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Abstract. We prove that every locally �nite quasi-transitive graph that does
not contain K∞ as a minor is quasi-isometric to some planar quasi-transi-
tive locally �nite graph. This solves a problem of Esperet and Giocanti and
improves their recent result that such graphs are quasi-isometric to some planar
graph of bounded degree.

1. Introduction

Recently, Esperet and Giocanti [2] proved a theorem for quasi-transitive graphs,
where a graph is quasi-transitive if its automorphism group acts on its vertex set
with only �nitely many orbits. Before we state their theorem , let us brie�y intro-
duce quasi-isometries. A graph G is quasi-isometric to another graph H if there
exists γ ≥ 1 and c ≥ 0 and a map φ : V (G) → V (H) such that the following holds.

(i) 1
γ dG(u, v)− c ≤ dH(φ(u), φ(v)) ≤ γdG(u, v) + c for all u, v ∈ V (G) and

(ii) dH(w,φ(V (G))) ≤ c for all w ∈ V (H).

Then φ is a quasi-isometry. If the constants γ and c are important, we call φ also
a (γ, c)-quasi-isometry and say that G and H are (γ, c)-quasi-isometric.

Now we are able to state the theorem of Esperet and Giocanti.

Theorem 1.1. [2, Theorem 1.3] Every locally �nite quasi-transitive graph that does

not contain K∞ as a minor is quasi-isometric to some planar graph of bounded

degree.

Esperet and Giocanti proved their theorem as a �rst step towards a more general
conjecture by Georgakopoulos and Papasoglu [4]. In order to state their conjecture,
let us introduce the notion of asymptotic minors.

For K ∈ N, a graph H is a K-fat minor of a second graph G if there exists a
family (Bv)v∈V (H) of connected subsets of V (G) and a family (Pe)e∈E(H) of paths
in G such that

(1) for all uv ∈ E(H), the path Puv intersects
⋃

w∈V (H) Bw in exactly its end

vertices, one of which lies in Bu, the other in Bv,
(2) d(Puv, Bw) ≥ K for all uv ∈ E(H) and w ∈ V (H)∖ {u, v},
(3) d(Bu, Bv) ≥ K for all distinct u, v ∈ V (H), and
(4) d(Pe, Pe′) ≥ K for all distinct e, e′ ∈ E(H).

We call H an asymptotic minor of G if for every K > 0, H is a K-fat minor of G.
Now we can state Georgakopoulos' and Papasolgu's conjecture.

Conjecture 1.2. [4, Conjecture 9.3] Let G be a locally �nite transitive graph. Then

either G is quasi-isometric to a planar graph, or it contains every �nite graph as

an asymptotic minor.
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The obvious question regarding Conjecture 1.2 is whether we can ask the planar
graph to be transitive, too. Indeed, Esperet and Giocanti [2, Section 6] raised the
problem whether the planar graph in their theorem can be asked to be quasi-tran-
sitive, too. We will prove that this is possible. That is, we will prove the following
theorem.

Theorem 1.3. Every locally �nite quasi-transitive graph that does not contain K∞
as a minor is quasi-isometric to some planar quasi-transitive locally �nite graph.

This result indicates that a possible positive solution of the following problem
might be expectable.

Problem 1.4. If G is a quasi-transitive locally �nite graph quasi-isometric to a

planar graph, then is G quasi-isometric to a quasi-transitive locally �nite planar

graph?

Another hint that this might be true is that MacManus [7] recently proved the
following analogous statement for �nitely generated groups.

Theorem 1.5. [7, Corollary D] The following are equivalent for every �nitely gen-

erated group G.

(1) G is quasi-isometric to a planar graph.

(2) G is quasi-isometric to a planar Cayley graph.

Furthermore, he proved a structural result for quasi-transitive locally �nite
graphs that are quasi-isometric to planar graphs, see [7, Corollary C], in terms
of canonical tree-decompositions: the parts are either �nite or quasi-isometric to
complete Riemannian planes. We refer to Section 2 for the de�nition of (canonical)
tree-decompositions. This structural result might be useful for Problem 1.4.

2. Preliminaries

Let G be a graph. A tree-decomposition of G is a pair (T,V) of a tree T , the
decomposition tree, and a family V = (Vt)t∈V (T ) of vertex sets of G, one for every
t ∈ V (T ), such that

(T1) V (G) =
⋃

v∈V (T ) Vt,

(T2) for every e ∈ E(G) there exists t ∈ V (T ) with e ⊆ Vt, and
(T3) Vt1 ∩ Vt2 ⊆ Vt3 for all t3 on the t1-t2 path in T .

The sets Vt are the parts of the tree-decomposition and the intersection Vt1 ∩Vt2 for
adjacent t1 and t2 are the adhesion sets. The adhesion of (T,V) is the supremum
of the sizes of the adhesion sets. The width of (T,V) is supt∈V (T ) |Vt| − 1, seen as

an element of N∪ {∞}, if all Vt are �nite and ∞ otherwise. The tree-width of G is
the minimum width among all tree-decompositions of G.

If the automorphism group of G induces an action on the family V and thereby
also an action on T then we call the tree-decomposition canonical.

If Vt is a part of (T,V), then the subgraph of G induced by Vt together with all
(possibly new) edges uv for all distinct u, v that lie in a common adhesion set in Vt

is a torso of (T,V).
A separation of G is a pair (A,B) with A,B ⊆ V (G) such that A ∪ B = V (G)

and such that e ⊆ A or e ⊆ B for all edges of G. We call |A ∩ B| its order. The
separation is tight if there are components CA in A ∖ B and CB in B ∖ A with
N(CA) = A ∩B = N(CB).
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For a tree-decomposition (T,V) and an edge e ∈ E(T ), the edge-separation of e
is the separation

(
⋃

t∈V (T1)

Vt,
⋃

t∈V (T2)

Vt),

where T1 and T2 are the two components of T − e.
The following result by Thomassen and Woess [9, Corollary 4.3] was stated for

transitive graphs, but its proof carries over almost verbatim to quasi-transitive
graphs.

Lemma 2.1. [9, Corollary 4.3] Let G be a connected quasi-transitive locally �nite

graph and let k ∈ N. Then there are only �nitely many Aut(G)-orbits of tight

separations of order k.

The major tool in our proof of Theorem 1.3 is the following result by Esperet et
al. [3].

Theorem 2.2. [3, Theorem 4.3] Let G be a quasi-transitive locally �nite graph with-

out K∞ as a minor and let Γ be a group acting quasi-transitively on G. Then there

exists k ∈ N and a Γ-invariant tree-decomposition (T,V) of adhesion at most 3, and
such that for every t ∈ V (T ) the torso of Vt is a minor of G that is either planar

or has tree-width at most k and such that Γt acts quasi-transitively on that torso.

Furthermore, the edge-separations of (T,V) are all tight.

One-way in�nite paths are rays and two rays in a graph G are equivalent if, for
every �nite vertex set S ⊆ V (G), both rays have all but �nitely many vertices in
the same component of G − S. This is an equivalence relation whose equivalence
classes are the ends of G. An end is thick if it contains in�nitely many pairwise
disjoint rays and it is thin otherwise. By a result of Halin [5], for every thin end,
there exists n ∈ N such that there are n but not n+1 pairwise disjoint rays in that
end.

Two ends are k-distinguishable for some k ∈ N if there exists a vertex set S of
size at most k such that no component of G − S contains all but �nitely many
vertices from rays from both ends. A tree-decomposition distinguishes two ends
e�ciently if there is an edge-separation (A,B) such that all rays from one of the
ends lie eventually in A, all rays from the other end lie eventually in B and the
ends are not (|A ∩B| − 1)-distinguishable.

The following is a special case of [1, Theorem 7.3].

Theorem 2.3. Let G be a locally �nite graph and let k ∈ N. Let E be a set of ends

of G that are pairwise k-distinguishable. Then there is a canonical tree-decomposi-

tion distinguishing all end in E e�ciently.

While the following statement follows from results about factorisations and tree
amalgamations of quasi-transitive graphs, we o�er here a proof that avoids most of
the de�nitions that we would need, if we conclude it from [6, Theorem 7.5].

Theorem 2.4. Let G be a locally �nite graph of �nite tree-width. Then there exists

a canonical tree-decomposition of �nite width distinguishing all ends of G e�ciently.

Proof. A ray R of G lies in an end of any decomposition tree of a tree-decom-
position of �nite width of G if there is a ray in that end whose parts combined
contain in�nitely many vertices from R and each of those parts contains at least
one vertex of R. It is easy to see that equivalent rays in G must lie in the same
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end of the decomposition tree. Thus, every end of G is thin and contains at most
k distinct rays. In particular, the ends of G are pairwise k-distinguishable. So let
(T,V) be a canonical tree-decomposition distinguishing all ends of G e�ciently. We
may assume that every edge-separation distinguishes some pair of ends e�ciently.
In particular, there is an upper bound on the adhesion sets. By Lemma 2.1, there
are only �nitely many orbits of tight separations of bounded order. Thus, there are
only �nitely many orbits on E(T ) and hence on V (T ). If we show that all parts
are �nite, then this implies that the tree-decomposition has �nite width. So let us
suppose that some part is in�nite. Since (T,V) distinguishes all ends, there is a
unique end in this part1 and hence also in this torso. Note that the torso is locally
�nite, since it follows from Lemma 2.1 that every vertex lies in only �nitely many
separators of tight separations. Since the stabiliser of that part acts quasi-transi-
tively on the torso by a results of Esperet and Giocanti [3, Lemma 3.13], it is a
one-ended quasi-transitive graph. By a result of Thomassen [8, Proposition 5.6],
this end must be thick, a contradiction since all ends are thin. Thus, all parts are
�nite, which �nishes the proof as mentioned above. □

For a �nite tree T , we call a vertex of T central if it is the middle vertex of a
longest path in T . Similarly, an edge of T is central if it is the middle edge of a
longest path in T . Note that every �nite tree has either a central vertex or a central
edge and that this is always �xed the automorphism group of the tree.

3. Proof of Theorem 1.3

Let G be a quasi-transitive locally �nite graph that omits K∞ as a minor. By
Theorem 2.2, there exist k ∈ N and a canonical tree-decomposition (T,V) of G of
adhesion at most 3 such that the torsos are minors of G and each torso is either
planar or has tree-width at most k and such that the stabiliser of each torso acts
quasi-transitively on that torso. Furthermore, the edge-separations of (T,V) are
tight. Thus, there are only �nitely many orbits of them by Lemma 2.1 and hence
there are only �nitely many Aut(G)-orbits on V (T ).

We distinguish three types of torsos (�nite torsos, in�nite torsos of tree-width at
most k and in�nite planar torsos) and prepare them for our �nal quasi-isometry:
we �nd for each torso of the �rst two kinds quasi-isometries to planar quasi-transi-
tive locally �nite graphs and, in the last situation, we have to prepare them such
that separations of order 3 whose separator is also an adhesion set in (T,V) does
not leave three distinct components. We do this by adding additional separators of
size 1.

If there are �nite torsos, then there is an upper bound B1 on the number of
vertices in each such torso as there are only �nitely many Aut(G)-orbits on V (T ).
Thus, each of those torsos is (1, B1)-quasi-isometric to a single vertex.

Let us now consider an in�nite torso Ht of tree-width at most k. Since it is
locally �nite, Ht has a canonical tree-decomposition of �nite width. Again, since
there are only �nitely many Aut(G)-orbits on V (T ), there exists an upper bound
B2 on the width of the canonical tree-decompositions of such torsos. Let (Tt,Vt) be
a canonical tree-decomposition of Ht of width at most B2 distinguishing all ends
and such that all of its edge-separations are tight, which exists by Theorem 2.4.
Since there are only �nitely many orbits on V (Tt) under the stabiliser of Ht by

1An end ω lies in a part Vt if some ray R ∈ ω meets Vt in�nitely often.
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the same argument that we have only �nitely many Aut(G)-orbits on V (T ), there
exists an upper bound B3 on the diameter of the parts of (Tt,Vt) and an upper
bound B4 on the number of parts that contain a vertex v. Again, we may assume
that these bounds B3 and B4 hold for all torsos of this type, i. e. all in�nite torsos
of tree-width at most k. Thus, any map that maps each vertex u of Ht to some
s ∈ V (Tt) such that u lies in the part of s is a (1, B3B4)-quasi-isometry from Ht

to Tt. Since every adhesion set S of (T,V) in Ht is a clique and thus must lie in
some common part of (Tt,Vt), there exists a non-empty subtree TS

t of Tt all of
whose parts contain S. As all edge-separations of (Tt,Vt) are tight, Lemma 2.1
implies that every TS

t is �nite. So it has a central vertex vS or a central edge eS .
For every in�nite planar torso Ht and every adhesion set S in Ht of size 3, there

are at most two components C of Ht − S with N(C) = S, since Ht is planar and
thus does not contain K3,3 as a minor. Let (Tt,Vt) be a canonical tree-decomposi-
tion of adhesion at most 3 distinguishing all 3-distinguishable ends of Ht such that
all of its edge-separations are tight. This exists by Theorem 2.3. We contract all
edges whose edge-separations do not have one of the adhesion sets of size 3 from
(T,V) as separator and join their parts. Thereby, we obtain a tree-decomposition
(T ′

t ,V ′
t) that has as adhesion sets only adhesion sets of size 3 that are also adhesion

sets in (T,V). Note that the torsos are the subgraphs of Ht induced by the parts.
Let Gs be a torso of (T ′

t ,V ′
t). If there is an adhesion set S ⊆ V (Gs) of (T,V) that

is not an adhesion set in (T ′
t ,V ′

t), then Gs − S has a unique in�nite component
that is completely attached to S, i. e. has all vertices from S in its neighbourhood,
and perhaps one �nite component. We delete that �nite one. By doing this for all
choices of S, we obtain a new graph G′

s. As there are only �nitely many orbits on
the adhesion sets in (T,V), there exists B5 such that Gs is (1, B5)-quasi-isometric
to G′

s for all choices of Gs.
Now we are ready to de�ne the graph H that will be quasi-transitive, locally

�nite, planar and quasi-isometric to G. For that, we take the disjoint union H ′ of
the following graphs:

(i) one vertex xS for every adhesion set S in (T,V);
(ii) one vertex xt for every �nite torso Ht of (T,V);
(iii) one copy of the decomposition tree Tt for every in�nite torso of tree-width at

most k and
(iv) the disjoint union of all graphs Gs obtained from torsos G′

s in the tree-decom-
position (T ′

t ,V ′
t) of the in�nite planar torsos of (T,V) that do not have tree-

width at most k.

In order to form the graph H, we add some edges to H ′:

(v) an edge xSxt for all adhesion sets S and �nite torsos Ht with S ⊆ Vt;
(vi) an edge xSvS or two edges from xS to the vertices incident with eS for all

adhesion sets S and in�nite torsos of tree-width at most k that contain S and
(vii) edges from all s ∈ S to xS for all adhesion sets S in (T,V) and the graphs Gs

that contain S.

The resulting graph is denoted by H. By construction, G is connected and (1, B)-
quasi-isometric to H, where B is the maximum of B1, B3B4 and B5. Since we
made no choices during the construction of H that were not invariant under the
automorphisms, the automorphism group of G acts on H. By the choices during
the construction, the stabiliser of each torso of (T,V) still acts quasi-transitively
on the graph that replaces this torso and as a result, H is a quasi-transitive graph.
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Obviously, it is locally �nite. Since all components in H ′ are planar and since the
vertices xS are 1-separators and attached to either at most two adjacent vertices
in a component of H ′ or to all vertices from the adhesion set S of (T,V) whose
removal from each component of H ′ leave exactly one component with all of S
in its neighbourhood, we obtain that H is planar, too. This �nishes the proof of
Theorem 1.3. □
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