
INFINITE GRIDS IN DIGRAPHS

MATTHIAS HAMANN† AND KARL HEUER

Abstract. Halin proved that every graph with an end ω containing infinitely many
pairwise disjoint rays admits a subdivision of the infinite quarter-grid as a subgraph where
all rays from that subgraph belong to ω. We will prove a corresponding statement for
digraphs, that is, we will prove that every digraph that has an end with infinitely many
pairwise disjoint directed rays contains a subdivision of a grid-like digraph all of whose
directed rays belong to that end.

§1. Introduction

Halin’s grid theorem [4, Satz 41] characterizes ends of graphs that contain infinitely
many pairwise disjoint rays, i. e. one-way infinite paths. For this, an end is an equivalence
class of rays, where two rays are equivalent if there are infinitely many pairwise disjoint
paths between them. A subdivision of a graph G is a graph obtained from G by replacing
edges by new paths between the incident vertices of that edge such that the new paths
are internally disjoint and have no inner vertex in the vertex set of G. The hexagonal
quarter-grid, denoted by H8, is the graph in Figure 1.1.

Figure 1.1. The hexagonal quarter-grid H8.

Now we are able to state Halin’s theorem.
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Theorem 1.1. [4, Satz 41] Whenever an undirected graph contains infinitely many pairwise
disjoint and equivalent rays, then it contains a subdivision of H8.

As a first attempt to obtain an analogous result for directed graphs, digraphs for short,
Zuther [11, Theorem 3.1] proved that, if a digraph has an infinite increasing sequence of
distinct ends, each of which contains a ray, then it contains a subdivision of the digraph
obtained from H8 by orienting the horizontal edges to the right and the vertical ones
upwards. Here, the ends of digraphs are defined by Zuther [10,11] analogously as equivalence
classes of rays and anti-rays, where a (anti-)ray is an orientation of a one-way infinite path
such that each edge is oriented towards (resp. away from) infinity. (We refer to Section 2
for a precise definition and for the definition of an order on the ends).

Our main theorem is the following result, where the bidirected quarter-grid is the digraph
in Figure 1.2 and the reversed bidirected quarter-grid is obtained from the bidirected
quarter-grid by reversing the direction of the vertical edges.

R1

R2

R3

R4

Figure 1.2. The bidirected quarter-grid.

Theorem 1.2. If D is a digraph that contains an end ω with infinitely many disjoint
(anti-)rays, then there exists a subdivision of the (reversed) bidirected quarter-grid in D

with all its (anti-)rays in ω.

This theorem follows from a more detailed result (Theorem 4.2), which classifies ends
containing infinitely many disjoint rays into three different types. The classification will
be in terms of recurring auxiliary digraphs which are defined on rays within such a fixed
end and encode how these rays are connected to each other. Each classifying term is
characterising for the existence of a subdivision of a certain digraph; namely for the
bidirected quarter-grid, for a cyclically directed quarter-grid and for a complete ray digraph
(see Section 4 for precise definitions of these digraphs). From this point of view, Theorem 4.2
can be seen as an analogous result to [2, Theorem 1.2] where a similar classification is
proved for ends of undirected graphs.
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We note that our result is stronger than Zuther’s theorem, since it is possible to find
bidirected quarter-grids in Zuther’s grid-like digraphs. (We refer to the end of Section 4
for a discussion how to find bidirected quarter-grids in Zuther’s grid-like digraphs.)

Independently, Reich [7] recently obtained Theorem 1.2 with a slightly different notion of
bidirected quarter-grid, which turns out to be equivalent in that his bidirected quarter-grid
contains ours as a subdivision and vice versa.

Whereas Reich’s proof relies on a detailed analysis of an infinite, strongly connected
auxiliary digraph allowing to prescribe a set of rays among which all vertical ones are
chosen, ours looks at a sequence of finite, strongly connected digraphs and uses ideas similar
to those in [2,6]. In order to investigate that sequence, we prove a result for finite, strongly
connected digraphs (Theorem 3.4), which might be considered interesting in its own. It
can be seen as a directed analogue of the fact that every large enough finite, connected
graph contains either a vertex of high degree or a long path.

In Section 5, we will apply Theorem 3.4 also in order to find grid-like structures in ends
that only contain finitely many pairwise disjoint rays (anti-rays), see Theorem 5.1.

This paper is structured as follows. After introducing some terminology in Section 2, we
prove the structural result for finite, strongly connected digraphs in Section 3. In Section 4,
we will prove Theorem 1.2 and, in Section 5, we will prove the result on ends with only
finitely many pairwise disjoint rays or anti-rays. We finish in Section 6 with a discussion of
the situation when considering pairwise edge-disjoint rays or anti-rays.

§2. Preliminaries

For general facts and notation regarding graphs we refer the reader to [3], regarding
digraphs in particular to [1].

For the sake of brevity, we call a digraph D strong (resp. weak) if it is strongly
(resp. weakly) connected, a directed cycle just a dicycle and a directed path just a dipath.
For a dipath P containing two vertices a and b in this order, i. e. such that b is reached
from a via P , we denote by aPb the subdipath of P starting at a and ending at b. For
two vertex sets A and B, a dipath P is an A–B dipath if P starts in A, ends in B and
is internally disjoint from A Y B. In case A or B is a singleton set, we may omit the set
brackets with respect to this notation.

A weak digraph where each vertex has in- and out-degree 1 except one vertex v which
has in-degree (resp. out-degree) 0 and out-degree (resp. in-degree) 1 a ray (resp. anti-ray).
The vertex v is called the starting vertex (resp. end vertex) of the ray (resp. anti-ray). We
say that a ray (or anti-ray) starts (ends) in a vertex set A if it has its starting vertex (end
vertex) in A. For a ray R with starting vertex v and some x P V pRq we denote by Rx the
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subdipath vRx of R. A tail of R is a subray of R. If this tail starts at x, then we denote it
by xR. Similarly, for an anti-ray Q with end vertex v and some x P V pQq, we denote by
xQ the subdipath xQv of Q and by Qx the subanti-ray of Q that ends at x, which we will
also call a tail of Q.

Let Q and R be rays or anti-rays. We write Q ď R if there are infinitely many pairwise
disjoint Q–R dipaths and we write Q „ R if Q ď R and R ď Q. Then ď is a partial order
on the set of rays and anti-rays in a digraph D and „ is an equivalence relation on that
set. The equivalence classes of „ are the ends of D and we can extend the relation ď to
the ends: we write η ď ω for ends η and ω if there are Q P η and R P ω with Q ď R. Note
that η ď ω if and only if Q ď R for every Q P η and R P ω. In particular, we have η ď ω

and ω ď η if and only if η “ ω.
In [5], it was shown that an end that contains n pairwise disjoint rays for all n P N

also contains infinitely many pairwise disjoint rays. The in-degree of an end is then the
maximum number (within NYt8u) of pairwise disjoint rays in that end, and the out-degree
is the maximum number of pairwise disjoint anti-rays in that end. We call an end thick if
it contains infinitely many pairwise disjoint rays and we call it thin if it contains at most n

pairwise disjoint rays for some n P N. If it is clear from the context, we also speak about
thick and thin ends, when considering anti-rays.

§3. Unavoidable subdigraphs in strong digraphs

This section considers only finite digraphs. The purpose of this section is to prove
Theorem 3.4, which qualitatively states that every large enough strong digraph contains an
arbitrarily large strong subdigraph of a certain type. There are only three types of these
subdigraphs, which are differently structured while all maintaining strong connectivity.
Hence, Theorem 3.4 forms an analogue for digraphs to the following folklore result about
undirected graphs.

Proposition 3.1. For every r P N there exists an N P N such that every connected graph
on at least N vertices contains a path of length r or a star with r leaves as a subgraph.

To prepare the proof of the main result of this section, we start with the following
auxiliary lemma.

Lemma 3.2. Let D be a strong digraph. For every n P N there exists an N P N such that
if |V pDq| ą N , then one of the following is true:

(1) There exists a dipath of length at least n in D.
(2) There exists a vertex v P V pDq with at least n many out-neighbours.
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Proof. Suppose there does not exist a dipath of length at least n in D. Fix an arbitrary
vertex w P V pDq. For i P N, let Di denote the set of vertices that are reached from w by a
shortest dipath of length i in D. Since D is strong, we know that V pDq “

Ťn´1
i“0 Di. If D

does not contain any vertex of out-degree at least n, then |Di`1| ď pn ´ 1q ¨ |Di| for every
i ă n ´ 1. Now, however, we get a contradiction by setting

|V pDq| ą

n´1
ÿ

i“0
pn ´ 1q

i
“

pn ´ 1qn ´ 1
n ´ 2 “: N.

Hence, the desired vertex v must exist. □

Next we define one type of the involved strong digraphs that appear in the main result
of this section.

Let x and y be two, potentially equal vertices. For some positive k, ℓ P N, a system of
k ` ℓ internally disjoint dipaths (or dicycles in case x “ y) where k of them are x–y dipaths
and ℓ of them are y–x dipaths is called a pk, ℓq-system of x–y dipaths. We also speak about
a pk, ℓq-system of dipaths if we do not specify the vertices x and y. A pk, ℓq-system P of
x–y dipaths is called n-short if |V pP q Y V pQq| ă n for all x–y dipaths P P P and all y–x

dipaths Q P P in case x ‰ y, and otherwise each dicyle in P has length less than n.
The following theorem makes a similar statement as Theorem 3.4. However, the subdi-

graphs that are forced within each large enough strong digraph are not strong themselves
in this theorem.

Theorem 3.3. For every n P N there exists an N P N such that any strong digraph D on
at least N vertices contains one of the following substructures:

(1) A dipath of length at least n.
(2) An n-short pn, 0q-system P of dipaths.

Proof. Suppose there does not exist a dipath of length at least n in D. By Lemma 3.2
we now choose N P N so that the existence of a vertex v P V pDq with out-degree at least
ℓ :“ npn ´ 1qn´3 is guaranteed. Let z P V pDq ∖ N`pvq and Pw be a shortest dipath from
w to z in D for every w P N`pvq. Furthermore we set P 1 “ tPw | w P N`pvqu. Note that z

might also be equal to v since D is strong. If there exists no S Ď V pDq of size smaller than
n separating N`pvq from z, then there exists the desired pn, 0q-system P of v–z dipaths by
Menger’s Theorem. Hence, we may assume the existence of such a set S. Note that every
N`pvq–S dipath which does not use v has length at most n ´ 2 as otherwise we would have
a dipath of length at least n from v to z (or to a predecessor on a dipath in case v “ z). By
the pigeonhole principle, there exists a vertex s P S such that a set P1 Ď P 1 of size at least
r ℓ

n´1s exists all whose dipaths meet s. Let D1 denote the digraph induced by all initial
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segments of dipaths of P1 up to the vertex s. We can now repeat the argument with s

instead of z in D1. After iterating this argument at most n ´ 3 times, we have either found
the desired pn, 0q-system of dipaths via Menger’s Theorem or have a vertex s˚ P V pDq

which is reached from r ℓ
pn´1qpn´3q s ě n many vertices in N`pvq via dipaths whose length is

at most 1. This, however, gives rise to an pn, 0q-system of v–s˚ dipaths. □

Before we come to the proof of the main result of this section, Theorem 3.4, we state
another type of subdigraphs that are part of the statement of the main result.

A sequence pC1, C2, . . . , Ckq of dicycles is called a semi-chain if V pCiq X V pCjq ‰ ∅ if
and only if |i ´ j| “ 1 for all i, j P N with 1 ď i, j ď k. A semi-chain pC1, C2, . . . , Ckq is
called n-narrow for some n P N if |V pCiq| ă n for every i P t1, . . . , ku.

Now we prove the main result of this section.

Theorem 3.4. For every n, k P N there exists an N P N such that any strong digraph D

on at least N vertices contains one of the following substructures:

(1) A dicycle on at least n vertices.
(2) An n-narrow semi-chain pC1, C2, . . . , Ckq.
(3) An n-short pm, 1q-system of dipaths where m ě pk ´ 1qn ` 3.

During the preparation of this article, we noticed that Theorem 3.4 is equivalent to a
result in a recent preprint of Reich [8, Corollary 1.2]. However, our proof is much shorter
and more straightforward, since the paper [8] focusses on a more general version in terms
of butterfly minors.

Proof of Theorem 3.4. Let n, k P N be fixed, and let D be a strong digraph without dicycles
of length at least n. By Theorem 3.3 there exists an N P N such that if D has at least N

vertices, then it either contains a dipath of length nk or two vertices x, y together with an
pnk, 0q-system of x–y dipaths, each of length less than nk. Corresponding to this, we now
distinguish two cases.

Case 1. D contains a dipath P of length nk.

Let P “ p1p2 . . . pnk and define v1 “ pnk. Let Q1 be a dipath that is internally disjoint
from P from v1 to a vertex pi “: v2 such that i P N is as small as possible, and with respect
to these properties Q1 is as short as possible. Such a dipath exists since D is strong. Since
D does not contain a dicycle of length at least n, we know that i ě nk ´ n ` 2. Now we
set C1 “ v2Pv1 Y Q1, which is a dicycle of length less than n. Since C1 does not cover
V pP q, we similarly repeat the construction of dicycles along P : Let Q2 be a dipath that
is internally disjoint from p1Pv2 from v2 to a vertex pj “: v3 such that j P N is as small
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as possible, and with respect to these properties Q2 has as few edges outside of EpP q as
possible. As before, set C2 “ v3Pv2 Y Q2, which is another dicycle of length less than n.
This process is repeated until the sequence of constructed dicycles C1, C2, . . . , Cℓ covers
V pP q. Since each dicycle contains at most n ´ 1 vertices of P , we know that ℓ ě k holds.

We claim that pC1, C2, . . . , Cℓq is a semi-chain of dicycles. By construction, we know that
Ci intersects Ci´1 and Ci`1 for every i P N with 1 ă i ă ℓ. Now suppose for a contradiction
that Ci and Cj intersect for i, j P N with 1 ď i ă j ´ 1 ă ℓ. Without loss of generality, let
us assume that i is as big as possible with respect to this property and fixed j. Note that
Ci and Cj either intersect in Qi X Qj or in pvi`1Pviq X Qj. Let c be the last vertex on Qj

that lies in Ci X Cj. If c R V pvi`1Pviq, then we get a contradiction to the choice of vi`1

since pviQicq Y pcQjvj`1q is a dipath from vi to vj`1, which lies before vi`1 on P , that is
internally disjoint from p1Pvvi

. Hence, we know that c P V pvi`1Pviq. By the choice of i,
we know that Qj is disjoint from Cm for i ă m ă j ´ 1. Suppose for a contradiction that
cQjvj`1 intersects vjPvj´1 before vj´1, say in a vertex w. Then we have a contradiction to
the choice of Qj since the dipath pvjPwq Y pwQjvj`1q would be a valid choice instead of
Qj, but has fewer edges outside of P than Qj. Hence cQjvj`1 does not intersect vjPvj´1

before vj´1. Now, however, we get a contradiction to the choice of vi`2 since the dipath
pvi`1Pcq Y pcQjvj`1q is a valid choice for the dipath Qi`1, but ends in vj`1, which lies
before vi`2 on P . So, Ci and Cj must be disjoint, which completes the proof of the claim
that pC1, C2, . . . , Cℓq is a semi-chain of dicycles.

By the definition of the dicycles Ci, we immediately get that the semi-chain of dicycles
pC1, C2, . . . , Cℓq is n-narrow. This completes the proof under the assumption of Case 1.

Case 2. D contains no dipath of length nk, but two vertices x, y together with an pnk, 0q-
system P of x–y dipaths.

In case x “ y, we obtain the desired n-short pm, 1q-system of dipaths immediately for
n ě 3, and for n ď 2 we trivially have a dicycle of desired length since D is strong. So let
us assume that x ‰ y. Using again that D is strong, we can find a dipath Q from y to x.
By assumption, Q has length less than nk. Hence, Q is internally disjoint to at least one
dipath P ˚ P P. But this implies that Q has length at most n ´ 2, as otherwise Q Y P ˚

would be a dicycle of length at least n. Thus, Q can intersect at most n ´ 3 dipaths of P
in interior vertices. Hence, there exist a set P 1 Ď P containing at least npk ´ 1q ` 3 many
dipaths that are internally disjoint to Q. As D does not contain any dicycle of length
at least n, we know that each dicycle P 1 Y Q for every P 1 P P 1 has length less than n.
Therefore, P 1 Y tQu is an n-short pm, 1q-system of x–y dipaths where m ě pk ´ 1qn` 3. □
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§4. A grid theorem for thick ends

Before we state the main result of this section, we need to define some digraphs. The first
digraph is build from infinitely many pairwise disjoint rays R1 “ x1

1x
1
2 . . ., R2 “ x2

1x
2
2 . . .,

. . . where we add edges xi
4j`7x

i`1
4j`1 and xi`1

4j`2x
i
4j`8 for all j ě 0 and i ě 1. Finally, we

suppress all vertices v P V pRiq with d´pvq “ d`pvq “ 1 that have only neighbours on Ri.
We call the resulting digraph the bidirected quarter-grid. See Figure 1.2 for a picture of the
bidirected quarter-grid. Furthermore, we call the digraph obtained from the bidirected
quarter-grid after reversing all orientations of the edges the reversed bidirected quarter-grid.

R1 R2

R3

R4

(a) An ascending cyclically directed
quarter-grid.

R1

R2

R3

R4

(b) A descending cyclically directed
quarter-grid.

Figure 4.1. The cyclically directed quarter-grids.

In order to define two further digraphs, we start again with infinitely many pairwise
disjoint rays R1 “ x1

1x
1
2 . . ., R2 “ x2

1x
2
2 . . ., . . .. For the first one, we add the following

edges: x1
jx

2
j for all odd j, xi

j`3x
i`1
j for all i ě 2 and all odd j, and xi

2x
1
2pi´1q for all i ě 2.

This digraph is called the ascending cyclically directed quarter-grid. For the second one,
we add the following edges: xi`1

j xi
j`1 for all even j and all i ě 1, and x1

2ix
i`1
1 for all i ě 1.

We call this digraph the descending cyclically directed quarter-grid. We may refer to both
of these digraphs simply as cyclically directed quarter-grids. See Figure 4.1 for pictures of
both cyclically directed quarter-grids.

A complete ray digraph on a set of infinitely many pairwise disjoint rays rays R1 “ x1
1x

1
2 . . .,

R2 “ x2
1x

2
2 . . ., . . . is a digraph that is obtained by the rays Ri together with infinitely many

disjoint dipaths in both directions between every two of them such that these dipaths do
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not meet any other ray Rj, such that all these additional dipaths are pairwise disjoint and
such that the starting vertex of Ri is the end vertex of an R1–Ri dipath.

In the following lemma we prove that the previously defined digraphs are all one-ended.

Lemma 4.1. The bidirected quarter-grid, the cyclically directed quarter-grids and complete
ray digraphs have each precisely one end.

Proof. We shall only prove the statement for the bidirected quarter-grid since the the
proofs for the other digraphs are very similar. Obviously, R ď R1 holds for every ray R

in the bidirected quarter-grid. For the converse, note that R1 ď Ri holds for every i ě 1.
Hence, if a ray R contains infinitely many vertices from some Ri, we immediately get that
R1 ď R. Therefore, we may assume that R contains vertices from Ri for infinitely many
i P N. Now note that for each i P N there exist an R1–xi

1 dipath such that all these dipaths
are pairwise disjoint. From this it can easily deduced that R1 ď R holds. □

We continue with the definition of another auxiliary digraph. Let D be a digraph and R
be a set of disjoint rays in D. The auxiliary ray digraph DR has R as its vertex set and an
edge from R1 to R2 if there are infinitely many disjoint R1–R2 dipaths that do not meet
any ray of R ∖ tR1, R2u. If R Ď ω for an end ω of D, then we also call it an auxiliary
ω-ray digraph. Note that if R consists of finitely many pairwise equivalent rays, then DR

is strong.
Now we state the main result of this section, from which we later deduce Theorem 1.2.

Theorem 4.2. Let D be a digraph with an end ω that contains infinitely many disjoint
rays. Then the following holds.

(i) The digraphs D contains a subdivision of the bidirected quarter-grid with all rays
in ω, if and only if there is an infinite sequence of auxiliary ω-ray digraphs that
contain semi-chains of increasing size.

(ii) The digraphs D contains a subdivision of the cyclically directed quarter-grid with
all rays in ω, if and only if there is an infinite sequence of auxiliary ω-ray digraphs
that contain cycles of increasing length.

(iii) The digraphs D contains a subdivision of the complete ray digraph with all rays
in ω, if and only if there is an infinite sequence of auxiliary ω-ray digraphs that
contain pm, 1q-systems of dipaths for increasing m.

Additionally, every infinite sequence of finite auxiliary ω-ray digraphs of increasing size
meets the conditions of one of (i)–(iii).
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Proof. Clearly, the definitions of the bidirected quarter-grid, cyclically directed quarter-
grid and the complete ray digraph imply the existence of suitable sequences of auxiliary
digraphs.

Let R1, R2, . . . be infinitely many pairwise disjoint rays in ω. We define a sequence
pDiqiPN of auxiliary ω-ray digraphs where Di has vertex set tRj | 1 ď j ď iu. Let pijqjPN,
pkjqjPN and pnjqjPN be increasing sequences going to 8 such that Npkp, npq ď ip for the
constant Npkp, npq from Theorem 3.4. Thus, we can apply Theorem 3.4 to each Dip for kp

and np and obtain that Dip either contains a dicycle of length np, an np-narrow semi-chain
on kp dicycles or an np-short ppkp ´ 1qnp ` 3, 1q-system of dipaths. This implies that we
can find a subfamily pDiqiPI for a strictly increasing sequence I in N such that either all Di

contain dicycles whose lengths are strictly increasing or all Di contain semi-chains whose
numbers of dicycles are strictly increasing or all Di contain pℓ, 1q-systems of dipaths for
strictly increasing ℓ. This completes the proof of the additional statement of the theorem.

Let us now assume that all elements of pDiqiPI contain dicycles and that the lengths
of those are strictly increasing. We may assume that I “ pniqiPN is such that ni`1 ě n2

i

and such that Dni`1 contains a dicycle of length at least ni. Recall that Dni`1 contains
precisely ni`1 many vertices. We will define, for every element nj of I, a dicycle Cnj

in
Dnj`1 of length at least nj, and a sequence pP j

i q1ďiďnj´1 of dipaths in Dnj`1 that has the
following properties.

(1) Each P j
i starts at a vertex of Cnj´1 , seen as vertices of Dnj`1 , and ends at a vertex

of Cnj
.

(2) P j
i does not contain any end vertex of P j

k for k ă i.
(3) P j

i does not contain any starting vertex of P j
k for k ą i.

Let us assume that we have constructed for a finite sequence pn0, . . . , njq dicycles Cnk
, for

k ď j, and sequences of dipaths P k
i , for k ď j and 1 ď i ď nj´1. Let Cnj`1 be a dicycle

of length at least nj`1 in Dnj`2 , which exists by our assumption. By the lengths of Cnj

and Cnj`1 and as Dnj`2 is strongly connected, there exists a sequence pP j`1
1 , . . . , P j`1

nj
q of

dipaths starting in a vertex set in V pCnj
q that contains the end vertices of the dipaths P j

i

and that end on Cnj`1 such that (1)–(3) hold for this sequence.
Let us now construct an infinite sequence pIjqjPN of subsequences of I such that Ij and

Ij`1 have their first j elements in common. For this, we start with I1 :“ I and assume that
we have already constructed the sequences I1, . . . , Ij´1. Let v1, . . . , vnj´1 be the starting
vertices of the dipaths P j

i on Cnj´1 in the cyclic order given by the cycle. For every k ě j,
let xj,k

1 , . . . , xj,k
nj´1

be the vertices on Cnk
that are end vertices of dipaths P k

i such that
xj,k

i is obtained by starting at vi and following P j
i in Dnj`1 and at its end vertex on Cnj
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follow P j`1
i1 in Dnj`2 to its end vertex on Cnj`1 and so on until we reach Cnk

in Dnk`1

via the dipath P k
i2 at its end vertex xj,k

i . Let σj,k be a permutation of t1, . . . , nj´1u such
that xj,k

σj,kp1q
, . . . , xj,k

σj,kpnj´1q
is the cyclic order of these vertices on Cnk

. Then there exists
a permutation σj of t1, . . . , nj´1u such that infinitely many elements k of Ij´1 satisfy
σj “ σj,k. We modify Ij´1 to obtain Ij such that after the pj ´ 1q-st entry we take a
subsequence consisting only of such elements k.

Let I8 “ pmiqiPN be the subsequence of I whose first j entries are the first j entries
of Ij for every j P N. Let us now construct a subdigraph of D based on the sequences
that we have constructed. While this will, generally, not be a subdivision of one of the
cyclically directed quarter-grids, we will find one of those two digraphs as subdivision of
the constructed subdigraph.

Let us fix some R˚ P ω. We start by taking large enough finite initial segments of the
rays that are the vertices x1,m1

1 , . . . , x1,m1
n0 in Dm2 such that there exists a set P˚ of dipaths,

one from each of those initial segments to R˚ and vice versa. We shall later during our
construction find such dipaths again, so we denote this step of our construction briefly by
connecting to R˚. Note that we do not include the dipaths from P˚ in our construction of
the desired subdivisions. We only need to ensure their existence in D. Let X Ď V pDq be a
finite vertex set. Now we continue by prolonging our already chosen initial segments of
the rays x1,m1

1 , . . . , x1,m1
n0 such that we can find a set of disjoint dipaths all avoiding X, one

from each initial segment to the initial segment of its successor in the cyclic order induced
by Cm1 with the property that on each ray, except for x1,m1

1 , we first have the end vertex
of the dipath from the cyclic predecessor before we have the starting vertex of the dipath
to the cyclic successor. We may assume that for x1,m1

1 it is the other way, that is, this ray
first contains the starting vertex of the dipath to its cyclic successor before it contains
the end vertex of the other dipath coming from its cyclic predecessor. We will use such
a construction later once more, so will simply say that we have cyclically connected the
segments avoiding X, when referring to this particular construction.

Let X Ď V pDq be a finite vertex set. Then we say that we follow a dipath P j
i in D and

avoid X if we run on the ray S1 corresponding to the first vertex of P j
i until we can follow

a dipath P1,2 to a tail T2 of the ray corresponding to the second vertex of P j
i such that

P1,2 and T2 are disjoint from X, and P1,2 intersects only S1 and T2, but no other ray from
Dnj`1 ; furthermore, we continue this along P j

i while guaranteeing that all dipaths Pℓ,ℓ`1

are chosen to be pairwise disjoint, until we reach the ray corresponding to the last vertex
of P j

i . Let k, ℓ P N such that m1 “ nk and m2 “ nℓ. We say that we reroute from Cm1 to
Cm2 if we follow each dipath P

nk`1
i to Cnk`1 and avoid the finite construction we made so

for, i.e. segments of rays together with dipaths used for cyclically connecting them, then
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follow the dipaths P
nk`2
i avoiding the vertices of our finite construction and so on until we

follow the dipaths P nℓ
i avoiding the vertices of our finite construction.

We continue our construction by taking the finite digraph obtained from connecting
segments of the rays x1,m1

1 , . . . , x1,m1
n0 to R˚, cyclically connecting the obtained segments

twice each time avoiding everything built so far and rerouting to Cm2 . For every ray Q

on Cm2 that does not contain an end vertex of some rerouted dipath, we add a new vertex
q P V pQq to our construction such that qQ avoids everything that we constructed so far.

We recursively continue this construction by repeating the following small steps: first,
we connect the dipaths to R˚ via dipaths that are disjoint from all dipaths of previous
steps of connecting to R˚, then we cyclically connect the dipaths twice with respect to the
cycle Cmj

each time avoiding everything built so far, then we reroute from Cmj
to Cmj`1

and, lastly, we add dipaths of the new rays from Cmj`1 . We call this combination of these
steps a big step. After having performed big steps along the whole sequence I8, we denote
the resulting subdigraph of D by D1.

If we remove from D1 the dipaths added in the step of cyclically connecting segments of
the rays, then we are left with infinitely many pairwise disjoint rays. All these rays are
contained in ω since we always connected disjoint segments of those rays to R˚ resulting
in systems of infinitely many disjoint dipaths to and from R˚, which forces them to be
equivalent to R˚. By the choice of I8, in each big step of our construction, these rays
keep their cyclic order. We split up our cyclic order of the rays by saying that the ray
that was started in the very first step with a subdipath of x1,m1

1 is our smallest ray and all
other rays are ordered above it corresponding to the cyclic order. That way, we obtain a
linear order. Since there are infinitely many pairwise disjoint rays, we either contain an
infinite strictly increasing set of rays or an infinite strictly decreasing set of rays. In the
first case, since we cyclically connected the segments of the resulting rays in each big step
twice, we can ensure that every increasing subsequence is cyclically connected once in that
big step. Hence, we immediately obtain a subdivision of the ascending cyclically directed
quarter-grid by restricting to that sequence and keeping the cyclically connecting dipaths
across potentially skipped rays. In the second case, we similarly obtain a subdivision of
the descending cyclically directed quarter grid. Finally, it follows from Lemma 4.1 that the
constructed subdivisions of the cyclically directed quarter-grids have all rays in ω.

Let us now assume that all elements of pDiqiPI contain semi-chains of increasing numbers
of dicycles, that is, there exist strictly increasing sequences I “ pnjqjPN and pkjqjPN such
that Dnj

contains a semi-chain of kj dicycles. Each of these semi-chains is n-narrow for
a certain n P N, but we shall not make use of this, so we can drop that information.
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We may assume that kj`1 ě k2
j . Similarly to the previous case, we will define for every

kj a semi-chain Sj
CpCj

1 , . . . , Cj
kj

q of kj dicycles Cj
1 , . . . , Cj

kj
and a sequence pP j

i q1ďiďkj´1 of
dipaths in Dnj

that has the following properties.

(4) Each P j
i starts at a vertex of a different Cj´1

i , seen as vertices of Dnj
, and ends at

a vertex of a different Cj
ℓ for odd ell.

(5) P j
i does not contain any end vertex of P j

k for k ă i.
(6) P j

i does not contain any starting vertex of P j
k for k ą i.

Let us assume that, for a finite sequence pk0, . . . , kjq, we have constructed the semi-chains
Sℓ

CpCℓ
1, . . . , Cℓ

kℓ
q of dicycles and dipaths P ℓ

i for 1 ď ℓ ď j and 1 ď i ď kℓ´1 as claimed
above. Let Sj`1

C pCj`1
1 , . . . , Cj`1

kj`1
q be a semi-chain of kj`1 dicycles in Dnj`1 . By the choices

of kj and kj`1 and as Dnj`1 is strongly connected, there exists a sequence pP j`1
1 , . . . , P j`1

kj
q

of dipaths starting at vertices of different dicycles Cj
i that contain the end vertices of the

dipaths P j´1
ℓ and that end on different dicycles Cj`1

i for odd i such that (4)–(6) hold for
this sequence. We may assume that the starting vertices always avoid the dicycle Cj

i´1 and
the analogue is true for the end vertices.

Let us now define a sequence pIjqjPN of subsequences of I such that Ij and Ij`1 have their
first j elements in common. We follow the definition of the sequence as in the previous
case except that we consider a total order induced by the semi-chains of dicycles instead of
a cyclic order. Again, we let I8 be the subsequence of I whose first j elements coincide
with the first j elements of Ij. We will now construct a subdigraph of D of which we will
show later that it contains a subdivision of the bidirected quarter-grid.

As in the previous case, we let x
j,mj

i denote the end vertices after starting at the first
vertex of P j

i and following at its end vertex the dipath P j`1
i1 in Dj`1 and so on until we

reach the end vertex x
j,mj

i of a dipath P
mj

i2 . Now, precisely as in the previous case, we
take suitable starting dipaths of the rays corresponding to the x1,m1

i and connect them
to some fixed R˚ P ω. We continue by extending those starting dipaths of the rays Qi

corresponding to the x1,m1
i and join every two consecutive ones in the order that we took

in the step of defining I1 by disjoint dipaths in both directions that avoid all other rays
belonging to some x1,m1

ℓ . We do this by starting at Q1 and first joining it via a dipath
to Q2 and then finding a disjoint dipath from Q2 to Q1 such that the end vertex of the
first dipath lies before the starting vertex of the second dipath on Q2 and the first vertex
of the first dipaths lies before the end vertex of the second dipath on Q1. We continue
this until we reach the maximal element such that for each i the vertices on Qi that lie
on dipaths between Qi´1 and Qi lie before the vertices on dipaths between Qi and Qi`1.
We call this linearly connecting segments of the rays and say that it avoids a finite set
X Ď V pDq if none of the dipaths intersects X.
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Exactly the same way as in the previous case, we are rerouting from semi-chains of
dicycles to larger ones. After that, for every odd i such that C

mj

i does not contain a
ray that contains an end vertex of some rerouted dipath, we choose a ray Q on C

mj

i and
add a new vertex q P V pQq to our construction such that qQ avoids everything that we
constructed so far.

We recursively repeat these four steps of connecting to R˚ via dipaths that are disjoint
from all dipaths of previous steps of connecting to R˚, linearly connecting segments of
the rays avoiding everything built so far, rerouting them and then adding remaining ones.
Iterating this along all of I8, we obtain the subdigraph D1 of D.

Removing the dipaths added in the step of linearly connecting segments of rays leads to
infinitely many pairwise disjoint rays in ω that are arranged in a linear order. Thus, there
exists an infinite strictly ascending or strictly descending sequence. While the first case
directly leads to a subdivision of the bidirected quarter-grid by restricting to that sequence
and keeping the linearly connecting dipaths across potentially skipped rays, we have to
remove some of the linearly connecting dipaths in the second case. Lemma 4.1 ensures
again that the constructed subdivision of the bidirected quarter-grid has all rays in ω.

Let us now consider the last case, that is that pDiqiPN contains pℓ, 1q-systems of xi–yi

dipaths for vertices xi, yi P V pDiq for increasing ℓ. Similarly as in the case before, all
these pℓ, 1q-systems of xi–yi dipaths are n-short for certain n P N, but we shall not need
that additional information. Let I “ pniqiPN and pℓiqiPN be strictly increasing sequences of
natural numbers where we may assume that the digraph Dni

contains an pℓi, 1q-system of
xi–yi dipaths and that ℓi`1 ě 2ℓi. Let Hni

be the subdigraph of Dni
formed by the xi–yi

dipaths and the yi–xi dipath of the pℓi, 1q-system of xi–yi dipaths. For every j P N, we
define a sequence pP j

1 , . . . , P j
ℓj

q of dipaths in Dnj
with the following properties.

(7) Each P j
i starts at an inner vertex of a different xj´1–yj´1 dipath in Hnj´1 , seen as

vertices of Dnj
, and ends at an inner vertex of a different xj–yj dipath.

(8) P j
i does not contain any end vertex of P j

k for k ă i.
(9) P j

i does not contain any starting vertex of P j
k for k ą i.

These dipaths exist by the choices of ℓj and as Dnj
is strongly connected.

Contrary to the previous two cases, we do not need to refine our sequence in this case.
Instead, we can directly start with the construction of a complete ray digraph. For that, we
first connect starting dipaths of the rays belonging to the starting vertices of the dipaths P 1

i

to R˚ as in the previous cases. Then we completely connect those segments of rays: between
every two we add a dipath in each direction such that these dipaths do not intersect and
such that each of these dipaths does not intersect with the rays from the starting vertices
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of the other dipaths. We obtain these desired dipaths similarly as in the previous cases by
first finding suitable dipaths in Hn1 , and then translating them to dipaths in D.

Then we can reroute the starting dipaths along the dipaths P 1
i in Dn2 to the rays

belonging to the end vertices of those dipaths. As the fourth step, let T be a x1–y1 dipath
in Hn1 with inner vertices that does not contain a ray which contains an end vertex of
some rerouted dipath. For every such T we choose a ray Q on T that corresponds to
an inner vertex and add a new vertex q P V pQq to our construction such that qQ avoids
everything that we constructed so far. Again, we recursively repeat these four steps for
every j P N, where the connecting to R˚ happens via dipaths that are disjoint from all
dipaths of previous steps of connecting to R˚. The resulting digraph contains a complete
ray digraph which has all rays in ω by construction and Lemma 4.1. □

Now we deduce Theorem 1.2 from the previous theorem.

Proof of Theorem 1.2. We shall prove the theorem only for the case that there exist
infinitely many pairwise disjoint rays in one common end. The other case concerning
anti-rays follows from that proof applied to the digraph obtained from D where all edges
are reversed.

Theorem 4.2 implies that D contains one of the following digraphs as subdivision with
all rays in ω: either a bidirected quarter-grid, or one of the cyclically directed quarter grids
or a complete ray digraph.

Obviously, any complete ray digraph contains a subdivision of the bidirected quarter-
grid. A way to find a subdivision of the bidirected quarter-grid in the cyclically directed
quarter-grids, is indicated in Figure 4.2. This finishes the proof of the theorem. □

Zuther [11, Theorem 3.1] proved that every digraph with an infinite increasing sequence
of ends, each of which contains a ray, has a thick end as a supremum of this sequence
and the digraph from Figure 4.3 as subdivision with the red ray lying in the thick end.
Using the same method how we found a bidirected quarter-grid in the cyclically directed
quarter-grids, we can also find a bidirected quarter-grid in Zuther’s digraph.

§5. Grids in thin ends

In this section we prove a result for ends of finite in-degree. This can be done for the
out-degree completely analogously, which is why we omit the details for that here.

We begin this section with definitions of bounded versions of the bidirected quarter-grid
and the cyclically directed quarter-grid. For the following definitions let R1, . . . , Rn be
n P N pairwise disjoint rays, where V pRiq “ ri

1, ri
2, . . . for every i P N.
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Figure 4.2. A subdivision of the bidirected quarter-grid in the ascending
(on the left) and the descending (on the right) cyclically directed quarter-grid,
where the edges coloured in blue, red and orange correspond to subdivisions
of the rays R1, R2, and R3 from the bidirected quarter-grid. The cyan edges
highlight the edges of bidirected quarter-grid between the rays.

Figure 4.3. The digraph from Zuther [11] with the red ray being from the
thick end.

We define the hexagonal grid of width n P N as
Ťn

i“1 Ri together with the edges ri
jr

i`1
j for

all pairs pi, jq P N ˆ N where i “ j “ 1 pmod 2q and j “ 1 pmod 4q, or i “ j “ 0 pmod 2q

and j “ 2 pmod 4q, and together with the edges ri`1
j ri

j for all pairs pi, jq P N ˆ N where
i “ j “ 1 pmod 2q and j “ 3 pmod 4q, or i “ j “ 0 pmod 2q and j “ 0 pmod 4q. See
Figure 5.1 (a) for an example of a hexagonal grid of width 4.

Let us define the circular grid of width n P N as
Ťn

i“1 Ri together with the edges ri
j`1r

i`1
j

for all odd j P N and all i P t2, . . . , n ´ 1u, the edges r1
j r2

j for all odd j and the edges rn
j r1

j

for all even j. See Figure 5.1 (b) for an example of a circular grid of width 3.
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R1 R2 R3 R4

(a) The hexagonal grid of width 4.

R1

R2R3

(b) The circular grid of width 3.

Figure 5.1. Hexagonal and circular grids of finite width.

While for thick ends, we found a subdivision of the bidirected quarter-grid with as many
disjoint rays as the end contains, this is not expectable for thin ends with respect to a
hexagonal grid of corresponding width. However, our next result gives at least a bound on
the width of a hexagonal grid or a circular grid inside a thin end, depending only on the
maximum number of disjoint rays in that end. Contrary to the situation for thick ends, we
can prescribe a set of rays in that end such that the rays Ri of our (hexagonal or circular)
grid are from this set.

Theorem 5.1. For all n P N there exists kpnq P N such that in all digraphs with an end
ω of in-degree at least kpnq and a set R of kpnq pairwise disjoint rays in ω there is a
subdivision of the hexagonal grid of width n or of the circular grid of width n all whose
rays Ri are from R.

Proof. Let kpnq be the constant from Theorem 3.4 guaranteeing either the existence of a
dicycle of length at least n or a semi-chain with 2n dicycles or a pp2n ´ 1qn ` 3, 1q-system
of dipaths. Let D be a digraph and ω be an end of D with in-degree at least kpnq, and
let R1, . . . , Rkpnq be kpnq pairwise disjoint rays in ω. Let H be the auxiliary ω-ray digraph
with R1, . . . , Rkpnq as vertices. Since this digraph is strong, there exists either a dicycle of
length at least n in H, a semi-chain of 2n dicycles, or a pp2n ´ 1qn ` 3, 1q-system of x–y

dipaths for some vertices x, y P V pHq by Theorem 3.4.
In the situation of a dicycle of length at least n, we can cyclically connect segments of

the rays on that dicycle in the same way as we did it in the proof of Theorem 4.2 in the
situation of dicycles of increasing lengths, and do this infinitely many times. Thereby, we
obtain a subdivision of the circular grid of width n.

In the situation of an pp2n ´ 1qn ` 3, 1q-system of x–y dipaths for x, y P V pHq, we can
pick one inner vertex from each but one of the pp2n ´ 1qn ` 3, 1q distinct x–y dipaths and
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then completely connect segments of those rays, and repeat this infinitely many times.
This results in a digraph that contains the hexagonal grid of width p2n ´ 1qn ` 2 and the
circular grid of width p2n ´ 1qn ` 2 as subdivisions.

In the situation of a semi-chain of 2n dicycles, we pick vertices from every second dicycle.
Then, we linearly connect segments of those rays and repeat this infinitely many times.
The resulting digraph contains a subdivision of the hexagonal grid of width n.

By construction, the rays corresponding to the Ri in the constructed subdivisions always
lie in R. □

As corollary, we obtain that the digraph always contains a subdivision of a hexagonal
grid of bounded width, see Corollary 5.2. We note that this transfers a result by Stein [9,
Theorem 3.2.2] from graphs to digraphs.

Corollary 5.2. For all n P N there exists kpnq P N such that in all digraphs with an end
of in-degree at least kpnq there is a subdivision of the hexagonal grid of width n with all
rays in that end.

Proof. Let kpnq be the value from Theorem 5.1 for finding a hexagonal grid of width n ` 1
or a circular grid of width n ` 1. So we find one of those as a subdivision in our digraph.
By a similar argument that we find a subdivision of the bidirected quarter-grid within the
cyclically directed quarter-grid, we find a subdivision of a hexagonal grid of width n within
a circular grid of width n ` 1, which implies the assertion. □

Stein’s bound in [9, Theorem 3.2.2] is sharp as she showed with an example [9, Example
3.2.3]. Let us modify her example so that it leads to a digraph with a unique thin end of
in-degree 3

2n ´ 1 without a subdivision of the hexagonal grid of width n.

Example 5.3. Let Dℓ be a digraph on 3ℓ ` 1 rays: R0 “ x0x1 . . . and Rk
i “ xi,k

0 xi,k
1 . . .

for 1 ď i ď 3 and 1 ď k ď ℓ. For all 1 ď i ď 3 and 1 ď k ă ℓ, we add edges xjx
i,1
j and

xi,k
j xi,k`1

j for all even j P N and edges xi,1
j xj and xi,k`1

j xi,k
j for all odd j P N. Then the

3ℓ ` 1 rays lie in the same end and it is easy to see that there are no more than 3ℓ ` 1
pairwise disjoint rays in that end. So it has in-degree 3ℓ ` 1. The underlying undirected
graph of Dℓ is precisely the graph Y pℓq from Stein’s example [9, Example 3.2.3], and thus
it does not contain a subdivision of the underlying undirected graph of a hexagonal grid of
width 2ℓ ` 2. Thus, Dℓ cannot contain a hexagonal grid of width 2ℓ ` 2 as a subdivision.

The bound from Theorem 3.4 that leads to the value of kpnq in Corollary 5.2 is much
larger than 3

2n ´ 1, the value that we obtain from Example 5.3, which is the best lower
bound that we have so far. Thus, our bound in Corollary 5.2 is not sharp and motivates
the following problem.
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Problem 5.4. Let k P N. Determine the smallest value fpkq such that every digraph with
an end of in-degree fpkq contains a subdivision of the hexagonal grid of width k.

§6. Weak immersions of bidirected quarter-grids

In this section, we will prove a grid-theorem for edge-disjoint rays in ends of digraphs.
By [5, Theorem 6.1], we know that an end containing n pairwise edge-disjoint rays for all
n P N contains infinitely many pairwise edge-disjoint rays. Thus, it is natural to also ask
which grid-like structures we obtain for edge-disjoint rays.

For the result of this section, we need the definition of a weak immersion. Let D and H

be digraphs. A weak immersion of H in D is a map φ with domain V pHq Y EpHq such
that φ restricted to V pHq is injective, has its image in V pDq and such that every edge
uv P EpHq is mapped to a φpuq–φpvq dipath in D where every two such images φpeq and
φpfq for distinct e, f P EpHq are edge-disjoint.

The proof of a corresponding version of Theorem 4.2 involving weak immersions can be
obtained in this setting by following its original proof almost verbatim, which then implies
the following version of Theorem 1.2.

Theorem 6.1. If D is a digraph that contains an end ω with infinitely many pairwise
edge-disjoint (anti-)rays, then there exists a weak immersion of the (reversed) bidirected
quarter-grid in D with all its (anti-)rays in ω. □

Similarly, Theorem 6.2 can be obtained almost verbatim from the proof of Theorem 5.1.

Theorem 6.2. For all n P N there exists kpnq P N such that in all digraphs with an end ω

and a set R of at least kpnq pairwise edge-disjoint rays in ω there is a weak immersion
of the hexagonal grid of width n or of the circular grid of width n all whose rays Ri are
from R. □
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