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Abstract. We prove that the cut space of any transitive graph G is a finitely

generated Aut(G)-module if the same is true for its cycle space. This confirms

a conjecture of Diestel which says that every locally finite transitive graph
whose cycle space is generated by cycles of bounded length is accessible. In

addition, it implies Dunwoody’s conjecture that locally finite hyperbolic transi-

tive graphs are accessible. As a further application, we obtain a combinatorial
proof of Dunwoody’s accessibility theorem of finitely presented groups.

1. Introduction

A locally finite transitive graph is accessible if there exists some k ∈ N such that
any two ends can be separated by at most k edges. Relating this notion to the
accessibility of finitely generated groups, Thomassen and Woess [19] proved that a
finitely generated group is accessible if and only if some (and hence every) of its
locally finite Cayley graphs is accessible.

Dunwoody [10] proved that the finitely presented groups are accessible. In this
paper, we obtain as a corollary of our main theorem a result for the larger class
of all locally finite transitive graphs that is similar to the accessibility theorem for
finitely generated groups. Note that we have to make additional assumptions on the
graph, as Dunwoody gave examples of locally finite inaccessible transitive graphs,
see [11, 13].

Dunwoody [13] wrote that it seemed likely that all hyperbolic graphs are acces-
sible. More generally (see Section 4.2), Diestel [7] conjectured in 2010 that locally
finite transitive graphs are accessible as soon as their cycle spaces are generated
by cycles of bounded length. We shall confirm both conjectures and prove the
following theorem (for further definitions, see Section 2):

Theorem 1.1. Let G be a 2-edge-connected graph. If its cycle space is a finitely
generated Aut(G)-module, then so is its cut space.

The following special case of Theorem 1.1 also follows from a result of Mosher
et al. [17, Theorem 15], see also Cornulier [2, Theorem 4.C.3], who independently
confirmed Diestel’s conjecture using simplicial 2-complexes.

Theorem 1.2. Every locally finite transitive graph whose cycle space is generated
by cycles of bounded length is accessible.

Our proof includes a combinatorial proof of Dunwoody’s accessibility theorem
for finitely presented groups (Section 4.1), see [10]. In Section 4.2, we will deduce
Dunwoody’s conjecture on hyperbolic graphs from our main theorem. Using 2-
manifolds, Dunwoody [12] proved that locally finite transitive planar graphs are
accessible. In a forthcomming paper [16] we will obtain as a further corollary of
Theorem 1.2 a combinatorial proof for the accessibility of such graphs. In the
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last section (Section 4.4), we discuss the connections of our main theorem with
compactly presented groups. Note that Cornulier [2, Theorem 4.H.1] proved that
such groups are accessible.

We might ask for an ‘if and only if’ in Theorem 1.1. Note that there are one-ended
finitely generated groups that are not finitely presentable, e. g. the lamplighter
groups. The cut space of each of their locally finite Cayley graphs G is generated
by the cuts E({v}, V (G) r {v}) for all v ∈ V (G), the set of edges incident with v.
These cuts form a single orbit under the automorphisms as G is transitive. However,
as the group has no finite presentation, it seems unlikely that the cycle space is a
finitely generated Aut(G)-module. Indeed, it follows from Timár [20] that the cycle
space of any Cayley graph G of the lamplighter group is not a finitely generated
Aut(G)-module. We discuss this in more details in Section 5.

2. Preliminaries

Let G be a graph. A ray is a one-way infinite path and a tail of a ray is a
subgraph that is a ray. Two rays are equivalent if they lie eventually in the same
component of G − F for every finite edge set F ⊆ E(G). It is easy to show that
this is an equivalence relation whose classes are the edge ends of G. An edge set
F ⊆ E(G) separates two ends if the rays of these ends lie eventually in different
components of G− F .

Let B(G) be the set of all ordered bipartitions (A,B) with A ∩ B = ∅ and
A∪B = V (G) such that the set E(A,B) of all edges between A and B is finite. The
set B(G) is a vector space over F2 where the addition of two ordered bipartitions has
as its first component the symmetric difference between the two first components
of the summands (and the set of all other vertices as its second component). For
n ∈ N let Bn(G) be the subspace induced by the bipartitions (A,B) with order at
most n, i.e., with |E(A,B)| ≤ n. So we have B(G) =

⋃
n∈N Bn(G). Note that the

action of Aut(G) on G induces an action of Aut(G) on B(G). We equip the set
B(G) with a relation

(A,B) ≤ (C,D) :⇐⇒ A ⊆ C and D ⊆ B.
It is easy to verify that this is a partial order. We call a subset E of B(G) nested
if for any two (A,B), (C,D) ∈ E either (A,B) and (C,D) or (A,B) and (D,C)
are ≤-comparable. We call (A,B) ∈ B(G) tight if the two subgraphs of G induced
by A and by B are connected graphs. The cut space of G is the set of all edge sets
E(A,B) with (A,B) ∈ B(G) seen as a vector space over F2, where an edge lies in the
sum of two cuts E(A,B) and E(A′, B′) if and only if it lies in precisely one of them.
There is a canonical epimorphism between B(G) and the cut space of G that maps
an ordered bipartition to its cut. So two distinct ordered bipartitions (A,B) and
(C,D) of positive order are mapped to the same cut if and only if (A,B) = (D,C).

The following theorem is due to Dicks and Dunwoody [4].

Theorem 2.1. [4, Theorem 2.20 and Remark 2.21 (ii)] If G is a connected graph,
then there is a sequence E1 ⊆ E2 ⊆ . . . of subsets of B(G) such that each En is
an Aut(G)-invariant nested set of tight elements of order at most n that gener-
ates Bn(G). �

A useful lemma on tight elements of B(G) is the following – see e. g. [19, Propo-
sition 4.1] for the first part, the second one follows by using the first one for the
edges on any fixed path between the two vertices:
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Lemma 2.2. Let G be a connected graph and n ∈ N.

(1) [19, Proposition 4.1] For every e ∈ E(G), there are only finitely many tight
(A,B) ∈ B(G) with e ∈ E(A,B) and order at most n.

(2) For every x, y ∈ V (G), there are only finitely many tight (A,B) ∈ B(G) of
order at most n with x ∈ A and y ∈ B. �

Lemma 2.3. Let G be a graph, X,Y ⊆ V (G), and E be a nested subset of B(G).
Then the following holds:

(1) The partial order ≤ is a total order on the set

E(X,Y ) := {(A,B) ∈ E | X ⊆ A, Y ⊆ B}.
(2) If E ⊆ Bn(G) for some n ∈ N and if every element of E is tight, then E(X,Y ) is

a finite chain.

Proof. Let (A,B), (C,D) ∈ E(X,Y ). If (A,B) and (D,C) are ≤-comparable, then
either A∩C or B∩D is empty; the first case contradicts X ⊆ A∩C and the second
contradicts Y ⊆ B ∩D. Thus, (A,B) and (C,D) are ≤-comparable and (1) follows
immediately.

Then (2) is just a corollary of (1) and Lemma 2.2 (1) applied to any vertices
x ∈ X and y ∈ Y . �

The sum of finitely many cycles (Ci)i∈I (over F2) in G is the subgraph induced
by those edges that occur in an odd number of Ci. The set of all these sums of
cycles forms a vector space over F2, the cycle space of G.

We note that Lemma 2.4 is similar to a result of Babson and Benjamini [1].
Despite that, we offer a short direct proof, because we need a more technical version
of their result.

Lemma 2.4. Let G be a graph, C ⊆ G a cycle, and F a finite cut with precisely
two edges e, f of C. Let C be any finite set of cycles in G such that C =

∑
D∈C D.

Then there is an alternating sequence e1C1e2C2 . . . en of edges ei ∈ F and cycles
Ci ∈ C with e = e1 and f = en such that ei and ei+1 are edges of Ci.

Proof. Let D ⊆ C consist of precisely those cycles that lie on alternating sequences
e1C1 . . . en with e = e1 and ei, ei+1 ∈ E(Ci)∩F and Ci ∈ C. Then

∑
D∈D |E(D)∩F |

is even as every cycle intersects with the finite cut F in an even number of edges.
Note that for each edge b ∈ F in

⋃
D∈D E(D) except for e and f an even number

of cycles in C contains b because of
∑
D∈C D = C and because the only edges of C

in F are e and f and note that, if some cycle D ∈ D contains an edge b ∈ F , then
every cycle D′ ∈ C containing b lies in D. Thus,∑

D∈D
|E(D) ∩ (F r {e, f})|

is even. As e lies in
⋃
D∈D(E(D) ∩ F ) but an odd number of times because it lies

on C =
∑
D∈C D, we conclude by parity that also f lies in that set. This proves

the assertion. �

The cut space and the cycle space of G form a natural Aut(G)-module, as G acts
canonically on these spaces and these actions respect the vector space properties.
We call such an Aut(G)-module finitely generated if there are finitely many elements
that, together with all its images under Aut(G), are a generating set for the vector
space.
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3. Proof of the main theorem

In this section, we shall prove Theorem 1.1. Let us give a brief outline of its
proof. By the theorem of Dicks and Dunwoody, Theorem 2.1, we obtain a nested
generating set of the cut space invariant under the automorphisms. We then show
that the number of orbits in this generating set is bounded in terms of a finite
generating set of the cycle space, more precisely, in terms of its size and the length
of a largest of its cycles. We will do this by showing that, if there are too many
generators for the cut space all of which are nested, then there is one that lies so
closely to one of the other generators that they do not differ.

Proof of Theorem 1.1. Instead of dealing with the cuts directly, we consider the
space B(G). Because the canonical correspondence between the elements of the
cuts space and those of B(G) commutes with the automorphisms of G, it suffices
to prove that B(G) is a finitely generated Aut(G)-module.

Let C be a finite generating set of the cycle space of G as an Aut(G)-module and
set

D :=
⋃

ψ∈Aut(G)

Cψ.

Let k be the length of a largest cycle in C. Due to Theorem 2.1, we find for every
n ∈ N some Aut(G)-invariant nested En all of whose elements are tight and such
that En generates Bn(G) as a vector space. Furthermore, we may assume En ⊆ En+1

for all n ∈ N. Since 2-edge-connectivity implies that every edge lies on some cycle,
we may assume E1 = ∅.

For every non-trivial ordered bipartition (X,Y ) of the vertex set of any cycle C,
those (A,B) ∈ En with X ⊆ A and Y ⊆ B form a finite chain by Lemma 2.3 (2). If
this chain is not empty, it has a smallest and a largest element. Thus, among the
elements of En that induce a non-trivial ordered bipartition on V (C), there are at
most 2|V (C)| many smallest and at most 2|V (C)| many largest such elements.

Hence and by definition of k, if En contains more than 21+k|C| orbits, then
there must be one orbit such that none of its elements is smallest or largest for
any bipartition of any C ∈ D. Let (A,B) be an element of such an orbit and let
C ∈ D such that (A,B) induces a non-trivial bipartition of V (C). Lemma 2.3 (2)
implies that the set of all (A′, B′) ∈ En that induce the same bipartition on V (C)
as (A,B), i. e. with A∩V (C) = A′∩V (C), forms a finite chain. So we find a unique
(A′, B′) < (A,B) among them such that no other element of En lies between (A′, B′)
and (A′, B′), that is, (A′, B′) is the predecessor of (A,B) in this finite chain. Note
that E(A,B) and E(A′, B′) coincide on C.

We shall show

(∗) A = A′ and B = B′

and thus obtain a contradiction to the choice of (A′, B′), as it is strictly smaller
than (A,B).

The first step to prove (∗) is to show that (A,B) and (A′, B′) coincide on every
cycle in D that contains some edge of E(C) ∩ E(A,B). So let C ′ ∈ D such that
C and C ′ share an edge xy ∈ E(A,B). As E(A,B) and E(A′, B′) coincide on C,
the edge xy lies also in E(A′, B′) and hence both ordered bipartitions (A,B) and
(A′, B′) induce non-trivial bipartitions on V (C ′). Since any (E,F ) ∈ En with
(A′, B′) < (E,F ) < (A,B) induces the same bipartition on C like (A,B), we
conclude by the choice of (A′, B′) that no such element of En exists. Once more,



ACCESSIBILITY IN TRANSITIVE GRAPHS 5

Lemma 2.3 (2) implies that the bipartitions (E,F ) with x ∈ E and y ∈ F form
a finite chain. Hence, the bipartition (A′, B′) is the unique predecessor of (A,B)
in En in this chain. Since, by its choice, (A,B) is neither minimal nor maximal with
respect to its induced bipartition on V (C ′) and since the elements of En inducing
the same bipartition on C ′ as (A,B) form a finite chain by Lemma 2.3 (2), which is
a subset of the finite chain of bipartitions (E,F ) with x ∈ E and y ∈ F , the unique
predecessor of this chain must be (A′, B′). In particular, (A′, B′) induces the same
bipartition of V (C ′) as (A,B).

We have shown

(†) If C1, C2 ∈ D share an edge of E(A,B), if (A,B) and (A′, B′) coincide
on C1, and if (A′, B′) is maximal in En among those that are smaller
than (A,B) and that coincide with (A,B) on C1, then (A,B) and (A′, B′)
coincide on C2.

The strategy to prove (∗) is to use (†) inductively along some suitable sequence
of cycles obtained by Lemma 2.4. As (A,B) is tight, we find for any two edges in
E(A,B) some cycle that meets E(A,B) in precisely these two edges, just by joining
the end vertices of these edges in A and in B, respectively. Let e, f ∈ E(A,B) such
that e is an edge of C. So e also lies in E(A′, B′). We shall show

(‡) f lies in E(A′, B′).

As e and f lie on a cycle containing only these two edges of E(A,B) and as
D generates the cycles space of G, Lemma 2.4 implies the existence of a sequence
e1C1e2 . . . en with e1 = e and en = f such that every Ci lies in D and such that ei
and ei+1 lie on Ci. By adding eC at the beginning of this sequence, if necessary,
we may assume that C1 = C. Applying (†), we conclude that (A,B) and (A′, B′)
coincide on C2. Inductively, they coincide on every cycle Ci, in particular, they
coincide on Cn, which contains f . Thus, we have shown (‡).

As f was an arbitrary edge of E(A,B), every edge of E(A,B) lies in E(A′, B′).
So we have E(A,B) ⊆ E(A′, B′) and hence (A,B) = (A′, B′) as (A,B) and (A′, B′)
are tight. This proves (∗) and contradicts the choice of (A′, B′) being strictly smaller
than (A,B). This contradiction shows that there are at most 21+k|C| orbits in En
and that Bn(G) is a finitely generated Aut(G)-module.

As En, for every n ∈ N, has at most 21+k|C| orbits, some Ei contains maximally
many orbits. Since Ei ⊆ Ej for every j ≥ i, the orbits of Ei are also orbits of Ej
and hence we have Ei = Ej for all j ≥ i. So

⋃
k∈N Ek = Ei generates B(G) and thus

B(G) is a finitely generated Aut(G)-module. �

We extend the notion of accessibility to arbitrary graphs: a graph is accessible if
there exists some k ∈ N such that any two edge ends can be separated by at most k
edges.

Theorem 3.1. Every graph G whose cycle space is a finitely generated Aut(G)-
module is accessible.

Proof. Let H be a maximal 2-edge-connected subgraph of G. As no two cycles of H
within the same Aut(G)-orbit lie in different Aut(H)-orbits, the cycle space of H
is a finitely generated Aut(H)-module. By Theorem 1.1, the space B(G) is finitely
generated as Aut(G)-module. As the cycle space of G is a finitely generated Aut(G)-
module, there are only finitely many Aut(G)-orbits of maximal 2-edge-connected
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subgraphs of G. Let n be the largest size of any cut in some finite generating set E
of all the maximal 2-edge-connected subgraphs of G. Then we have B(G) = Bn(G).

Let R,R′ be two rays of G that are not equivalent. If these rays do not have
tails in the same maximal 2-edge-connected subgraph, then they are separated
eventually by some edge. If they have tails in the same 2-edge-connected subgraph,
then they are separated eventually by at most n edges by the choice of n. �

We call a graph quasi-transitive if its automorphism group has only finitely many
orbits on the vertex set. As every locally finite quasi-transitive graph G has only
finitely many Aut(G)-orbits of cycles of length at most k, we obtain as a corollary
of Theorem 3.1:

Corollary 3.2. Every locally finite quasi-transitive graph whose cycle space is gen-
erated by cycles of bounded length is accessible. �

We note that the assumption of local finiteness is necessary in Corollary 3.2, as
we shall see in Example 3.3.

Example 3.3. We construct an infinite transitive graph all of whose vertices have
infinite degree and whose cycle space is generated by triangles but that is not
accessible, that is, we show that the assumption of local finiteness in Corollary 3.2
is necessary. For i = 2, 3, . . ., let Vi be a set of i vertices. The graph H ′ has vertex
set
⋃
i≥2 Vi and two vertices x ∈ Vi and y ∈ Vj are adjacent if and only if |i−j| ≤ 1.

So Vi and Vi+1 form a complete graph on 2i+ 1 vertices.
Consider H ′ with infinitely many copies H2, H3, . . . of H ′. For i = 2, 3, . . ., we

identify each vertex in Vi with its copy in Hi. The resulting graph H has its cycle
space generated by its triangles and, for any n ∈ N, there are two ends that cannot
be separated by less than n edges, for example take the end given by H ′ and the
end given by Hn (if n > 1). Note that H is 2-connected.

So all that remains to show is that there is a transitive graph that contains H
such that no two ends of H belong to the same end of G. In order to do that, we
glue together copies of H in a treelike way. To make this precise, take for every
two vertices x 6= y ∈ V (H) a copy Hxy of H and identify x with the copy of y.
We continue with this in the new copies of H, recursively, so that in the end the
following hold.

(i) Every block of G is isomorphic to H.
(ii) Every vertex separates G.
(iii) If X is the set of blocks that contain a vertex x, then there is a bijection

ϕ : V (H) → X such that, for every y ∈ V (H), the vertex x is a copy of y in
the block ϕ(y).

The resulting graph G is transitive and, for every n ∈ N, every block of G has two
ends that are not separable by less than n edges. This finishes the example.

It is an easy exercise (cp. [6] for finite graphs) to show that the cycle space of a
graph G is generated by all its geodesic cycles, i. e. cycles C with dC(x, y) = dG(x, y)
for all vertices x, y on C.

Corollary 3.4. Every locally finite quasi-transitive inaccessible graph has geodesic
cycles of unbounded length. �
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4. Applications

4.1. Finitely presented groups. Stallings [18] proved that every finitely gener-
ated group with more than one end splits as a non-trivial free product with amal-
gamation over a finite subgroup or as an HNN-extension over a finite subgroup. We
can continue this splitting process if one of its factors also has more than one end.
We call a group accessible if this splitting stops after finitely many steps. Wall [21]
conjectured that every finitely generated group is accessible. Dunwoody proved
that this is true if the group is also finitely presented [10] but that it is false with-
out the additional assumption [11]. Here, we use our result to give a combinatorial
proof of Dunwoody’s accessibility theorem.

Let G = 〈S | R〉 be a finitely presented group. Then any word over S in G
that represents 1, is a finite product of relators in R or its conjugates. Thus, in its
Cayley graph Γ, every cycle and thus every element of the cycle space is the sum of
the elements of the cycle space that are given by elements of R and its G-images.
Hence, we conclude by Theorem 1.2 that Γ is accessible, which in turn is equivalent
to G being accessible due to Thomassen and Woess [19, Theorem 1.1]. Note that
Diekert and Weiß [5] offered a combinatorial proof of this equivalence (its original
proof applied a result due to Dunwoody [9] that used some algebraic topology). So
we have just proved combinatorially:

Theorem 4.1. [10, Theorem 5.1] Every finitely presented group is accessible. �

4.2. Hyperbolic graphs. For δ ∈ N, we call a graph G δ-hyperbolic if it is con-
nected and if for any three vertices and any three shortest paths P1, P2, P3, one
between any two of the three vertices, every vertex on P1 has distance at most δ to
some vertex on P2 or P3. We call G hyperbolic if it is δ-hyperbolic for some δ ∈ N.
A finitely generated group Γ is hyperbolic if one of its locally finite Cayley graphs
is hyperbolic. As hyperbolic groups are finitely presented (see [15]), they are ac-
cessible due to Theorem 4.1. In this section we will prove the analogue result for
quasi-transitive hyperbolic graphs.

It is not hard to show that accessibility of locally finite graphs is preserved
under quasi-isometries. The same holds for hyperbolicity (see e. g. [15]). But quasi-
transitive locally finite graphs need not be quasi-isometric to some locally finite
Cayley graphs due to Eskin et al. [14]. Thus, we cannot obtain the accessibility
of locally finite quasi-transitive hyperbolic graphs directly from the accessibility of
finitely generated hyperbolic groups.

Lemma 4.2. Let G be a δ-hyperbolic graph. Then the cycles of length less than
4δ + 4 generate its cycles space.

Proof. Let us suppose that this is not the case. Then we take some cycle C that
cannot be written as a sum of shorter cycles and whose length is at least 4δ + 4.
The distance between any two vertices of C is realized on C as any shortcut leads
to two cycles that are shorter than C but whose sum is C. We pick x, y, z ∈ V (C)
such that d(x, y) = 2δ + 2 and such that z lies in the middle of the longer path
between x and y on C, i. e. |d(x, z)−d(y, z)| ≤ 1. We pick three shortest paths, one
between any two of the three vertices, such that their union is C. So z does not lie
on the chosen shortest path between x and y. Let u be the vertex on the shortest
path between x and y that has distance δ + 1 to x and to y. Then its distance to
any vertex on the other two shortest paths is at least δ + 1 as C has no shortcuts.
This contradiction shows the assertion. �
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Dunwoody [13] thought it likely that every transitive locally finite hyperbolic
graph is accessible. As a direct consequence of Corollary 3.2 and Lemma 4.2, we
can confirm this:

Theorem 4.3. Every locally finite quasi-transitive hyperbolic graph is accessible.
�

We note that the graph given in Example 3.3 is hyperbolic. Thus, the assumption
of local finiteness is necessary in Theorem 4.3.

4.3. Planar graphs. In [8], Droms showed that finitely generated planar groups
are accessible and finitely presented. This is a hint that the same might be true for
locally finite transitive planar graphs. Indeed, Dunwoody [12] showed that these
graphs are accessible.

In [16], it is shown that the cycle space of a locally finite transitive planar graph G
is a finitely generate Aut(G)-module. Together with Theorem 3.1, we obtain a new
proof of Dunwoody’s result that locally finite transitive planar graphs are accessible.

4.4. Compactly presented groups. Another application of our main theorem
lies in the area of locally compact groups, in particular in the area of compactly
presented groups. A locally compact group G is compactly presented if it has a
presentation 〈S | R〉 such that S is a compact generating set and all relators in R
have bounded length. We briefly sketch the proof of Cornulier [2, Section 4.H] that
compactly presented groups are accessible and show where our main theorem can
be used.

Let G = 〈S | R〉 be a finitely presented group. If the component G0 of G that
contains the neutral element of G is not compact, then G has at most two ends
and is accessible, see [2, Lemma 4.B.1 and Corollary 4.D.2]. If G0 is compact, then
G admits a continuous proper cocompact combinatorial action on a locally finite
simply connected simplicial 2-complex X, see [2, Proposition 4.H.3], and thus also
on its 1-skeleton, which is a graph Γ whose cycle space is generated by boundaries
of 2-simplices, i. e. whose cycle space is generated by triangles. Since G is accessible
if and only if Γ is accessible [2, Theorem 4.F.1], Theorem 1.2 implies the following
theorem of Cornulier.

Theorem 4.4. [2, Theorem 4.H.1] Every compactly presented locally compact group
is accessible. �

A locally compact group is hyperbolic if it is compactly generated and any Cay-
ley graph with respect to a compact generating set is hyperbolic. As hyperbolic
locally compact groups are compactly presented, see [3, Proposition 8.A.25], they
are accessible [2, Corollary 4.H.2].

5. A counterexample

In this section, we discuss an example that shows that the inverse direction of
Theorem 1.1 fails, i. e. we show the following:

Theorem 5.1. There is a graph G whose cut space is a finitely generated Aut(G)-
module but whose cycle space is not a finitely generated Aut(G)-module.

The lamplighter group is the group with presentation

〈x, t | t2, xntx−nt for all n ∈ N〉.
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For F ⊆ E, set

C(F ) = sup
F1∪F2=F

{
d
(⋃

F1,
⋃
F2

)}
and

CG = sup{C(E(A,B)) | x, y ∈ V (G), x ∈ A, y ∈ B, V (G) = A∪̇B}.

Timár showed the following theorem.

Theorem 5.2. [20, Theorem 4.1] Every locally finite Cayley graph G of the lamp-
lighter group has infinite CG. �

In order to prove Theorem 5.1, we need a direct consequence of a result of Babson
and Benjamini [1, Corollary 4].

Let

`(G) = inf
D

sup
C∈D
{`(C) | D generates the cycle space of G},

where `(C) for a cycle C denotes its length.

Proposition 5.3. If G is a locally finite graph, then 2C(F ) ≤ `(G) for all cuts F .
�

So in every Cayley graph G of the lamplighter group, its cycle space is not
generated by cycles of bounded length and hence not finitely generated as Aut(G)-
module. This proves Theorem 5.1.
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