.
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This generalises an idea from [9], where it was shown that every planar
discontinuous group admits a special planar presentation where every relator
is facial, i.e. it crosses no other word (where we consider words that are not
necessarily among our relators).

Our actual definition of a special planar presentation, given in Section 3.1,
is in fact a bit more general than the above sketch. Consider for example the
Cayley graph of the presentation

〈
a, b | an, b2, aba−1b

〉
. Its Cayley graph is a

prism graph with an essentially unique embedding in R2. Note that the spin of
half of its vertices is the reverse of the spin of other half. This is a general phe-
nomenon: every 3-connected Cayley graph has an essentially unique embedding,
and in that embedding all vertices have the same spin up to reflection. However,
for every generator s, either the two end-vertices of all edges labelled s have the
same spin, or they always have reverse spins. This yields a classification of
generators into spin-preserving and spin-reversing ones, and our definition of
a special planar presentation takes this into account; still, everything can be
checked algorithmically.

The situation becomes much more complex however if one wants to consider
planar Cayley graphs that are not 3-connected. Such graphs do not always have
an embedding with all vertices having the same spin up to reflection; perhaps
the simplest such example is the one of Figure 2.

b

ac

Figure 2: A 2-connected planar Cayley graph of Droms et al. [7], obtained by amal-
gamating two 6-element groups along an involution, which does not admit a consistent
embedding.

In order to capture such Cayley graphs we had to come up with the notion
we call a general planar presentation (defined in Section 6), which in particular
translates, into abstract, algorithmically checkable, properties of words as above
situations as in Figure 2, where a certain generator s with s2 = 1 separates the
graph into two parts, and behaves in a spin-preserving way in one part and in
a spin-reversing way in the other part. That such general planar presentations
always give rise to planar Cayley graphs is the hardest result of this paper, many
of its complications arising from the fact that given a general planar presentation
with such a ‘separating’ generator s, it is impossible to predict whether s = 1,
which would imply that our Cayley graph does not quite have the structure
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anticipated by the presentation. The situation is complicated further by the
fact that separating generators need not be involutions; an example is given in
Figure 3.
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Figure 3: An (infinite) planar Cayley graph, corresponding to the presentation〈
a, b, c, d, f, g | a2, c2, d2, f2, g2, (af)2, (ag)2, abab−1gbfb−1, cbdb−1

〉
, with a separating

edge b which is not an involution.

This paper is structured as follows. After some general definitions in Sec-
tion 2, we introduce generic planar presentations in Section 3, and show that
every Cayley graph of every generic planar presentation is planar in Section 5.
In Section 4 we prove the reverse direction, i. e. that every planar Cayley graph
admits a generic planar presentation. In Section 6 we slightly generalise from
generic to general planar presentations, and put those facts together to obtain
the results stated above. We finish with some open problems in Sections 6 and 7.

2 Definitions

2.1 Graph-theoretical concepts

Let G = (V,E) be a connected graph fixed throughout this section. The reader
may assume that all graphs in this paper are locally finite, although parts of
our proofs extend almost verbatim to graphs with countably infinite vertex
degrees. We chose to focus on locally finite Cayley graphs because an effective
enumeration as in Theorem 6.3 can only be carried out for those and because
working with spins becomes technical in the presence of infinite degrees.

A walk is a sequence of vertices W = x1x2 . . . xn of G such that xixi+1 ∈ E
for every i < n. A path can be thought of as a walk all vertices of which are
distinct, although we will not distinguish between its two possible directions.
Two paths in G are independent, if they do not meet at any vertex except
perhaps at common endpoints. A cycle is a walk x1x2 . . . xn such that x1 = xn

and xi ̸= xj for all other pairs of values i, j.
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If P is a path or cycle we will use |P | to denote the number of vertices in P
and ||P || to denote the number of edges of P . Let xPy denote the subpath of
P between its vertices x and y.

A hinge of G is an edge e = xy such that the removal of the pair of vertices
x, y disconnects G. A hinge should not be confused with a bridge, which is an
edge whose removal separates G although its endvertices are not removed.

The set of neighbours of a vertex x is denoted by N(x).
G is called k-connected if G − X is connected for every set X ⊆ V with

|X| < k. Note that if G is k-connected then it is also (k − 1)-connected. The
connectivity κ(G) of G is the greatest integer k such that G is k-connected.

A 1-way infinite path is called a ray and a double ray is a directed 2-way
infinite path.

The set of all finite sums of edge-sets of (finite) cycles forms a vector space
over F2, the cycle space of G.

2.2 Cayley graphs and group presentations

We will follow the terminology of [4] for graph-theoretical terms and that of [2]
and [23] for group-theoretical ones. Let us recall the definitions most relevant
for this paper.

A group presentation ⟨S | R⟩ consists of a set S of distinct symbols, called
the generators and a set R of words with letters in S∪S−1, where S−1 is the set
of symbols {s−1 | s ∈ S}, called relators. Each such group presentation uniquely
determines a group, namely the quotient group FS/N of the (free) group FS of
words with letters in S ∪S−1 over the (normal) subgroup N = N(R) generated
by all conjugates of elements of R.

The Cayley graph Cay(P) = Cay ⟨S | R⟩ of a group presentation P =
⟨S | R⟩ is an edge-coloured directed graph G = (V,E) constructed as follows.
The vertex set of G is the group Γ = FS/N corresponding to P. The set of
colours we will use is S. For every g ∈ Γ, s ∈ S join g to gs by an edge coloured
s directed from g to gs. Note that Γ acts on G by multiplication on the left;
more precisely, for every g ∈ Γ the mapping from V (G) to V (G) defined by
x 7→ gx is an automorphism of G, that is, an automorphism of G that preserves
the colours and directions of the edges. In fact, Γ is precisely the group of such
automorphisms of G. Any presentation of Γ in which S is the set of generators
will also be called a presentation of Cay(P).

Note that some elements of S may represent the identity element of Γ, and
distinct elements of S may represent the same element of Γ; therefore, Cay(P)
may contain loops and parallel edges of the same colour.

If s ∈ S is an involution, i.e. s2 = 1, then every vertex of G is incident with
a pair of parallel edges coloured s (one in each direction). If s2 is a relator
in R, we will follow the convention of replacing this pair of parallel edges by a
single, undirected edge. This convention is common in the literature [18], and
is convenient when studying planar Cayley graphs.

If G is a Cayley graph, then we use Γ(G) to denote its group.

6



If R is any (finite or infinite) word with letters in S ∪S−1, and g is a vertex
of G = Cay ⟨S | R⟩, then starting from g and following the edges corresponding
to the letters in R in order we obtain a walk W in G. We then say that W
is induced by R at g, and we will sometimes denote W by gR; note that for a
given R there are several walks in G induced by R, one for each starting vertex
g ∈ V (G).

Let H1(G) denote the first simplicial homology group of G over Z. We will
use the following well-known fact which is easy to prove.

Lemma 2.1. Let G = Cay ⟨S | R⟩ be a Cayley graph. Then the (closed) walks
in G induced by relators in R generate H1(G).

2.3 Embeddings in the plane

An embedding of a graph G will always mean a topological embedding of the
corresponding 1-complex in the euclidean plane R2; in simpler words, an em-
bedding is a drawing in the plane with no two edges crossing.

A face of an embedding ρ : G → R2 is a component of R2 \ ρ(G). The
boundary of a face F is the set of vertices and edges of G that are mapped by ρ
to the closure of F . The size of F is the number of edges in its boundary. Note
that if F has finite size then its boundary is a cycle of G.

A walk in G is called facial with respect to ρ if it is contained in the boundary
of some face of ρ.

An embedding of a Cayley graph is called consistent if, intuitively, it embeds
every vertex in a similar way in the sense that the group action carries faces to
faces. Let us make this more precise. Given an embedding ρ of a Cayley graph
G with generating set S, we consider for every vertex x of G the embedding of
the edges incident with x, and define the spin of x to be the cyclic ordering of the
set L := {xy−1 | y ∈ N(x)} in which xy−1

1 is a successor of xy−1
2 whenever the

edge xy2 comes immediately after the edge xy1 as we move clockwise around x.
Note that L coincides with S ∪ S−1 and hence depends only on S and on our
convention on whether to draw one or two edges per vertex for involutions. This
allows us to compare spins of different vertices. Call an edge of G spin-preserving
if its two endvertices have the same spin in ρ, and call it spin-reversing if the
spin of one of its endvertices is the reverse of the spin of its other endvertex. Call
a colour in S consistent if all edges bearing that colour are spin-preserving or all
edges bearing that colour are spin-reversing in ρ. Finally, call the embedding
ρ consistent if every colour is consistent in ρ. Note that if ρ is consistent, then
there are only two types of spin in ρ, and they are the reverse of each other.

The following classical result was proved by Whitney [28, Theorem 11] for
finite graphs and by Imrich [16] for infinite ones.

Theorem 2.2. Let G be a 3-connected graph embedded in the sphere. Then
every automorphism of G maps each facial path to a facial path.

This implies in particular that if ρ is an embedding of the 3-connected Cayley
graph G, then the cyclic ordering of the colours of the edges around any vertex
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of G is the same up to orientation. In other words, at most two spins are allowed
in ρ. Moreover, if two vertices x, y of G that are adjacent by an edge, bearing
a colour b say, have distinct spins, then any two vertices x′, y′ adjacent by a
b-edge also have distinct spins. We just proved

Lemma 2.3. Let G be a 3-connected planar Cayley graph. Then every embed-
ding of G is consistent.

Cayley graphs of connectivity 2 do not always admit a consistent embed-
ding [7]. However, in the cubic case they do; see [11].

An embedding is Vertex-Accumulation-Point-free, or accumulation-free for
short, if the images of the vertices have no accumulation point in R2.

A crossing of a path X by a path or walk Y in a plane graph is a subwalk
Q = eQ̊f of Y where the end-edges e, f of Q are incident with X on opposite
sides of X (but not contained in X) and (the image of) Q̊ is contained in X
(Figure 4). Note that Q̊ may be a trivial path and note that if Q is a crossing
of X by Y , then X contains a crossing Q′ = gQ̊h of Y by X, which we will call
the dual crossing of Q.

Q

Y

Y

X

X

e

f

Figure 4: A crossing of X by Y .

For a closed walk W and n ∈ N, let Wn be the n-times concatenation of W
with itself. Two closed walks R and W cross if there are i, j ∈ N such that Ri

contains a crossing of a subwalk of W j . They are nested if they do not cross.

2.4 Fundamental groups of planar graphs

Let G be a graph. Let W = x1x2 . . . xn be a walk. The inverse of W is
xn . . . x1. If xi−1 = xi+1 for some i, we call the walk W ′ := x1 . . . xi−1xi+2 . . . xn

a reduction of W . Conversely, we add the spike xi−1xixi+1 to W ′ to obtain W .
If W is a closed walk, i.e. if x1 = xn, we call xi . . . xnx1 . . . xi−1 a rotation of W .
We emphasize that the xi are vertices of G rather than elements of a group; we
do not assume G to be a Cayley graph in this section.

Let V be a set of closed walks. The set of closed walks generated by V is
defined to be the smallest set V ⊇ V of closed walks that is closed under taking
concatenations, reductions, rotations and the inverse and under adding spikes.
We also say that any V ∈ V is generated by V. A closed walk is indecomposable
if it is not generated by closed walks of strictly smaller length. Note that no
indecomposable closed walk W has a shortcut, i. e. a (possibly trivial) path
between any two of its vertices that has smaller length than any subwalk of any
rotation of W between them. In particular, indecomposable closed walks induce
cycles.
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For any η ∈ π1(G), let Wη ∈ η be the unique reduced closed walk in η, and
let W ◦

η be its (unique) cyclical reduction. For V ⊆ π1(G), set

V◦ := {W ◦
η | η ∈ V}.

By W(G) we denote the set of all closed walks in G.
The following theorem is an immediate consequence of [15, Theorem 6.2],

which is a generalisation of the main theorem of [14].

Theorem 2.4. Let G be a planar locally finite 3-connected graph and Γ a group
acting on G. Then π1(G) has a generating set V such that V◦ is a Γ-invariant
nested generating set for W(G) that consists of indecomposable closed walks.

3 Planar presentations

In this section we introduce our notion of planar presentation, which is the
central definition of this paper. For the convenience of the reader, we start by
recalling the definition of a special planar presentation from [13]. We then define
the more involved generic planar presentations in Section 3.2.

3.1 Special planar presentations

The intuition behind special planar presentations comes from the notion of a
consistent embedding given above: a planar presentation is a group presentation
endowed with some additional data (forming what we will call an embedded
presentation) which describe the local structure of a consistent embedding of
the corresponding Cayley graph, that is, the spin and the information of which
generators preserve or reflect it.

Given a group presentation P = ⟨S | R⟩, where S is finite, we will distinguish
between two types of generators s: those for which we have s2 as a relator in R
and the rest. The reasons for this distinction will become clear later. Generators
t for which the relation t2 is provable but not explicitly part of the presentation
might exist, but do not cause us any concerns. Given a group presentation
P = ⟨S | R⟩, we thus let I = I(P) denote the set of elements s ∈ S such that
R contains the relator s2 or s−2.

Let S ′ = S ∪ (S \ I)−1. For example, if P =
〈
a, b, c | a2, b2

〉
, then S ′ =

{a, b, c, c−1}.
A spin on P = ⟨S | R⟩ is a cyclic ordering of S ′ (to be thought of as the

cycling ordering of the edges that we expect to see around each vertex of our
Cayley graph once we have proved that it is planar)

An embedded presentation is a triple P, σ, τ where P = ⟨S | R⟩ is a group
presentation, σ is a spin on P, and τ is a function from S to {0, 1} (encoding
the information of whether each generator is spin-preserving or spin-reversing).

To every embedded presentation P, σ, τ we can associate a tree T with an
accumulation-free embedding in R2 that is a universal cover of Cay ⟨S | R⟩. As
a graph, we let T be Cay

〈
S | s2, s ∈ I

〉
. Easily, we can embed T in R2 in such
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a way that for every vertex v of T, one of the two cyclic orderings of the colours
of the edges of v inherited by the embedding coincides with σ and moreover,
for every two adjacent vertices v, w of T, the clockwise cyclic ordering of the
colours of the edges of v coincides with that of w if and only if τ(a) = 0 where
a is the colour of the v–w edge. (If τ(a) = 1, then the clockwise ordering of v
coincides with the anti-clockwise ordering of w.)

Given a word W , we let W∞ be the 2-way infinite word obtained by con-
catenating infinitely many copies of W . We say that two words W,Z ∈ R cross,
if there is a 2-way infinite path R of T induced by W∞ and a 2-way infinite
path L induced by Z∞ such that L meets both components of R2 \ R. Note
that, if two non-trivial words form closed walks in the Cayley graph, then the
words cross if and only if the closed walks cross.

For example, consider the presentation P =
〈
n, e, s, w | n2, e2, s2, w2

〉
, the

spin n, e, s, w, n (read ‘north, east, south, west’), and τ identically 0. Thus
T is embedded in such a way that at every vertex v, the cyclic sequence of
labels we read on the edges emanating from v as we move clockwise around
v is n, e, s, w, n. Therefore, any word W containing ns as a subword crosses
any word Z containing ew, because we can find a double ray induced by W∞

containing the edges labelled n, s incident with the identity, and a double ray
induced by Z∞ containing the edges labelled e, w incident with the identity.
The word nesw however crosses no other word, and indeed adding that word to
the above presentation yields a planar Cayley graph: the square grid.

Definition 3.1. A special planar presentation is an embedded presentation
(P, σ, τ) such that

(sP1) no two relators W,Z ∈ R cross, and

(sP2) for every relator R, the number of occurrences of letters s in R with
τ(s) = 1 (i.e. spin-reversing letters) is even; here, the symbol sn counts
as |n| occurrences of s.

Requirement (sP2) is necessary, as the spin of the starting vertex of a cycle
must coincide with that of the last vertex.

In [13] we proved the following results about special planar presentations.

Theorem 3.2 ([13, Theorem 3.3]). Every planar, locally finite, 3-connected
Cayley graph admits a special planar presentation.

Theorem 3.3 ([13, Theorem 4.2]). If (P, σ, τ) is a special planar presentation,
then its Cayley graph Cay(P) is planar. Moreover, Cay(P) admits a consistent
embedding, with spin σ and spin-behaviour of generators given by τ .

3.2 General planar presentations

We now extend the above definition of a planar presentation, to a more gen-
eral one, the advantage of which is that it can capture Cayley graphs with
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2-separators that do not admit consistent embeddings, which will allow us to
extend Theorem 3.2 and Theorem 3.3 to all planar Cayley graphs.

Let again P = ⟨S | R⟩ be a group presentation, and define S ′ as above.
A spin structure C on P consists of a cover B1, . . . , Bk of S ′ (i.e.

⋃
i Bi = S ′)

with the following properties

(S1) for every generator b, the number of Bi’s containing b equals the number
of Bi’s containing b−1, and

(S2) the auxiliary graph X on C ∪ S ′ with s ∼ Bi whenever s ∈ Bi, is a tree.

(It will become clear later that a special planar presentation is a special case of
a general one in which C consists of a single set coinciding with S ′.)

The hinges of this spin structure are the elements of S ′ that have degree at
least 2 in X; in other words, h ∈ S ′ is a hinge if h ∈ Bi ∩ Bj for some i ̸= j.
Hinges of a spin structure correspond to edges of our Cayley graph G whose
two endvertices separate G.

Intuitively, the sets Bi correspond to the maximal 2-connected subgraphs of
the Cayley graph and the hinges of the spin structure correspond to the hinges
of the Cayley graph. We will prove this in Theorem 4.4.

For example, a, b are the hinges of the presentation〈
a, b, c, d, f, g | a2, c2, d2, f2, g2, (af)2, (ag)2, abab−1gbfb−1, cbdb−1

〉
given in Figure 3, and b is the only hinge in Figure 2. The tree X of condi-
tion (S2) corresponding to the presentation of Figure 3 is shown in Figure 5.
Figure 6 shows the corresponding tree X that would result if we amalgamated
the above group with two more groups each of which being isomorphic to the
subgroup generated by b, c, d along the subgroup spanned by b.

B

B

B

B

f

d

g

c

a

bb -

Figure 5: An example: the tree X of condition (S2) corresponding to Figure 3.

Condition (S2) has the following important consequences:

Bi ∩Bj is either empty or a singleton for every i ̸= j, (1)
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B2

B1

B3

B4

f

d

g

c

a

bb -

B6 B7

B5 B8

c1

c2

d1

d2

Figure 6: The tree X of condition (S2) corresponding to a variant of Figure 3.

because if h, g ∈ Bi ∩ Bj then h, g,Bi, Bj span a 4-cycle in X, which cannot
happen when X is a tree, and

every Bi contains at least one hinge unless k = 1, i.e. C is the
singleton {S ′}, (2)

because if each neighbour of Bi in X has degree 1, then Bi and its neighbours
form a component of X.

A generic embedded presentation is a quintuple P, C, σ, τ, µ as follows; P is
a group presentation and C a spin structure on P as above; σ is a function of
i ∈ {1, . . . , k} assigning a spin (i.e. a cyclic ordering) to each Bi ∈ C;
τ : S ×{1, . . . , k} → {0, 1} encodes the information of whether each generator is
spin-preserving or spin-reversing in each Bi it participates in (if s ∈ S \Bi, then
the value of τ(s, i) will be irrelevant in the sequel); and for every b ∈ S, and
every i for which b ∈ Bi, µ(b, i) is a Bj such that b−1 ∈ Bj , and µ(b, i) ̸= µ(b,m)
for m ̸= i. This µ encodes the information of which pairs of Bi incident with
the two endvertices of a given hinge belong to the same block of G. The use of
S rather than S ′ in the definition of µ and τ is intended: the values we assign
to each b ∈ S give us enough information about how to treat b−1.

For the time being, the data σ, τ, µ are abstract objects describing the in-
tended structure and embedding of our Cayley graph given by P. But we will
indeed prove that if these data satisfy certain conditions, then the Cayley graph
is indeed planar and can be embedded in the intended way.

As an example, the presentation
〈
S | b2, a3, c3, aba−1b, cbcb

〉
of the graph of

Figure 2 can be endowed with the following data. The spin structure C consists
of two sets B1 = {b, c, c−1}, B2 = {b, a, a−1}. We can then let σ(1) = (b, c, c−1),
σ(2) = (b, a−1, a) —but any other σ would do in this case as there are only
two cyclic orderings of a set of three elements, and they are the reflection of
each other— τ(b, 1) = 0, τ(b, 2) = 1 —this is the most interesting aspect of
this graph: any b edge is spin-preserving in one of its incident blocks and spin-
reversing in the other— and µ(b, 1) = B1, µ(b, 2) = B2 —because b stabilises
the two components into which it splits the graph.
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Our general definition of a planar presentation will be very similar to that of
Section 3.1, and still based on the idea of non-crossing relators. One difference
is that we have to embed the tree T = Cay

〈
S | s2, s ∈ I

〉
in R2 more carefully.

We will give the formal embedding in Section 5.1 but the idea is that rather
than demanding every vertex to have the same cyclic ordering of its incident
colours in the embedding, which would in general make it impossible to adhere
to the spin-behaviour encoded by τ , we only demand that the cyclic orderings
of the edges with colours in each Bi are preserved. To make this precise, we
use an (accumulation-free) embedding ρ : T → R2 with the following properties.
Given a vertex x ∈ V (T) and Bi ∈ C, we write Bi(x) for the edges of x with
labels in Bi.

(B1) σ is respected, i.e. for every vertex x of T, and every Bi ∈ C, the cyclic
ordering induced on Bi(x) by the ρ-image of the neighbourhood of x co-
incides with σ(i) up to reflection.

(B2) τ is respected, i.e. for every edge e = vw of T, and every i such that the
label s of e is in Bi ∈ C, we have 1σ(i)(Bi(v)) = 1σ(j)(Bj(w)) if and only
if τ(s, i) = 0, where Bj = µ(s, i) and 1σ(i)(Bi(v)) is 1 if the clockwise
cyclic ordering of the colours of the edges of Bi(v) coincides with σ(i) and
0 otherwise.

We repeat the definition of crossing from Section 3.1 verbatim: given a word
W , we let W∞ be the 2-way infinite word obtained by concatenating infinitely
many copies of W . We say that two words W,Z ∈ R cross, if there is a 2-way
infinite path R of T induced by W∞ and a 2-way infinite path L induced by Z∞

such that L meets both components of R2 \R.
The second and final difference of our generalised definition of a planar

presentation compared to that of Section 3.1 will be an additional condition
reflecting the idea that in a planar Cayley graph of connectivity 2, we can choose
the relators in such a way that each cycle they induce is contained in a block.
Recalling that our spin structure C is intended to capture the decomposition
into blocks, the following definition should not be too surprising.

We say that a relator R is blocked with respect to C, if it satisfies the following
two properties. Firstly, for every two (possibly equal) consecutive letters st
appearing in R∞ or (R−1)∞, there is some Bi ∈ C containing both s−1, t.
Secondly, for every three consecutive letters sbt, where b is a hinge, appearing
in R∞ or (R−1)∞, if Bi is the unique element of C containing s−1, b, then µ(b, i)
contains both b−1, t, unless s = b = t and b2 ∈ R; here, the existence of such a Bi

is guaranteed by the previous requirement, and its uniqueness is a consequence
of (1) in the definition of a spin structure.

Definition 3.4. A generic planar presentation is a generic embedded presen-
tation such that

(P1) every relator in R is blocked with respect to C;

(P2) no two relators W,Z ∈ R cross;
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(P3) for every relator R, the number of occurrences of letters t in R with
τ(t, i) = 1 (i.e. spin-reversing letters), where i is the unique value for
which s−1, t ∈ Bi for the letter s preceding t in R, is even2; here, the
symbol sn counts as |n| occurrences of s;

(P4) no relator is a sub-word of a rotation of another relator.

Note that a planar presentation as defined in Section 3.1 is a special case of
a generic one when C consists of a single set coinciding with S ′.

In Section 6 we will slightly generalise the notion of a generic planar presen-
tation further, by allowing the removal of certain redundancies, to obtain the
notion of general planar presentation discussed in the introduction.

4 Every planar Cayley graph admits a generic
planar presentation

In this section we prove that every planar Cayley graph admits a generic planar
presentation.

We start by showing that every planar Cayley graph of connectivity 1 can
be extended into a 2-connected one using redundant generators; see Lemma 4.1
below. We then show that every 2-connected planar Cayley graph admits a
generic planar presentation in Section 4.2.

4.1 Planar Cayley graphs of connectivity 1

Lemma 4.1. Every planar, locally finite, Cayley graph of connectivity 1 can
be extended into a planar 2-connected, locally finite, Cayley graph by adding
redundant generators.

Proof. We proceed by induction on the number of blocks incident with the ver-
tex o, where a block means a maximal 2-connected subgraph in this subsection.
Pick two such blocks B,C, an edge from B corresponding to some generator
b, and an edge from C corresponding to some generator c. Introduce a new
redundant generator x and the relation x = b−1c. Clearly, the resulting Cayley
graph G′ obtained from the original Cayley graph G by adding the generator x
has less blocks incident with o than G.

We claim that G′ is still planar. If none of b2 or c2 is a relator, then this is
an easy exercise, based on the observation that G can be embedded in such a
way that for every vertex v, the edges labelled b and c emanating from v lie in
a common face boundary.

If however b2, say, is a relator, then it is a bit harder to avoid that the two
x edges emanating out of o and ob cross in our embedding. Still, the following
observation will help us embed G′ in this case (and it is also applicable to

2The existence and uniqueness of this Bi is a consequence of (P1); see the definition of
‘blocked’.
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the case where none of b2 or c2 is a relator). A good example to bear in mind
throughout the rest of the proof is where G is the Cayley graph Cay

〈
b, c | b2, c2

〉
of the free product of two copies of Z/2Z, and x = bc.

Let H0 be the graph consisting of a single vertex, and suppose that for
every i ∈ N, the graph Hi is obtained from Hi−1 by attaching a planar
graph Pi to Hi−1 by identifying some vertex pi ∈ V (Pi) with some
vertex hi ∈ V (Hi−1), and possibly joining a neighbour p′i of pi to a

neighbour h′
i of hi with an edge. Then

⋃
i≥0 Hi is planar.

(3)

To prove this, we first use induction to show that Hi is planar: given an
embedding of Hi−1, observe that h′

i, hi lie in a common face Fi since they are
neighbours. Likewise, p′i, pi lie in a common face F ′

i of Pi, and we may assume
that that face is the outer face by embedding Pi appropriately. Indeed, given
an embedding ϕ : Pi → S2, we can compose ϕ with a stereographic projection
from S2 to R2 using a point inside F ′

i as the projection point. We now embed
Hi by drawing Pi inside Fi and, if there is a h′

i − p′i edge in Hi, joining h′
i to p′i

with an arc in Fi that avoids the rest of the graph.
The fact that

⋃
i≥0 Hi is planar now follows from a standard compactness

argument.

To complete our proof, we will show that our G′ can be constructed as
described in (3).

Indeed, let H be the set of blocks (i.e. maximal 2-connected subgraphs) of G,
and let H1, H2, . . . be an enumeration of H such that for i > 1, Hi is incident
with some Hj for j < i. Then G′ has the claimed structure, with the x-edges
playing the role of the h′

i − p′i edges.

4.2 Cayley graphs of connectivity 2

In this section, we will complete the proof of our main theorem by showing that
every locally finite 2-connected planar Cayley graphs admits a generic planar
presentation.

A cut in a graph G is a set of vertices C spanning a connected subgraph
of G, such that the boundary

∂C := {x ∈ V (G) \ C | x has a neighbour in C}

of C is finite and C ∪ ∂C ̸= V (G). The order of C is the cardinality of ∂C.
We call two cuts C,D nested if, setting C∗ := V (G)\C and D∗ := V (G)\D,

one of the four relations holds:

C ⊆ D, C ⊆ D∗, C∗ ⊆ D, C∗ ⊆ D∗.

We call a set of cuts nested, if every two of its elements are nested.

Definition 4.2. Given a nested set C of cuts, a block is a maximal subgraph H
such that for every cut C, we have either V (H) ⊆ C ∪ ∂C or V (H) ⊆ C∗ but
not both.
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To obtain a torso of a block H from H we add all edges xy such that
{x, y} ⊆ V (H) is a boundary of a cut in C.

Tutte [27] showed that every finite 2-connected graph G has an Aut(G)-
invariant nested set C of cuts of order 2 whose torsos are either 3-connected
or cycles. This fact also holds for locally finite graphs as proved by Droms et
al. [6], and we will still refer to it as Tutte’s theorem. To each such nested set
of cuts, there is an associated tree T that admits a bijection from V (T ) to the
blocks and boundaries of cuts in C such that, for any t1, t2 ∈ V (T ) and any t on
the unique t1–t2 path in T , the image of t separates the images of t1 and t2.

3

We call this tree T the decomposition tree of the set of cuts.
A 2-separator is the boundary of a cut of order 2. Lemma 4.3 allows us to

assume that all 2-separators of G are joined by an edge, i.e. they are hinges in
the sense of Section 3.2. Given two Cayley graphs G,H, we call G a Tietze-
supergraph of H if there are presentations ⟨SG | RG⟩ of Γ(G) and ⟨SH | RH⟩
of Γ(H) with G = Cay ⟨SG | RG⟩ and H = Cay ⟨SH | RH⟩ and with SG ⊇
SH and RG ⊇ RH . Note that if the presentations ⟨SG | RG⟩ and ⟨SH | RH⟩
belong to the same group, they can be transferred to each other via Tietze-
transformations, that is, we can add redundant relations or remove them or we
can add a new generator s together with a relation s = w, where w is a word
over the old generating set, or remove such a generator with the corresponding
relation.

Lemma 4.3. Every planar 2-connected Cayley graph G has a planar Tietze-
supergraph H in which every pair of vertices that separates H is connected by
an edge. In addition, the new edges are labelled by a new redundant generator.
(Moreover, if G is locally finite, then so is H.)

Proof. To begin with, pick a Γ(G)-invariant nested set C of cuts of order 2.
This set exists due to Tutte’s theorem mentioned above. For every pair of non-
adjacent vertices x, y such that one component of G − {x, y} lies in C, we add
a new redundant generator a and relation a = x−1y. Let us show that the
nestedness of C implies that we do not lose planarity.

Note that every 2-separator lies on the boundary of some face. So if we join
x1 and y1 by a new edge and also want to join x2 and y2, then the only reason
why we cannot do this is because the edge x1y1 separates the face on whose
boundary the vertices x2 and y2 lie. So, originally, all four vertices x1, x2, y1, y2
are distinct and lie on a boundary of some face F in this order (either clockwise
or anticlockwise). For i = 1, 2, let Pi be an xi–yi path whose inner vertices lie in
a component of G−{xi, yi} that avoids xj and yj for j ̸= i. We find these paths
since the cuts from Tutte’s theorem are nested and since G is 2-connected. As
the two paths Pi lie outside of F , the path P2 connects a vertex in the inner face
of P1+y1x1 to one in its outer face, which is impossible due to the Jordan curve
theorem. This proves that we can indeed add the aforementioned redundant
generators and relations without losing planarity.

3Readers that are familiar with tree-decompositions of graphs might notice that this just
says that for every nested set of cuts, we find a tree-decomposition of the graph whose parts
are the blocks and boundaries of cuts.
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Since every vertex has only finitely many neighbours and every two of them
can be separated by only finitely many 2-separators (see e.g. [26, Proposition
4.2]), the resulting Cayley graph G′ is still locally finite.

Call a graph well-separated if it is 2-connected and every 2-separator is joined
by an edge.

Theorem 4.4. Every planar, locally finite, well-separated Cayley graph G with
κ(G) = 2 admits a generic planar presentation.

Proof. Let C be a Γ(G)-invariant nested set of cuts of order 2 as in Tutte’s
Theorem. Let Bo be the set of blocks (in the sense of Definition 4.2) that contain
the vertex o. For B ∈ Bo, let SB be the set of those generators s ∈ S ∪ S−1

such that the edge with label s starting at o lies in B. Then S ∪S−1 is covered
by the sets SB . We fix an embedding ρ of G in R2, and endow every SB with
the cyclic order induced by ρ at o. Let B′

o ⊆ Bo be maximal such that no two
distinct B,B′ ∈ Bo are of the form B = g(B′) for any g ∈ Γ(G). We can
apply Theorem 2.4 to each B ∈ B′

o to obtain a set DB ⊆ π1(B) that generates
π1(B), and such that D◦

B is a nested set of indecomposable closed walks that is
invariant under the stabiliser of B in Γ(G). Then it is easy to see that

D :=
⋃

B∈B′
o

g∈Γ(G)

g(DB)

generates π1(G). Let RD be the set of words corresponding to closed walks
in D◦. Easily, ⟨S | RD⟩ is a presentation of Γ(G). Once more, we use Tietze-
transformations to obtain a finite subset R ⊆ RD with ⟨S | RD⟩ = ⟨S | R⟩,
which is possible as Γ(G) is finitely presented (Droms [5, Theorem 5.1]). To
see that the set C := {B1, . . . , Bn} := {SB | B ∈ Bo} is a spin structure
of P := ⟨S | R⟩, it remains to show that the graph T := (C ∪ S ′, E), where
xy ∈ E if and only if x ∈ y or y ∈ x, is a tree.

Let us suppose that T is not a tree. Obviously, T is connected. So it
contains some cycle S1s1 . . . SmsmS1 with Si ∈ C and si ∈ S ′. For each i ≤ m,
let B(Si) ∈ Bo be such that Si = SB(Si). As each element of Bo is a block, there
is some path Pi in B(Si) connecting the end vertices of si−1 and si distinct
from o (with s0 = sm). The concatenation of all these paths Pi is a cycle C
in G that crosses all hinges si precisely once as Si ̸= Si+1 (with Sm+1 = S1).
But this is not possible as each cycle, and hence also C, must lie in a unique
block of G.

For i ≤ n, let B(i) be that element of Bo with SB(i) = Bi. For every hinge
b ∈ S incident with o and every i ≤ n with b ∈ Bi, let µ(b, i) be that Bj with
b(B(i)) = B(j). So we have b−1 ∈ Bj . Let σ(i) be the spin of Bi at o. To define
whether every generator is spin-preserving or spin-reversing in each element of
the spin-structure (it participates in), we remember that the blocks —being
either 3-connected or cycles— have a unique embedding in the plane. So for
s ∈ S and i ≤ n, we define τ(s, i) to be 0 if s is spin-preserving in B(i) and 1
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otherwise. (Note that τ is also defined if s /∈ Bi.) Clearly, (P, C, σ, µ, τ) is a
generic embedded presentation.

As every element of D◦ lies in a unique block, every R ∈ R is blocked with
respect to C by definition, and the number of spin-reversing generators in R is
even. As D is nested, it is easy to check that no two relators cross. The fact that
no cycle is a subgraph of any other cycle implies that no relator is a sub-word
of a rotation of another relator, and hence our generic embedded presentation
is a generic planar presentation.

With an argument similar to the proof of [13, Corollary 3.4], we obtain:

Corollary 4.5. Every planar well-separated Cayley graph G with κ(G) = 2 is
the 1-skeleton of an almost planar Cayley complex of Γ(G).

Proof. Since G is planar, there is an embedding ρ′ : G → R2 by definition. We
will extend ρ′ to the desired map ρ from the Cayley complex X of Γ(G) with
respect to the presentation ⟨S | R⟩ from above. For this, given any 2-cell Y
of X with boundary cycle C, we embed Y in the finite component of R2 \C. It
is a straightforward consequence of the nestedness of D that the resulting map
ρ has the desired property.

4.3 Consistent embeddings lead to special planar presen-
tations

In the previous section, we have seen that 2-connected planar Cayley graphs ad-
mit generic planar presentations. However, if the Cayley graph has a consistent
embedding, we obtain a bit more even for 1-connected graphs:

Theorem 4.6. Every planar Cayley graph with a consistent embedding admits
a special planar presentation.

Proof. Let G be such a graph. First note that, by repeating the arguments of
the proof of Lemma 4.3, we can join the two vertices of any 2-separator {x, y}
by a new edge whenever xy /∈ E(G) and G−{x, y} has two components C with
∂C = {x, y}, while keeping the embedding consistent. So we may assume that
every maximal 2-connected subgraph of G is well-separated.

Let B be a set of blocks of the maximal 2-connected subgraphs ofG consisting
of one block from each Γ(G)-orbit. As before, Theorem 2.4 gives us for each B ∈
B a set DB that generates π1(B) such that D◦

B is a nested set of indecomposable
closed walks that is invariant under the stabiliser in Γ(G) ofB. LetRB be the set
of words corresponding to the elements of D◦

B . As above, Tietze-transformations
give us a finite R ⊆

⋃
B∈B RB such that P = ⟨S | R⟩ is a finite presentation

of Γ(G), where S is the generating set of G.
If we let σ be the spin of one fixed vertex x and τ(s) = 0 if the edge from x

labelled s is spin-preserving and τ(s) = 1 otherwise, then (P, σ, τ) is a special
planar presentation of Γ(G). Indeed, nestedness of the closed walks in D◦

B

implies that the corresponding words are non-crossing, the fact that they are
indecomposable implies that no relator is a subword of any other relator, and the
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embedding implies that every relator contains an even number of spin-reversing
letters.

5 Proof of planarity of the Cayley graph of a
generic planar presentation

In this section we prove that the Cayley graph defined by any generic planar
presentation is planar (Theorem 5.10).

Let (P, C, σ, τ, µ) be a generic planar presentation. For a hinge h ∈ S, we
let C(h) := {Bi ∈ C | h ∈ Bi} and let n(h) be the cardinality |C(h)|. Note
that |C(h)| = degX(h), where the tree X is as in (S2) of the definition of a spin
structure.

Every hinge b = xy ∈ E(T) of T labelled h naturally splits T into n(h)
subtrees: each of these subtrees contains b, it contains all edges of x with labels
in some Bi ∈ C(h) and no other edges of x, and it contains those edges of y
with labels in µ(h, i) and no other edges of y; moreover, each such subtree is
maximal with these properties. Let Sepb = {T1, T2, . . . , Tn(h)} denote the set of
those subtrees, and note that

⋂
Sepb = {b}.

Definition 5.1. A pre-block of T is a maximal subtree A ⊆ T not separated
by any Sepb; that is, for every hinge b of T, A is contained in some element of
Sepb.

Alternatively, we can define a pre-block as a maximal subtree A of T such
that for every x, y ∈ V (A), if we let s1s2 . . . sk denote the word (with letters
in S) read along the x–y path, then s−1

j−1, sj lie in a common element of C
for every j > 1, and whenever sj is a hinge, and s−1

j−1, sj ∈ Bi ∈ C, then

s−1
j , sj+1 ∈ µ(sj , i).

5.1 The embedding ρ of T
Our proof of Theorem 3.3, which we are generalising here as Theorem 5.10,
started with an embedding of the corresponding tree T respecting the spin
data. Using the fact that Cay(P) is a quotient of T with respect to the normal
closure of R, we reduced the planarity of Cay(P) to a property of a fundamental
domain D of T with respect to R as follows. We obtain Cay(P) by identifying
pairs of points of D that are midpoints of edges of T. It is then not hard to see
that Cay(P) is planar if any two pairs of such points are nested, i.e. they do not
alternate as we move around the boundary of D.

In our new setup of a generic embedded presentation however, we have to
work harder to make this idea work: our spin data give us some restrictions but
do not uniquely determine an embedding of T, and in fact we have to be careful
with our choices in order for the proof in subsection 5.2 to work.

We will assume below that the reader is familiar with our proof of Theo-
rem 3.3 in [13], since all its arguments will be needed here as well. We chose not

19



to repeat those arguments here, not so much to save space, but because reading
that proof first offers a good warm up before the much more involved proof that
follows.

Recall that our generic embedded presentation consists of the data P, C, σ,
τ, µ. For B ∈ C and a vertex x ∈ V (T), recall that Bi(x) denotes the edges
going out of x whose labels are in B. We will show that there is an embedding
ρ : T → R2 satisfying all of the following (the first two were also used in the
definition of crossing relators in Section 3.2).

(ρ1) σ is respected, i.e. for every vertex x ∈ V (T), and every Bi ∈ C, the cyclic
ordering induced on Bi(x) by ρ coincides with σ(i) up to reflection.

(ρ2) τ is respected, i.e. for every edge e = vw of T, and every i such that the
label s of e is in Bi ∈ C, we have 1σ(i)(Bi(v)) = 1σ(j)(Bj(w)) if and only
if τ(s, i) = 0, where Bj = µ(s, i) and 1σ(i)(Bi(v)) is 1 if the clockwise
cyclic ordering of the colours of the edges of Bi(v) coincides with σ(i) and
0 otherwise.

(ρ3) µ is respected: let b ∈ E(T) be a hinge, and U,W two paths containing
b contained in distinct pre-blocks containing b. Then U,W do not cross
each other (at b).

(ρ4) If x, y belong to the same N(R)-orbit (where N(R) is the normal subgroup
generated by R as in Section 2.2), and b is a hinge at x with label in
h ∈ I, and h ̸= 1, then the local spin at x with respect to b coincides up to
reflection with the local spin at y with respect to the corresponding hinge
labelled h.

Here, the local spin with respect to a generator h ∈ S ′ at a vertex x is the cyclic
ordering on NX(h) induced by the embedding, where X denotes the tree from
Section 3.2.

If G is a planar Cayley graph, then the results of Section 4.2 imply that if
we embed the universal cover T of G into R2 in a way that locally imitates an
embedding of G, then all above properties are satisfied.

An open star is a subspace of a graph consisting of a single vertex and all
open half-edges incident with it. A star is the union of an open star with some
of the midpoints in its closure.

Properties (ρ1) to (ρ3) are not hard to satisfy: we can embed T by starting
with the star E(o) and then recursively attaching the star E(v) of a new vertex to
the subtree embedded so far, and it is always possible to embed E(v) without
violating any of (ρ1)–(ρ3). In fact we could have several ways to extend the
current embedding to E(v), arising by ‘permuting’ those Bi(v), 1 ≤ i ≤ k that
do not contain the edge of v embedded before, and by ‘reflecting’ any such Bi(v).
These choices are in direct analogy to the flexibility we have in the embedding
of any planar Cayley graph of connectivity 2: permuting the Bi(v) corresponds
to ‘activating’ a hinge b incident with v to exchange the order in which blocks
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separated by b are embedded. Reflecting a Bi(v) corresponds to flipping such a
block around.

These choices mean that (ρ4) will be violated unless we make them carefully.
To achieve this, recall from (S2) of Section 3.2 that the auxiliary graph X on
C ∪ S ′ with s ∼ Bi whenever s ∈ Bi, is a tree. Let Xℓ denote the tree obtained
from X by attaching to each vertex v in S ′ ⊂ V (X) a new leaf, which leaf we
denote by ℓ(v).

Fix an embedding χ : Xℓ → R2 of that tree with the following two properties.
Firstly, the spin of any vertex Bi ∈ C of Xℓ coincides with σ(i) up to reflection.

Recall that N(v) = NG(v) denotes the neighbourhood of v in a graph G.
For every hinge h ∈ S \ I, note that µ(h, ·) defines a bijection between NX(h)
and NX(h−1) by the definition of µ. We extend that bijection to NXℓ(h) and
NXℓ(h−1) by mapping ℓ(h) to ℓ(h−1). The second property we impose on χ is
that the spin it induces on NXℓ(h) coincides up to reflection with the µ-image
of that spin induced by χ on NXℓ(h−1), and this holds for every such h.

For an involution hinge h ∈ I, µ(h, ·) still defines a bijection between NX(h)
and NX(h−1) = NX(h), and we do not impose any requirement on χ as we did
for h ∈ S \I. Instead, we let χ embed NXℓ(h) with an arbitrary spin ϕ = ϕ(h),
and define the dual spin of ϕ as follows:

Definition 5.2. The dual spin of ϕ is the cyclic ordering on NXℓ(h) obtained
by composing ϕ with µ(h, ·).

To satisfy (ρ4), we will construct ρ in such a way that the local spin with
respect to h at every vertex in a given N(R)-orbit either always coincides with
ϕ or it always coincides with the dual of ϕ. We remark that we cannot construct
ρ algorithmically since we cannot predict which vertices of T are in the same
N(R)-orbit; we can only prove the existence of such a ρ abstractly.

We think of this χ as providing instructions about how to construct ρ. As
an example, if the set I of involutions in S is empty, then every vertex of T will
have the same spin up to reflection in ρ, and that spin can be read from χ by
contracting all non-leaves of Xℓ into a single vertex; that vertex has the right
spin in the resulting star.

Let o = x1, x2, . . . be an enumeration of V (T) such that {x1, . . . , xk} spans
a connected subgraph for all k. We will construct ρ by embedding the xi one at
a time as indicated above. To begin with, we embed one edge e0 incident with
x1 = o in the 0th step. From now on, each step i begins with some vertices being
embedded fully, i.e. with all incident edges, and some vertices having exactly
one of their edges embedded in the current embedding ρi−1 of some subtree
of T. Let j be the smallest index such that xj has exactly one of its edges ei
embedded in ρi−1. We may assume without loss of generality that j = i by
changing our enumeration.

We extend ρi−1 to ρi by embedding the remaining edges incident with xi.
This will be done by performing the following recursive procedure on Xℓ to
obtain an embedded star Si with its edges labelled by S ′, and then embedding
NT(xi) with the same spin as Si.
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To begin with, let ℓ be the unique leaf of Xℓ such that ℓ = ℓ(s) for the label
s ∈ S of the edge ei considered as outgoing from xi. In order to embed N(s),
we distinguish the following cases.

Case 1: If s ̸∈ I, and s is a hinge, then we embed the star N(s) of s in
Xℓ into R2 so that the spin of s in this embedding coincides with the spin of
s in χ up to reflection; due to the second assumption on the embedding of Xℓ,
there are exactly two possibilities for this —up to reflection— and we choose the
unique one guaranteeing (ρ3): unless we are in step i = 1, in which case we just
embed N(s) with the spin of s in χ without reflection, the other endvertex x of
ei has already been fully embedded, and the local spin with respect to ei (which
now label s−1 as seen from x) at x coincides up to reflection with that induced
on N(s−1) by χ by induction hypothesis. We use the possibility to reflect or not
in order to guarantee that the clockwise ordering of the Bi in N(s) coincides
with the counterclockwise ordering of the µ(s, i) induced by the spin of x in the
embedding ρi−1.

Case 2: If s ̸∈ I, and s is not a hinge, then it has exactly two neighbours
in N(s) (ℓ(s) and the unique B ∈ C containing s), and so reflection does not
change the spin; we just embed N(s) in the unique possible way.

Case 3: If s ∈ I, and s is not a hinge, then again we just embed N(s) in
the unique possible way.

Case 4: Finally, if s ∈ I, and s is a hinge, then we follow a similar approach
to the s ̸∈ I case, except that we now do not insist that the spin of s in the
embedding of N(s) we produce coincides with the spin of s in χ up to reflection;
we just make sure that (ρ3) is satisfied, by embedding N(s) so that the clockwise
ordering of the Bi in N(s) coincides with the counterclockwise ordering of the
µ(s, i) induced by the spin of x in the embedding ρi−1; again this is well-defined
by the second assumption on the embedding of Xℓ unless we are in step i = 1,
in which case we just embed N(s) with the spin of s in χ.

Once N(s) is embedded as above, we set Xℓ
0 := N(s) and proceed by the

following recursive procedure, which produces embeddings of an increasing se-
quence Xℓ

1, . . . , X
ℓ
k(= Xℓ) of subtrees of Xℓ to embed the rest of Xℓ.

For j = 1, 2, . . ., pick a leaf vj of Xℓ
j−1 which is not a leaf of Xℓ; if no such

leaf exists then Xℓ
j−1 = Xℓ and we stop. Then we extend the current embedding

of Xℓ
j−1 by embedding N(vj) in such a way that the spin of vj coincides up to

reflection with that induced by χ, unless vj ∈ I ⊆ S and vj ̸= 1, in which
case we do the following. Let yi = xivj be the vertex of T joined to xi by the
edge labelled vj . If no vertex of T from the N(R)-orbit of xi or yi has been
embedded yet by ρi, then we embed N(vj) with local spin given by χ. If some
vertex of T from the N(R)-orbit of xi has already been embedded by ρi, we
embed N(vj) with same spin up to reflection as we used so far for all xj , j < i,
that are N(R)-equivalent to xi; (we make this choice in order to satisfy (ρ4)).
Otherwise, we embed N(vj) with the dual spin —recall Definition 5.2— up to
reflection of the spin we used so far for all xj , j < i that are N(R)-equivalent to
yi. Note that these choices ensure that N(vj) is embedded with the same spin
up to reflection —namely, either that induced by χ or its dual— for all vertices

22



in an N(R)-orbit, where we use the fact that, as vj ̸= 1, xi and yi are never in
the same orbit.

In all cases, we still have the option of reflecting. If vj ∈ N(s), which
means that vj ∈ C and vj contains the label s of ei, then we have to worry
about satisfying (ρ2); but one of the two choices we have due to the option of
reflecting will satisfy (ρ2) for e = ei and Bi = vj and we make that choice. (If
vj ̸∈ N(s) then we do not worry about µ and τ ; the other endvertices of the
edges incident with xi will make sure that this data is respected, just as we were
careful above when embedding N(s) for the label s of ei.)

Let Xℓ
j := Xℓ

j−1 ∪N(vj).

The procedure finishes when all ofXℓ has been embedded. Then, we contract
all non-leafs ofXℓ to obtain the desired embedded star Si out of that embedding.
Finally, we embed NT(xi) with the same spin as Si to extend ρi−1 to ρi.

Let ρ =
⋃
ρi be the limit of the ρi. We claim that ρ satisfies conditions

(ρ1)–(ρ4). Indeed, if any of them is violated, then there is a first step in the
above procedures violating it. But we designed all steps so that none of those
conditions are violated: condition (ρ1) is never violated because we chose χ so
that the spin of every Bi ∈ C coincides with σ(i) up to reflection, which implies
that the corresponding edges of xi appear in that cyclic order up to reflection in
Si, and therefore in ρ, by the construction of the embedded star Si. Condition
(ρ2) is never violated because of the way we embedded N(vj) for vj ∈ N(s) in
the construction of Si. Condition (ρ3) is never violated because of the way we
embedded N(s) in the first step of the construction of Si. Finally, condition
(ρ4) is never violated because of the way we embedded N(vj) for vj ∈ I in the
construction of Si.

In fact, we obtain a slightly stronger property than (ρ4), and this will be
useful later:

Condition (ρ4) remains true if we define local spin using Xℓ instead
of X.

(4)

5.2 Planarity of blocks

A block of G is an image π([A]) under the covering map π : T → G, where
A denotes a pre-block of T and [A] := {x ∈ V (T) | x ≃N y for some y ∈ A}
denotes its N(R)-equivalence class.

Note that every block of G is connected: given vertices x, z in a block K =
π([A]), we can find x′, z′ ∈ A (and not just in the N(R)-orbit of A) with
π(x′) = x, π(z′) = z, and so the x′–z′ path P in A yields the x–z path π(P )
in K.

The main result of this section is

Lemma 5.3. Every block of G is planar.

In fact, we will prove a stronger statement similar to Theorem 3.3 ([13,
Theorem 4.2]), namely, that every block admits an embedding into R2 respecting
σ and τ .
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The proof of this follows the lines of our proof of the planarity of G in the
consistent case ([13, Theorem 4.2]), and we assume that the reader is familiar
with that proof. Here we will point out the differences.

The proof of Lemma 5.3 begins here, and occupies the rest of Section 5.2,
which includes further lemmas needed for its proof.

Proof of Lemma 5.3: Let K be a block of G. Let D be a fundamental
domain of K in T; that is, D is a subset of T containing exactly one point
from each N(R)-orbit O such that π(O) ∈ K. This exists assuming Zorn’s
Lemma. We may assume that D is connected since K is, see [13, Lemma 4.1]
for details. Moreover, we may assume without loss of generality that D is a
union of stars. Thus the closure D of D in T is still the union of D with all
midpoints of edges that have exactly one half-edge in D, and K can be obtained
from D by identifying pairs of N(R)-equivalent midpoints. As in the proof of
[13, Theorem 4.2], we will prove that any two pairs of such N(R)-equivalent
midpoints are nested, where we say that two pairs of midpoints x, x′ and y, y′

in D \D are nested, if the x-x′ path in D does not cross the y-y′ path, where
we define crossing similarly to Section 2.3.

In order to guarantee this nestedness, we will have to embed T appropri-
ately; in our general setup, T cannot be embedded consistently as in the case
of special planar presentations, and this is why we are now only trying to prove
the planarity of a block, and not of all of G at once.

For a relator W , we use Wo to denote the closed walk oGW in G induced
by W at oG, and let TW := π−1(Wo), which is a union of a set of double-rays
of T, which set we denote by T[Wo].

Recall we have chosen an embedding ρ of T in Section 5.1. For a pre-block
C of T, we define a super-face of C to be a face of the embedding ρ(C) of C
inherited by ρ. The super-faces of T are the super-faces of all of the pre-blocks
of T. Note that a super-face can contain several faces of T.

The dual graph T∗ of T is the graph whose vertex set is the set of faces of T,
and two faces of T are joined with an edge e∗ of T∗ whenever their boundaries
share an edge e of T. For two faces F,H of T and an F–H path PFH in T∗, let
Cr(T[Wo], PFH) denote the number of crossings of T[Wo] by PFH ; to make this
more precise, for a double-ray T in T[Wo], we write cr(T, PFH) for the number
of edges e in T such that PFH contains e∗, and we let Cr(T[Wo], PFH) :=∑

T∈T[Wo]
cr(T, PFH). We claim that

for every two faces F,H of T, the parity of the number of crossings
Cr(T[Wo], PFH) is independent of the choice of the path PFH .

(5)

To see this, note that if C is a cycle in T∗, then Cr(T[Wo], C) —defined similarly
to Cr(T[Wo], PFH)— is even because the embedding of T is accumulation-free
and so any ray entering the bounded side of C has to exit it again. This
immediately implies (5).

We will define our relation ∼K , or just ∼ if K is fixed, on the set of super-
faces of pre-clusters contained in π−1(K). Given two super-faces F,H lying
in pre-clusters contained in π−1(K), let T[Wo]K denote the subset of T[Wo]
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contained in π−1(K). Now pick two faces F ′ ⊆ F,H ′ ⊆ H contained in the
super-faces F,H, and write F ∼ H if for each F ′–H ′ path PF ′H′ in T∗, the
number of crossings Cr(T[Wo]K , PF ′H′) of T[Wo]K by PF ′H′ is even. Since
Cr(T[Wo]K , PF ′H′) is independent of the choice of PF ′H′ by (5), it is also inde-
pendent of the choice of F ′, H ′, because if F ′′ is another face contained in F ,
then the F ′–F ′′ path of T∗ contained inside F crosses no element of T[Wo]K , be-
cause a super-face of any pre-cluster C in π−1(K) meets no element of T[Wo]K
by the definitions.

5.2.1 The bipartitions {I,O}

An important part of our planarity proof in the consistent case was that ∼ was
invariant under the action of N(R), see [13, Lemma 4.4]. Below (Lemma 5.8) we
prove an analogous statement for the general case, namely that the restriction
of ∼ to the super-faces of the pre-blocks in π−1(K) is N(R)-invariant.

The rest of our proof of Lemma 5.3 is almost identical to that of [13, Theorem
4.2], except that we are now working with the block K of G rather than the
whole graph.

The equivalence relation ∼, now restricted on the set of super-faces F of
π−1(K), uniquely determines a bipartition {I,O} on F by choosing one super-
face F ∈ F and letting I := {H ∈ F | H ∼ F} and O := F \ I.

Next, we adapt the material of [13, Section 4.3.1] to our new setup. For every
super-face F in π−1(K), glue a copy of the domain F ⊂ R2 to K by identifying
each point of ∂F with π(∂F ). If F, F ′ are equivalent face boundaries, in other
words, if π(∂F ) = π(∂F ′), then we identify the corresponding 2-cells glued
onto K. Let K2 denote the set of these 2-cells, and let K = K ∪K2 denote the
2-complex consisting of K and these 2-cells. Notice that every edge e ∈ E(K)
has only 1 or 2 incident 2-cells in K2.

Lemma 5.8 now means that if Z is a closed walk of G (here we really mean G
and not justK) induced by a relator, then {I,O} induces a bipartition π[I], π[O]
of K2. Let us still denote this bipartition of K2 by BZ .

We extend that bipartition to an arbitrary cycle in K: given a cycle C of
K, we choose a ‘proof’ P of C; that is, a sequence of closed walks Wi, 1 ≤ i ≤ k
of G induced by rotations of relators such that C =

∑
1≤i≤k Wi. The existence

of such a sequence (Wi) is not affected by the fact that we are focusing on a
subgraph K; the Wi are allowed to be arbitrary relators. For every Wi, let
IWi

, OWi
denote the two sides of the bipartition BWi

of K2 from above, and
define the bipartition BC := {IC , OC} of K2 by IC := △iIWi

and OC :=
G2△IC .

While in the definition of BC it appears that it depends on the proof P , it
actually does not as we shall see later. Until then, we denote it by BC(P ). Our
next aim is to show that, in a certain way, BC(P ) behaves like the bipartition
of the faces of a plane graph induced by a cycle C: to move between the two
sides, one has to cross an edge of C. This is achieved by Lemma 5.5 below, for
the proof of which we need the following.

25



Lemma 5.4. Let e be a directed edge of K, let W ∈ R be a relator which is
not of the form b2 = 1 for b ∈ S, and let oKW be the closed walk of K rooted at
some vertex oK of K induced by W . Then the number of double-rays in T[Wo]
containing e equals the number of times that oKW traverses π(e).

Proof. If oKW does not traverse π(e) then T[Wo] avoids e and we are done. So
suppose that oKW does traverse π(e). Let oKW∞ denote the two-way infinite
walk on K obtained by repeating oKW indefinitely. Let T ∈ T[Wo] be the lift
of oKW∞ to T (via π−1) sending π(e) to e, and note that T is a double-ray
containing e. Let Q be the subpath of T that starts with e and finishes when a
rotation of the word W is completed. By the definition of T[Wo], there is a 1–1
correspondence between the elements of T[Wo] containing e and the directed
edges e′ in Q that are N(R)-equivalent to e: each such element of T[Wo] can
be obtained by translating T by the automorphism of T sending e′ to e.

Now note that oKW traverses π(e) whenever its lift T traverses one of
those e′. Combined with the above observations this proves our assertion.

Lemma 5.5. For every e ∈ E(K), the bipartition BC(P ) separates 2-cells of e
if and only if e ∈ C.

Proof. Let I,O be the two elements of BC(P ) as defined above. Then, letting
1F∈I denote the indicator function of F ∈ I, we have

1F∈I = NF := |{Wi | F ∈ IWi
}| (mod 2),

and similarly
1H∈I = NH := |{Wi | H ∈ IWi

}| (mod 2).

But
NF +NH = |{Wi | Wi separates F from H}| (mod 2)

by the construction of I,O. We claim that |{Wi | Wi separates F from H}| is
odd if and only if e ∈ E(C). Indeed, BWi

separates F from H exactly when Wi

traverses e an odd number of times by

for every edge e of T, the two faces F,H of e lie in distinct elements of
{I,O} if and only if e ∈ TW and e lies in an odd number of elements of

T[Wo]
(6)

and Lemma 5.4, and e is in C exactly when there is an odd number of Wi that
traverse e an odd number of times.

Since that number is even if e ̸∈ E(C) and odd otherwise, our last congruence
yields NF +NH = 1 (mod 2) if and only if e ∈ E(C). Therefore, the previous
congruences imply that 1F∈I = 1H∈I if e ̸∈ E(C) and 1F∈I ̸= 1H∈I if e ∈ E(C),
which is our claim.

Lemma 5.5 implies in particular that BC(P ) is characterised by C alone and
is therefore independent of P , since K was defined without reference to P . Thus
we can denote it by just BC from now on.

In the following, we use again the definition of a crossing from Section 2.3.
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Lemma 5.6. Let C ′ be a finite path of T such that C := π(C ′) is a cycle
of K, and let Q = eQ̊f be a crossing of C ′ in T. Then BC separates the 2-cells
incident with π(e) from the 2-cells incident with π(f). Moreover, if Q2 is a path
of T such that π(Q2) is a cycle of K, then Q2 crosses C ′ an even number of
times.

Proof. Let F be a face incident with the first edge e of Q, and let H be a face
incident with the last edge f of Q. By the definition of a crossing, we can find
a finite sequence (F =)F1, . . . , Fk(= H) of faces of T such that each Fi shares
an edge ei with Fi+1 and exactly one of the ei lies in C ′: we can visit all faces
incident with Q until we reach H. By Lemma 5.5 and Lemma 5.8, BC separates
π(F1) from π(Fk). This proves our first assertion.

For the second assertion, note that π(Q2) can be written as a concatenation
of subarcs C1D1C2D2 . . . Ck = C1 where each Ci lifts to a crossing of C ′ by
Q2 and each Di avoids C and shares exactly one end-edge with each of Ci and
Ci+1. We proved above that the 2-cells incident with end-edges of each Ci are
separated by BC . The same arguments imply that the 2-cells incident with end-
edges of each Di are not separated by BC . Since π(Q2) is a cycle, this implies
that Q2 crosses C ′ an even number of times.

As in the end of the proof of Theorem 3.3, the last lemma says that any two
cycles of K cross each other an even number of times, and therefore any two
pairs of identified points of D are nested.

This completes the proof of Lemma 5.3, except that we still have to prove
Lemma 5.8. For this, we will need the following lemma.

Lemma 5.7. For b ∈ I with b = 1, and any relator W in R, the number of
elements of T[Wo] containing any edge e labelled by b is even.

Proof. Let T be an element of T[Wo] containing e. The automorphism β of T
exchanging the two endvertices of e maps T to an element T ′ of T[Wo] because
b = 1 and so the two end-vertices of e are N(R)-equivalent. Note that T ̸= T ′

even if T, T ′ contain the same vertices, because they have opposite directions
(remember that double-rays are directed by definition). Note that β(T ′) = T .
Therefore, β establishes a bijection without fixed points on the elements of T[Wo]
containing e, which means that the number of those elements is even.

Lemma 5.8. For every block K of G, the restriction of ∼K to the super-faces
of π−1(K) is invariant under the action of N(R) on T.

Proof. We will adapt the proof of [13, Lemma 4.4]. Since K is fixed, let us just
write ∼ instead of ∼K .

We need to prove that if F,H are super-faces of π−1(K) in the same orbit
of N(R), then F ∼ H. Again, we may assume that there are vertices x, y in the
boundaries of F,H respectively, such that y = xwRw−1 for some word w and
some relator R ∈ R: by the definition of the normal closure N(R), if we can
prove F ∼ H in this case, we can prove F ∼ H for every two F,H in the same
orbit of N(R).
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Let αFH be the automorphism of T mapping x to y.
Decompose the path Q := xwRw−1 into (inclusion-)maximal subpaths con-

tained in a pre-block. Then we can write

Q = P1 ∪ P2 ∪ . . . ∪ Pk(= P ′
k) ∪ P ′

k−1 ∪ . . . ∪ P ′
1,

where the Pi, P
′
i are those maximal subpaths, P ′

i is N(R)-equivalent to Pi for
every i < k, and Pk contains the subpath of Q induced by R (such a Pk exists
because every relator R is blocked). Note that the intersection of any two
subsequent Pi or P ′

i is either a hinge separating the corresponding pre-blocks,
or a single vertex incident with such a hinge.

Since we are free to choose any F–H walk PFH in T∗ to decide whether
F ∼ H, we will choose a convenient one, which we construct now.

Recall that every Pi, i > 1 starts and ends at hinges, which we will call
hi−1, hi, separating its pre-block from the pre-blocks containing Pi−1, Pi+1 re-
spectively; here hi−1, hi may or may not be contained in Pi as end-edges.

Let Ci be the pre-block containing Pi and let C ′
i be the pre-block contain-

ing P ′
i .

Let Πi, k > i > 1, be an (inclusion-)minimal path in T∗ joining a super-
face incident with hi−1 to a super-face incident with hi —where we say that a
super-face F is incident with an edge if the boundary of F contains that edge—
such that all vertices of Πi are faces sharing a vertex with Pi, and Πi does not
intersect Pi (at a midpoint of any edge); see Figure 7. Define Π′

i similarly using
P ′
i instead of Pi. Note that there are exactly two such paths Πi to choose from,

one on either side of Pi; it doesn’t matter much which of the two we will choose,
but let us make ‘the same’ choice for both Πi and Π′

i; more precisely, we ensure
that

Πi crosses an edge e of Ci (incident with Pi) if and only if Π′
i crosses

the edge αFH(e) of C ′
i.

(7)

This is possible because ρ embeds Ci the same way as C ′
i up to reflection,

and Πi is uniquely determined once we choose which of the two super-faces
of Ci incident with hi we want it to contain; by choosing Π′

i to contain the
corresponding super-face incident with h′

i, our claim is satisfied. Note that Πi

does not cross hi, because if it did we could shorten it.
For i = 1 we let Π1 be a minimal path in T∗ joining F to a super-face incident

with h1, and otherwise be defined similarly to Πi, k > i > 1. Define Π′
1 similarly.

Finally, let Πk = Π′
k be a minimal path in T∗ joining a super-face incident with

hk−1 to a super-face incident with αFH(hk−1) without crossing Pk.
Let ⊔i, k > i ≥ 1 be a path in T∗ joining the last vertex of Πi to the

first vertex of Πi+1 such that all vertices of ⊔i are faces sharing a vertex with
Pi ∩Pi+1, and define ⊔′

i similarly for Π′
i, Π

′
i+1; there are several choices for this

⊔i, so let us make it uniquely determined: if Pi ∩ Pi+1 is a single vertex, then
there are two candidates, and we always choose the one crossing hi. If Pi∩Pi+1

is the hinge hi, then there are up to four choices, and we choose the one that
crosses hi and is contained in the two super-faces of Ci incident with hi and in
the two super-faces of Ci+1 incident with hi.
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It follows from the choice of ⊔i that it behaves well with respect to elements
of C:

If ⊔i meets an edge in Bi(v) \ {hi} (where Bi ∈ C) where the vertex v
is incident with hi, then ⊔i meets every edge of Bi(v).

(8)

A similar but slightly stronger is true for Πi:

If Πi meets an edge lying inside some super-face of Ci, then Πi visits
all faces incident with Pi inside that super-face.

(9)

Indeed, Πi is by definition a minimal path joining certain super-faces of Ci;
therefore, it crosses any super-face either completely or at a single boundary
edge.

Finally, we obtain PFH by concatenating all the Πi,⊔i,Π
′
i and ⊔′

i:

PFH := Π1 ∪ ⊔1 ∪Π2 . . . ∪ ⊔k−1 ∪Πk(= Π′
k) ∪ ⊔′

k−1 . . . ∪ ⊔′
1 ∪Π′

1.
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Figure 7: The path PFH (dashed) in the proof of Lemma 5.8 with the paths Πi, Π
′
i,

⊔i, ⊔′
i.

We need to check that Cr(T[Wo]K , PFH) is even. We will do so by showing
that the contributions of the Πi to Cr(T[Wo]K , PFH) cancel with those of the
Π′

i, and the contributions of the ⊔i cancel with those of the ⊔′
i.

Let T be an element of T[Wo]K with odd cr(T, PFH), i. e. with an odd
number of crossings of T by PFH ; only such T matter. Let T ′ := αFH(T ).

Let us first consider the total number of crossings of such T by the subpaths
Πi,Π

′
i, i < k, of PFH .

If T is contained in Ci, then cr(T,Πi) = cr(T ′,Π′
i) by (7).

If T is not contained in Ci, then Πi crosses T an even number of times (0
or 2): this is easy to see when T ∩ Pi is a single vertex v by applying (9) to
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that vertex. The situation is slightly subtler when T ∩ Pi is a hinge g —no
other option is possible as distinct pre-blocks intersect at an edge at most by
construction. In this case, we remark that the pre-block D containing T lies in
some super-face of Ci by the construction of ρ, and again Πi must cross all faces
incident with g inside that super-face by (9), therefore crossing both edges of T
incident with g.

Finally, it is not hard to see that Πk = Π′
k has an even contribution to

Cr(T[Wo]K , PFH).
These facts combined show that

∑
T∈T[Wo]K

cr(T,
⋃

i Πi) is even.

Next, we consider the total number of crossings of such T by the subpaths
⊔i,⊔′

i. Suppose cr(T,⊔i) is odd. Then it must equal 1 as ⊔i is too short to
cross a double-ray three times, where we used property (ρ3) of our embedding
ρ that pre-blocks do not cross each other.

Let vi be the last vertex of Pi and v′i the last vertex of P ′
i . If the local

spin at vi with respect to hi coincides up to reflection with the local spin at
v′i with respect to h′

i, then cr(T,⊔i) = cr(T ′,⊔′
i) (here, local spin refers to Xℓ

rather than X; recall (4)). Therefore, the total contribution of the pair T, T ′ to
Cr(T[Wo]K , PFH) is even and can be ignored.

If those local spins do not coincide up to reflection, then by the choice of ρ
(ρ4), the label of hi is an involution b ∈ I with b = 1. In this case however,
Lemma 5.7 applies, yielding that the set H of elements of T[Wo]K containing
hi is even. We claim that T ∈ H (i.e. hi ⊂ T ): this follows from cr(T,⊔i) = 1,
the fact that ⊔i only contains faces of T incident with hi by its construction,
and (8). Moreover, (8) also implies that cr(R,⊔i) = 1 for every other R ∈ H.
But as |H| is even, the total contributions

∑
R∈H cr(R,⊔i) of its elements are

even and can be ignored as well.
Summing up, we proved that both∑

T∈T[Wo]K

cr(T,
⋃
i

Πi) and
∑

T∈T[Wo]K

cr(T,
⋃
i

⊔i)

are even. Therefore Cr(T[Wo]K , PFH) is even as well, since it is the sum of
those two sums by definition.

The proof of Lemma 5.3 is now complete.

5.3 From the planarity of blocks to the planarity of G

The main aim of this section is to prove

Lemma 5.9. Every hinge of G separates its incident blocks.

Proof. The statement is equivalent to the statement that every cycle ofG crosses
each hinge b an even number of times, where the number of crosses of b by C is
the maximum number of edge disjoint subpaths Pi of C such that b separates
each Pi into two (possibly trivial, but non-empty) subpaths that lie in distinct
blocks.
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To prove the latter, let C = c0c1 . . . ck with ck = c0 be a cycle, and let
L = t0t1 . . . tk be a lift of C to T via π−1. Fix a hinge b. We may assume without
loss of generality that c0 is not a vertex of b. Let P = w1R1w

−1
1 . . . wkRkw

−1
k

be a proof of C in our presentation.
Since c0 ̸∈ b and since the end vertices of wiRiw

−1
i are N(R)-equivalent

to c0, any crossings of b by P occur inside the subpaths wiRiw
−1
i and not when

switching from wi−1 to wi. We have no crossings of b inside any Ri because our
relators are blocked. Moreover, any crossings of b inside a wi are paired up by
crossings of b inside w−1

i . Thus the number of crossings of b by P , and hence
by C, is even.

This, combined with the planarity of blocks we proved in the previous sec-
tion, easily implies the planarity of G:

Theorem 5.10. Let G be the Cayley graph of a generic planar presentation.
Then G is planar.

Proof. Combining Lemma 5.3 with Lemma 5.9 easily yields that G is planar.
Indeed, we can embed G one block at a time: since incident blocks share a hinge
only by Lemma 5.9, if we have already embedded a block A meeting a block B
at a hinge b, then it is easy to embed B inside one of the two faces (we are free
to choose) of the current embedding whose boundary contains b.

6 Conclusions

We now put the above results together to prove the statements of the introduc-
tion. Because of the redundant generators used in Lemmas 4.1 and 4.3, we need
to generalise our notion of planar presentation slightly. We say that s ∈ S is
an obviously redundant generator of a presentation ⟨S | R⟩, if there is exactly
one relator Ws ∈ R in which either s or s−1 appears exactly once and the other
does not appear in it at all. A general planar presentation is a presentation ob-
tained from a generic planar presentation by recursively removing zero or more
obviously redundant generators s along with the corresponding relator Ws. The
last two sections prove the two directions of Theorem 1.1:

Proof of Theorem 1.1. If G is a finitely generated planar Cayley graph, then by
Lemmas 4.1 and 4.3 we may find a Tietze-supergraph that is is 2-connected and
well-separated. Theorem 4.4 then yields a generic planar presentation, from
which we can remove any generators that were not present in G to obtain a
general planar presentation of G, which proves the forward direction.

For the backward direction, if G admits a general planar presentation, then
some supergraph G′ admits a generic planar presentation, and is thus planar by
Theorem 5.10. Since planarity is preserved under deleting edges, so is G.

A similar result holds when we insist that there is a consistent embedding,
and we can even allow our Cayley graphs to have infinitely many generators:
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Theorem 6.1. A Cayley graph admits a consistent embedding in the plane if
and only if it admits a special planar presentation.

The two directions of Theorem 6.1 are given by Theorem 4.6 and Theo-
rem 3.3.

Next, we use our presentations to obtain effective enumerations.

Theorem 6.2. The Cayley graphs that admit a consistent embedding in the
plane are effectively enumerable.

Proof. By Theorem 6.1, it suffices to produce an effective enumeration of the
special planar presentations. For this, it suffices to produce an enumeration
of the embedded presentations, and output those embedded presentations that
satisfy the three conditions in the definition of a special planar presentation
(Definition 3.1); it is easy to see that these conditions can be checked algorith-
mically.

Theorem 6.3. The planar, locally finite, Cayley graphs are effectively enumer-
able.

Proof. Similarly to the proof of Theorem 6.2, we remark that any effective
enumeration of the general planar presentations gives rise to an effective enu-
meration of the planar Cayley graphs by Theorem 1.1.

To effectively enumerate the general planar presentations, we start with an
enumeration of the generic embedded presentations, and output those that sat-
isfy the four conditions of Definition 3.4, which can be checked algorithmically.
Having thus effectively enumerated the generic planar presentations, we remove
any obviously redundant generators to effectively enumerate the general planar
presentations: for each output G = ⟨S | R⟩, check for every s ∈ S whether s
is an obviously redundant generator. For every such s found, output the pre-
sentation G′ := ⟨S \ {s} | R \ {Ws}⟩. Then, recursively apply the same check
to G′, removing any obviously redundant generators of that presentation and
so on.

We conclude with some related questions concerning embeddings of Cayley
complexes. Let CC(P) denote the Cayley complex of a presentation P. Call a
map ρ : CC(P) → R2 consistent if its restriction to Cay(P) is consistent. Call
ρ nested if it witnesses the fact that CC(P) is almost planar, i.e. if the images
under ρ of the interiors of any two 2-cells are either disjoint, or one is contained
in the other.

The following might be interesting as it exhibits a geometric property of
Cayley complexes which can be decided by an algorithm.

Theorem 6.4. There is an algorithm that given a presentation P = ⟨S | R⟩
decides whether CC(P) admits a nested, consistent map into R2.

Proof. We claim that CC(P) admits a nested, consistent map into R2 if and
only if there is a spin σ on S and a ‘spin-behaviour’ function τ from S to {0, 1}
such that the triple (P, σ, τ) is a special planar presentation.
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To prove the backward direction, note that if P, σ, τ is a special planar
presentation, then Cay(P) admits a consistent embedding ρ into R2 by Theo-
rem 3.3. Extend this embedding into a map ρ′ from CC(P) to R2 by mapping
each 2-cell inside the closed curve to which ρ maps its boundary. Then ρ′ is
nested because no two words in R cross each other by the definition of a special
planar presentation.

For the forward direction, given such a map ρ : CC(P) → R2, we can read
the spin data σ, τ from ρ since ρ is consistent. Then P, σ, τ is an embedded
presentation. To prove that it is a special planar presentation it remains to
show that no two words in R cross each other, which follows immediately from
the nestedness of ρ.

By using general planar presentations instead of special ones, Theorem 6.4
can be generalised to yield a further decidable property of Cayley complexes, but
instead of maps into R2 we have to consider maps into larger spaces obtained by
glueing copies of R2 along (possibly closed) bounded simple curves —to which
we map the hinges of our Cayley graphs— in a tree like fashion. We leave the
details to the interested reader.

Our results do not yet answer the following

Problem 6.5. Is there an algorithm that given a presentation P = ⟨S | R⟩
decides whether CC ′(P) is planar?

In this problem CC ′(P) denotes the complex obtained from CC(P) by re-
moving redundant 2-cells, that is, if a set of 2-cells have the same boundary, we
remove all but one of them. Some authors still call CC ′(P) the Cayley complex
of P. (In Theorem 6.4 it does not make a difference whether we consider CC(P)
or CC ′(P).)

We remark that it is not true that CC(P) is planar if and only if P is a
facial presentation in the sense of [9]; the presentation P =

〈
a, b | a2, b3, ab−1

〉
if facial, but its Cayley complex consists of a single vertex, two loops, a 2-cell
winding twice around a loop, and a 2-cell winding three times around the other
loop.

Having studied embeddings of Cayley complexes in R2, the following problem
suggests itself

Problem 6.6. Which groups admit a Cayley complex embeddable in R3?

7 Further remarks

We proved that every planar Cayley graph G admits a planar presentation such
that every relator induces a cycle of G (rather than an arbitrary closed walk
with repetitions of vertices). It would be interesting if we could strengthen the
definition of a planar presentation in such a way that this is always the case
in the resulting planar Cayley graph. Some strengthening will be necessary as
shown by the example P =

〈
a, b | a2, b3, ab−1

〉
from the previous section. This
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is a planar presentation —even stronger, every relator is facial— but it is easy
to see that its group is the group of one element. Our optimism that this may
be possible stems from the fact that it was possible in the cubic case [10].

A further interesting question, also asked in [10], is whether for every n ∈ N
there is an upper bound f(n), such that every n-regular planar Cayley graph
admits a planar presentation with at most f(n) relators. This would strengthen
Droms’ result [5, Theorem 5.1] that finitely generated planar groups are finitely
presented.

It is known that the fundamental group of a finite graph of groups with
residually finite vertex groups and finite edge groups is residually finite [25,
II.2.6.12]. Dunwoody [8, Theorem 3.8] proved that planar groups have this
structure, and so we obtain the following corollary, to which this paper has no
contribution

Corollary 7.1. Every planar group is residually finite.

From this we deduce that the finitely generated planar groups have a uni-
formly solvable word problem, as this is the case more generally for finitely
presented residually finite groups [1, Lemma 4.3]. The standard algorithm is
however impractical. We would be interested to see bounds on the complexity
of the word problem for our groups.
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