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Abstract. In this note, we show that locally �nite quasi-transitive graphs are
quasi-isometric to trees if and only if every other locally �nite quasi-transitive
graph quasi-isometric to them is minor excluded. This generalizes results by
Ostrovskii and Rosenthal and by Khukhro on minor exclusion for groups.

1. Introduction

For two graphs G,H, we call H a minor of G if H can be obtained from G by
contracting edges and deleting edges and vertices. A graph is minor excluded if
there exists some �nite graph that is not a minor of it.

In graphs, minor exclusion has played an important role for a long time, e. g. via
Kuratowski's planarity criterion. Considering groups, minor exclusion was mostly
considered in the case of planar groups, where a �nitely generated group is planar

if it has a planar locally �nite Cayley graph. Ostrovskii and Rosenthal [7] looked at
minor exclusion for groups from a broader viewpoint: do there exist locally �nite
groups all of whose locally �nite Cayley graphs are minor excluded (not minor
excluded)? They answered both questions positively: they proved for an in�nite
class of �nitely generated groups that all of their locally �nite Cayley graphs are not
minor excluded and they proved that every locally �nite Cayley graph of any �nitely
generated virtually free group is minor excluded. This latter result was extended
by Khukhro [5]. She showed the reverse direction, i. e. characterised the �nitely
generated groups all of whose locally �nite Cayley graphs are minor excluded as
the �nitely generated virtually free groups.

We generalise this characterisation to quasi-transitive graphs, where a graph is
quasi-transitive if its automorphism group acts on it with only �nitely many orbits.
The analogue of looking at Cayley graphs in this situation is that we ask for minor
exclusion for all locally �nite quasi-transitive graphs that are quasi-isometric to the
original one. For two graph G and H a map φ : V (G) → V (H) is quasi-isometric

if there exist γ ≥ 1 and c ≥ 0 such that the following holds for all x, y ∈ (G):

1

γ
dH(φ(x), φ(y))− c ≤ dG(x, y) ≤ γdH(φ(x), φ(y)) + c,

where dG and dH denote the distance functions in G and H, respectively. We will
prove the following theorem.

Theorem 1.1. Let G be a locally �nite quasi-transitive graph. Then G is quasi-

isometric to a tree, if and only if every locally �nite quasi-transitive graph quasi-

isometric to G is minor excluded.
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Bonamy et al. [1] proved that all locally �nite Cayley graphs of �nitely generated
groups of asymptotic dimension at least 3 are not minor excluded, moreover from
their discussion follows that all quasi-transitive locally �nite graphs of asymptotic
dimension at least 3 are not minor excluded. On the other side, quasi-transitive
locally �nite graph that are quasi-isometric to trees have asymptotic dimension 1.
However there are �nitely generated groups of asymptotic dimension 1 that are not
virtually free, see Gentimis [2]. The following question remains open: do there exist
locally �nite quasi-transitive graphs of asymptotic dimension at most 2 such that all
locally �nite quasi-transitive graphs quasi-isometric to it are not minor excluded?

2. Proof

Before we start the proofs, we need some de�nitions. Let G and H be graphs.
We call H a minor of G, if there exists a set {Gx | x ∈ V (H)} of disjoint subsets
of V (G) such that if xy ∈ E(H), then there exists uv ∈ E(G) with u ∈ Gx and
v ∈ Gy. The vertex sets Gx are the branch sets.

By G2 we denote the graph with vertex set V (G) such that two vertices are
adjacent if and only if their distance in G is either 1 or 2.

A ray is a one-way in�nite path. Two rays in G are equivalent if for every �nite
S ⊆ V (G) there exists a component of G − S that contains all but �nitely many
vertices of both rays. This is an equivalence relation whose classes are the ends

of G. Let m ∈ N. An end has degree at least m if it contains m pairwise disjoint
rays. An end is thin if there exists an n ∈ N such that the end does not have degree
at least n. It is thick if it is not thin.

Proposition 2.1. Let G be an in�nite graph with an end of degree at least m.

Then G2 contains a Km-minor.

Proof. Let ω be an end of G of degree at least m and let R1, . . . , Rm be m disjoint

rays in ω. Let P1, . . . ,Pn with n = m(m−1)
2 be an enumeration of the two-element

subsets of {R1, . . . , Rm}.
For all i ∈ {0, . . . , n} we construct a �nite vertex set Si of G, m disjoint rays

Ri
1, . . . , R

i
m in G2 and a set Qi of i disjoint paths in G2 such that the following

holds:

(i) Ri
m and Rm coincide outside of Si;

(ii) the last vertex of Ri
m in Si lies on Rm;

(iii) the vertices of Ri
m outside of Si form a tail of Ri

m;
(iv) every Q ∈ Qi is internally disjoint from all Ri

j ;
(v) every Q ∈ Qi has all its vertices in Si;
(vi) for every 1 ≤ j ≤ i, there is a path Qj ∈ Qi joining the rays in Pj .

Note that (i) implies that Ri
m has a tail in G.

For i = 0, set Si = ∅ and Qi = ∅ and Ri
j = Rj for all 1 ≤ j ≤ m. This satis�es

(i)�(vi) trivially.
Now let us assume that we have constructed Si−1, R

i−1
1 , . . . , Ri−1

m and Qi−1. Let
Pi = {Rk, Rℓ} and let Q be a path in G − Si−1 joining Rk and Rℓ. Note that Q
also joins Ri−1

k and Ri−1
ℓ . We may assume that Q meets those two rays only in its

end vertices. Let Ri−1
i1

be the ray that Q meets �rst after its starting vertex. Let x1

be the �rst common vertex on Q of Q and Ri−1
i1

and let x2 be the last such vertex.

Now we modify Q and Ri−1
i1

as shown in Figure 1: we remove every second vertex of
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Figure 1. Modifying x1Qx2 and x1R
i−1
i1

x2 depending on the

length of x1R
i−1
i1

x2: the middle �gure shows an example for odd
distance and the rightmost �gure for even distance.

x1R
i−1
i1

x2 from that ray, so that the remaining vertices still form a ray in G2. Now

we replace x1Qx2 by the vertices that we just removed from x1R
i−1
i1

x2. Together

with Qx1 without x1 and x2Q without x2 it forms a path in G2. We continue doing
these modi�cations for all remaining intersections of the new path with other rays
Ri−1

ij
, where we put the vertices with even distance to the �rst vertex of Q and

Ri−1
ij

into the modi�cation of Q if the last common vertex of Ri−1
ij−1

and Q was not

put into that path and otherwise the vertices with odd distance. If we have not
modi�ed the ray Ri−1

j , then we set Ri
j := Ri−1

j . By the choice of when to put the
�rst common vertex of Q and the rays into the modi�cation of Q or the new rays,
the resulting path Q′ and the rays Ri

ij
are indeed a path and rays. Then Q′ will

be added to the set Qi−1 to obtain the set Qi. Let Si be Si−1 together with all
vertices of Q′ and, for each 1 ≤ j ≤ m, a �nite starting path of Ri

j such that Ri
j

coincides with Rj after this path and such that the last vertex of that path also lies
on Rj . By construction, (i)�(vi) hold.

For 1 ≤ i ≤ m, let Pi be a subpath of Rn
i that contains all vertices of Rn

i that lie
on paths of Qn. Then it is easy to see that G2 contains a Km-minor, where each
Pi lies in a di�erent branch set and each Q ∈ Qn that connects Pi and Pj is split
among those branch sets. □

Using a result of Thomassen [8], we obtain the following corollary of Proposi-
tion 2.1.

Corollary 2.2. Let G be a one-ended quasi-transitive locally �nite graph. Then

G2 is not minor excluded.

Proof. By Thomassen [8, Proposition 5.6], the unique end of a one-ended quasi-
transitive locally �nite graph is thick. Thus, Proposition 2.1 implies the assertion.

□

Proposition 2.3. Let G be a graph of bounded degree that is quasi-isometric to a

tree of bounded degree. Then G is minor excluded.

Proof. Let T be a tree of bounded degree and let φ : V (G) → V (T ) be a (γ, c)-
quasi-isometry for some γ ≥ 1 and c ≥ 0. Let DG, DT be the maximum degrees
of G and T , respectively. Then

MT :=

γ+c−2∑
i=0

(DT − 1)i, MG :=

c−1∑
i=0

(DG − 1)i

are the maximum sizes of balls around vertices of T , of G of radius γ + c − 1, of
radius c, respectively. Let H be a minor of G that is isomorphic to Kn for some
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n ∈ N. We will show that n ≤ max{2M2
TM

2
G, DTMTMG}, which implies that G

is minor excluded. For x ∈ V (H), we denote by Gx the branch set of x in G. For
an edge e = st ∈ E(T ), let Ts, Tt be the component of T − e that contains s, t,
respectively. Note that since φ is a (γ, c)-quasi-isometry, we have |φ−1(t)| ≤ MG.

Let us assume that there is an edge e = st ∈ E(T ) and x, y ∈ V (H) with
φ(Gx) ⊆ V (Ts) and φ(Gy) ⊆ V (Tt). Since H is a complete graph, there is a Gx-Gy

edge uv in G. By the assumption on φ, we have d(φ(u), φ(v)) ≤ γ + c. Let us
assume that φ(u) ∈ V (Ts). Then φ(u) lies in the ball of radius at most γ + c − 1
around s and φ(v) lies in the ball of radius at most γ + c − 1 around t. There
are at most M2

T many such pairs (u, v). Since |φ−1(a)| ≤ MG for every a ∈ V (T ),
there are at most M2

TM
2
G many such pairs (u, v). Now let z ∈ V (H) such that

φ(Gz) meets Ts and Tt. Then there are adjacent u, v ∈ Gz with φ(u) ∈ V (Ts) and
φ(v) ∈ V (Tt). So as above, we �nd at most M2

TM
2
G such edges uv and hence such

vertices z. This implies n ≤ 2M2
TM

2
G.

Now let us assume that for every edge e = st ∈ E(T ) there is at most one
component of T − e that contains some φ(Gx). If Ts, Tt contains some φ(Gx),
then we orient the edge e towards s, t, respectively. If neither Ts nor Tt contains
any φ(Gx), we do not orient e at all. Note that this orientation is consistent : if
s1t1, s2t2 ∈ E(T ) and they are oriented towards s1, s2, respectively, then we must
have either Ts2 ⊆ Ts1 or Ts1 ⊆ Ts2 . Thus and since H is �nite, there is a unique
non-empty subtree T ′ of T whose inner edges are not directed at all but such that
every edge outside of T ′ is directed towards T ′. If T ′ has an edge e = st, then
for every x ∈ V (H), the set φ(Gx) meets Ts and Tt. By the same argument as
in the previous case, there are at most M2

TM
2
G such branch sets. Thus, we have

n ≤ M2
TM

2
G in this case. So let us assume that T ′ consists of a unique vertex t.

Then every branch set Gx contains a vertex u with d(φ(u), t) ≤ γ + c. There
are at most DTMT many possibilities for φ(u) and thus at most DTMTMG many
possibilities for u. This implies n ≤ DTMTMG in this situation.

So we have n ≤ max{2M2
TM

2
G, DTMTMG}, which proves the assertion as dis-

cussed above. □

Now we are able to prove our main result.

Proof of Theorem 1.1. Assume that G is not quasi-isometric to any tree. Since
locally �nite quasi-transitive graphs without thick ends are quasi-isometric to trees
by Krön and Möller [6, Theorem 2.8], G has a thick end. Thus, G2 is not minor
excluded by Proposition 2.1. Since G2 is quasi-isometric to G, it is not minor
excluded, either.

Let us now assume that G is quasi-isometric to a tree. Note that G has bounded
degree by assumption. According to Krön and Möller [6, Theorem 2.8], every end
of G is thin. Thus, [4, Theorem 7.5] and [3, Lemma 2.9] imply that G is quasi-iso-
metric to a 3-regular tree. By Proposition 2.3, G is minor excluded. Since being
quasi-isometric is an equivalence relation, every graph that is quasi-isometric to G
is also quasi-isometric to a tree. Hence, they are minor excluded as well. □
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