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Abstract

We prove two characterisations of accessibility of locally �nite quasi-

transitive connected graphs. First, we prove that any such graph G is

accessible if and only if its set of separations of �nite order is an Aut(G)-
�nitely generated semiring. The second characterisation says that G is

accessible if and only if every process of splittings in terms of tree amal-

gamations stops after �nitely many steps.

1 Introduction

Tree amalgamations are a graph product that o�ers a way to construct graphs
that are, in general, multi-ended. (We refer to Section 2 for its de�nition.)
On the other hand, every suitable multi-ended graph can be written as a non-
trivial tree amalgamation, see Theorem 1.1. Note that tree amalgamations are
a graph theoretic analogue of the following two group products: free products
with amalgamation and HNN-extensions. Also, Theorem 1.1 is a graph theoretic
version of Stallings' splitting theorem of �nitely generated groups [7].

Theorem 1.1. [6, Theorem 5.5] Every multi-ended quasi-transitive locally �nite
connected graph is a non-trivial tree amalgamation of two quasi-transitive locally
�nite connected graphs of �nite adhesion and �nite identi�cation, distinguishing
ends and respecting the action of the involved groups.

*Supported by the Heisenberg-Programme of the Deutsche Forschungsgemeinschaft (DFG
Grant HA 8257/1-1).
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When G is a tree amalgamation of G1 and G2 with all properties as in
Theorem 1.1, then we say that (G1, G2) is a factorisation of G and G splits into
G1 and G2. More generally, a tuple (G1, . . . , Gi) of quasi-transitive locally �nite
connected graphs is a factorisation of G if G is obtained by iterated non-trivial
tree amalgamations of �nite adhesion, �nite identi�cation and respecting the
actions of the involved groups of all these graphs Gi. A factorisation is terminal
if all its graphs have at most one end. We call a graph accessible if it has a
terminal factorisation.

The question arises which quasi-transitive locally �nite connected graphs are
accessible. A result of [6] says that such graphs are accessible if and only if they
are accessible in the sense of Thomassen and Woess [8]. (We refer to Section 2
for their de�nition of accessibility.) By examples of Dunwoody [3, 4], it is known
that there are inaccessible quasi-transitive locally �nite connected graphs. We
are looking for characterisation results for accessibility and in this paper we are
going to prove two such results.

The �rst result deals with the set S(G) of all separations of �nite order of
quasi-transitive locally �nite connected graphs G. (For the de�nition of sepa-
rations and related notions, we refer to Section 4.) This set equipped with two
natural operations is a semiring and the automorphisms of G induce an action
on S(G). We prove that G is accessible if and only if there are �nitely many
separations in S(G) that generate together with their Aut(G)-images the whole
semiring S(G). We then say that S(G) is Aut(G)-�nitely generated. This char-
acterisation can be considered as a result analogous to [2, Corollary IV.7.6] for
the set of separations instead of the cut space.

Before we explain the second characterisation, let us look at factorisations
once more. If (G1, G2) is a factorisation of G, we may ask if one of these factors
has again more than one end. If so, we can apply Theorem 1.1 to that factor
(and the stabiliser of that factor in Aut(G) as group acting quasi-transitively on
it) and obtain a factorisation of it. We can repeat this process of splittings as
long as there are factors with more than one end. It is clear from the de�nition
that some process of splittings stops if and only if the graph has a terminal
factorisation and thus is accessible. It was conjectured in [6, Conjecture 6.5]
that the property of stopping of the process of splittings does not depend on
the particular splittings. To be precise, it was conjectured that one process of
splittings stops after �nitely many steps if and only if every process does this.
Our second characterisation con�rms this in a strong sense.

Theorem 1.2. Let G be a quasi-transitive locally �nite connected graph. Then
the following statements are equivalent:

(i) G is accessible.

(ii) S(G) is an Aut(G)-�nitely generated semiring.

(iii) Every process of splittings of G must end after �nitely many steps.

(iv) There exists κ(G) ∈ N such that every process of splittings of G stops after
κ(G) steps.

2



Our paper is structured as follows. In Section 2 we are going to de�ne
tree amalgamations and all related notions. In Section 3, we investigate the
semiring S(G) and prove a major step for the equivalence of (i) and (ii) of
Theorem 1.2. In Section 4, we are going to prove that (i) implies (iv) and hence
(iii) of Theorem 1.2. In Section 5, we �ll in the remaining gaps of the proof of
Theorem 1.2.

2 Tree amalgamations

In this section, we will state all notations and results that are needed in the
context of tree amalgamations.

A tree T with the canonical bipartition {V1, V2} of its vertex set is called
(p1, p2)-semiregular if all vertices in Vi have degree pi for i = 1, 2.

Let e = xy be an edge of a graph G and let ve be a new vertex. Let
G′ be the graph with vertex set (V (G) ∖ {x, y}) ∪ {ve} and edges between
u, v ∈ V (G′) ∖ {ve} if and only if uv ∈ E(G) and between u ∈ V (G′) ∖ {ve}
and ve if and only if u is adjacent to either x or y in G. Then G′ is the graph
obtained by contracting the edge e. If E is a subset of E(G), then we denote
by G/E the graph obtained by contracting all edges in E.

Let Gi be a graph for i = 1, 2. Let I1 and I2 be disjoint sets. Let every
V (Gi) have a family (Si

k)k∈Ii of subsets such that all these subsets have the
same cardinality. For all k ∈ I1 and ℓ ∈ I2, let ϕkℓ be a bijective map from S1

k

to S2
ℓ . We set ϕℓk :=ϕ−1

kℓ and call the maps ϕkℓ and ϕℓk bonding maps.
Let T be a (|I1|, |I2|)-semiregular tree with the canonical bipartition {V1, V2}

such that the vertices in Vi have degree |Ii|. Let D(T ) be the set of oriented
edges of E(T ), i. e. D(T ) = { →uv | uv ∈ E(T )}. If

→
e =

→
uv ∈ D(T ), then we

denote by
←
e :=

←
vu its reverse. Let v ∈ Vi and let Ev be the set of all edges

in D(T ) starting at v. Let f : D(T ) → I1 ∪ I2 be a labelling such that its
restriction to Ev is a bijection to Ii.

For every i ∈ {1, 2} and every v ∈ Vi, let Gv be a copy of Gi. Denote
by Sv

k the corresponding copies of Si
k in V (Gv). Let G1 + G2 be the graph

obtained from the disjoint union of the graphs Gv for all v ∈ V (T ) by adding
new edges between each x ∈ Su

k and ϕkℓ(x) ∈ Sv
ℓ for every edge

→
e =

→
uv with

f(
→
e) = k and f(

←
e) = ℓ. The new edges do not depend on the orientation of

→
e

because of ϕℓk = ϕ−1
kℓ . Let F be the set of these new edges of G1 + G2. The

tree amalgamation G1 ∗T G2, or just G1 ∗G2, of the graphs G1 and G2 over the
connecting tree T is de�ned as (G1 +G2)/F . Let π : V (G1 +G2) → V (G1 ∗G2)
be the canonical map that maps each x ∈ V (G1 + G2) to the vertex obtained
from x after all the contractions.

The sets Si
k and their canonical images in G1 ∗G2 are the adhesion sets of

the tree amalgamation. The tree amalgamation has �nite adhesion if one (and
hence all) of its adhesion sets are �nite. We call a tree amalgamation G1 ∗T G2

trivial if for some v ∈ V (T ) the restriction of π to Gv is a bijection. Note
that if the tree amalgamation has �nite adhesion, then it is trivial if, for some
i ∈ {1, 2}, the set V (Gi) is the only adhesion set of Gi and |Ii| = 1.
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For a vertex x ∈ V (G1 ∗ G2) let Tx be the maximal subtree of T such that
every node of Tx contains a vertex y with π(y) = x. The identi�cation size of a
vertex x ∈ V (G1 ∗G2) is the cardinality of V (Tx). The tree amalgamation has
�nite identi�cation if the identi�cation sizes of its vertices are bounded.

So far, the tree amalgamation do not interact with any group action. In
the following, we de�ne some notions that ensure that tree amalgamations of
quasi-transitive graphs that satisfy this notion are again quasi-transitive, see [6,
Lemma 5.3].

For i = 1, 2, let Γi be a group that acts on Gi. Let {i, j} = {1, 2}. The tree
amalgamation respects γ ∈ Γi if there is a permutation π of Ii such that for
every k ∈ Ii there exists ℓ ∈ Ij and τ in the setwise stabiliser of Sℓ in Γj such
that

ϕkℓ = τ ◦ ϕπ(k)ℓ ◦ γ |Sk
.

The tree amalgamation respects Γi if it respects every γ ∈ Γi.
Let k ∈ Ii and let ℓ, ℓ′ ∈ Ij . The bonding maps from k to ℓ and ℓ′ are

consistent if there exists γ ∈ Γj such that

ϕkℓ = γ ◦ ϕkℓ′ .

The bonding maps between Ji ⊆ Ii and Jj ⊆ Ij are consistent if they are
consistent for all k ∈ Ji and ℓ, ℓ

′ ∈ Jj .
The tree amalgamation G1 ∗G2 is of Type 1 respecting the actions of Γ1 and

Γ2 if the following holds:

(i) the tree amalgamation respects Γ1 and Γ2;

(ii) the bonding maps between I1 and I2 are consistent.

The tree amalgamation G1 ∗G2 is of Type 2 respecting the actions of Γ1 and
Γ2 if the following holds:

(o) G1 = G2 =: G, Γ1 = Γ2 =: Γ, I1 = I2 =: I,1 and there exists J ⊆ I such
that f(

→
e) ∈ J if and only if f(

←
e) /∈ J ;

(i) the tree amalgamation respects Γ;

(ii) the bonding maps between J and I ∖ J are consistent.

The tree amalgamation G1 ∗ G2 respects the actions (of Γ1 and Γ2) if it is
of either Type 1 or Type 2 respecting the actions Γ1 and Γ2.

A ray is a one-way in�nite path. Two rays are equivalent if for every �nite
S ⊆ V (G) both rays have all but �nitely many vertices in the same component
of G−S. This is an equivalence relation whose equivalence classes are the ends
of G An end is thick is is contains in�nitely many pairwise disjoint rays. A
double ray is a two-way in�nite path.

1Formally we asked I1 and I2 to be disjoint. We can guarantee this easily by using appro-
priate bijections.
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The tree amalgamation G = G1 ∗ G2 distinguishes ends if there is some
adhesion set Su

k = Sv
ℓ for adjacent u, v ∈ V (T ) such that for every component

C of T − uv the graph induced by
⋃

w∈C G
w
i contains an end.

A graph G is accessible in the sense of Thomassen and Woess if there is an
n ∈ N such that any two distinct ends of G are separable by at most n edges,
that is, there are n edges such that every double ray between these two ends
contains one of those n edges.

Let Γ be a group acting on a tree T . The action is inversion-free if there is
no edge uv of T and no γ ∈ Γ such that γ(u) = v and γ(v) = u. We then also
say that Γ acts on T without inversion.

A tree-decomposition of a graph G is a pair (T,V) consisting of a tree T and
a set of vertex sets Vt of G, one for every node of T , such that the following
hold:

(T1) V (G) =
⋃

t∈V (T ) Vt;

(T2) for every e ∈ E(G) there exists t ∈ V (T ) with e ⊆ Vt;

(T3) Vt1 ∩ Vt3 ⊆ Vt2 for all t1, t2, t3 ∈ V (T ) such that t2 separates t1 and t3.

The elements of V are the parts of the tree-decomposition. The sets Vt ∩ Vt′
for edges tt′ ∈ E(T ) are the adhesion sets of (T,V). If all adhesion sets are
�nite we say that (T,V) has �nite adhesion.

A separation of G is an ordered pair (A,B) such that G[A]∪G[B] = G, that
is, V (G) = A ∪ B and there is no edge with one end vertex in A ∖ B and the
other in B ∖ A. The order of (A,B) is |A ∩ B|. A separation (A,B) is tight if
there are components CA of A∖B and CB of B∖A such that every x ∈ A∩B
has neighbours in CA and in CB .

For two separation (A,B) and (C,D), we write (A,B) ≤ (C,D) if A ⊆ C
and B ⊇ D. We call (A,B) and (C,D) nested if they are comparable with
respect to this relation and a set of separations is nested if every two of its
elements are nested.

If (T,V) is a tree-decomposition of G, then the separations induced by (T,V)
are those of the form (

⋃
t∈T1

Vt,
⋃

t∈T2
Vt) for edges t1t2 ∈ E(T ), where Ti is the

component of T − t1t2 that contains ti. It follows from (T3) that these are
indeed separations and its separator is Vt1 ∩ Vt2 . Furthermore, the set of all
separations induced by (T,V) is nested.

If a group Γ acts on G, a tree-decomposition (T,V) is Γ-invariant if the
induced action of Γ on V induces an action on T .

Let (T,V) and (T ′,V ′) be tree-decompositions of G. We call (T ′,V ′) a re-
�nement of (T,V) if there is a family of disjoint subtrees (Ti)i∈I of T ′ covering
V (T ′) such that the following holds:

(R1) T = T ′/
⋃

i∈I E(Ti);

(R2)
⋃

s∈Ti
V ′
s = Vt, where t is the node of T obtained from the contraction

of E(Ti).
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Tree amalgamations induce in a canonical way tree-decompositions. This
is one of the main properties that we will use in the proofs of our main result.
The way how tree amalgamations G :=G1∗T G2 induce tree-decompositions was
discussed in [6, Remark 5.1]: the pair

(T, {π(V (Gu)) | u ∈ V (T )})

is a tree-decomposition corresponding to the factorisation (G1, G2) of G all of
whose parts induce connected graphs.

3 The semiring S(G)

A semiring is a triple (R,+,×) such that (R,+) is an abelian monoid, (R,×)
is a monoid and × is distributive over +. A semiring (R,+,×) is commutative
if (R,×) is commutative. A set S ⊆ R generates R if every r ∈ R is obtained
by �nitely many additions and multiplications of elements of S.

An immediate corollary of a result by Thomassen and Woess [8, Proposition
4.2] is the following.

Proposition 3.1. Let G be a locally �nite graph, let v ∈ V (G) and let k ∈ N.
Then there are only �nitely many tight separations of order k with v in their
separator.

Let S(G) be the set of all separations of �nite order of G.
We de�ne for (A,B), (C,D) ∈ S(G) the following operations:

(A,B) + (C,D) :=(A ∩ C,B ∪D),

(A,B)× (C,D) :=(A ∪ C,B ∩D).

Simple calculations show that (S(G),+,×) is a commutative semiring, where
(V (G), ∅) is the neutral element with respect to + and (∅, V (G)) is the neutral
element with respect to ×.

Let Sn(G) be the subsemiring of S(G) that is generated by the tight sepa-
rations of order at most n.

Proposition 3.2. Let G be a locally �nite graph. Every separation of order n
is generated by tight separations of order at most n.

Proof. We prove the assertion by induction on the order of the separation. Let
(A,B) be a separation of order n that is not tight. Since (A,B) is not tight,
either A∖B or B ∖A has no component C with A ∩B ⊆ N(C).

If A ∖ B has no such component, let KA be the set of all components of
A∖B. Then

(A,B) = (X,V (G))×
∏

C∈KA

(C ∪N(C), V (G)∖ C),
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where X = (A∩B)∖
⋃

C∈KA
N(C). Every separation of that product has order

less than n. By induction, (A,B) can be generated by tight separations of order
less than n.

If B ∖ A has no component C with A ∩ B ⊆ C, let KB be the set of
components of B ∖A. Then

(A,B) = (V (G), Y ) +
∑

C∈KB

(V (G)∖ C,C ∪N(C)),

where Y = (A ∩ B) ∖
⋃

C∈KB
N(C). Every summand of that sum has order

less than n, so by induction, (A,B) is generated by tight separations of order
at most n.

A tree-decomposition (T,V) distinguishes two ends (e�ciently) if the sep-
arator of some separation induced by (T,V) separates those ends (minimally).
We need the following result for the proof of Proposition 3.4.

Theorem 3.3. [6, Theorem 6.4] Let G be a connected locally �nite graph that
is accessible in the sense of Thomassen and Woess and let Γ be a group act-
ing quasi-transitively on G. Then there exists a Γ-invariant tree-decomposition
(T,V) of G of �nite adhesion such that (T,V) distinguishes all ends of G e�-
ciently and such that there are only �nitely many Γ-orbits on E(T ).

The proof of the following result is based on the idea of a proof of Thomassen
and Woess [8, Theorem 7.6].

Proposition 3.4. Let G be a quasi-transitive locally �nite connected graph that
is accessible in the sense of Thomassen and Woess. Then there exists n ∈ N
such that S(G) = Sn(G).

Proof. Let (T,V) be a tree-decomposition as in Theorem 3.3. In particular, there
are only �nitely many Aut(G)-orbits on E(T ). Let T be the set of separations
that are induced by (T,V). Then there are only �nitely many Aut(G)-orbits on
T as well. Let n1 be the maximum order of separations in T and let n2 be the
maximum degree of G. Set n :=max{n1, n2}. We will show S(G) = Sn(G).

Let (A,B) ∈ S(G). Our aim is to show that (A,B) is generated by elements
of Sn(G). Let ΩA,ΩB be the set of ends of G that live in A, in B, respectively.
We claim the following.

There is a �nite F ⊆ T such that for every ωA ∈ ΩA and every
ωB ∈ ΩB there exists (C,D) ∈ F such that ωA lives in C and ωB

lives in D.

(1)

Suppose (1) does not hold. Let {(Ai, Bi) | i ∈ N} = T . For every i ∈ N let
ωA
i ∈ ΩA and ωB

i ∈ ΩB such that ωA
i and ωB

i are not distinguished by any
(Aj , Bj) with j ≤ i. These ends exist as (1) does not hold. For every i ∈ N let
Pi be a double ray between ωA

i and ωB
i none of whose vertices are separated

by any (Aj , Bj) with j ≤ i. Every double ray Pi meets the �nite vertex set
A∩B. Thus the sequence (Pi)i∈N has a subsequence that converges to a double
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ray P : in�nitely many Pi share an edge incident with some vertex of A ∩ B,
among which we �nd an in�nite subsequence whose edges adjacent to the �rst
one coincide on each side and so on. By construction, one tail of P lies in A
and another tail lies in B. In particular it has tails in distinct ends of G. By
the choice of the double rays Pi, no (Ai, Bi) separates tails of P , that is, the
two ends of G that contain tails of P are not distinguished by any (Ai, Bi) and
thus are not distinguished by (T,V). This contradiction to the choice of (T,V)
shows (1).

Let F be the set of edges of T that corresponds to the �nite set F . Let VA
be the set of nodes of T that lie in components C of T − F such that some end
of ΩA lives in

⋃
t∈C Vt. Set VB :=V (T )∖ VA. We consider the separation

(C,D) :=

( ⋃
t∈VA

Vt,
⋃

t∈VB

Vt

)
.

Then (C,D) is generated by F . By construction, ΩA is the set of ends of G
that live in C and ΩB is the set of ends of G that live in D. We shall prove the
following.

The sets A∖ C and C ∖A are �nite. (2)

For every vertex x ∈ A ∖ C and every neighbour y of x outside of A ∖ C, we
have either y ∈ C∩D or x ∈ A∩B and y ∈ N(A). Since X :=N(A)∪(C∩D) is
�nite, since G is locally �nite and since each component of A∖C is a component
of G−X, the vertex set A∖C induces only �nitely many components in G. If
one of these components is in�nite, there would be an end living in A∖C which
is impossible as we already saw that this set is empty. Thus A∖C is �nite. An
analogous argument shows that C∖A is �nite. This completes the proof of (2).

Since (2) holds, (A,B) and (C,D) di�er only by addition and multiplication
of elementary separations. So (A,B) is generated by separations of order at
most n. Proposition 3.2 implies that (A,B) ∈ Sn(G).

4 Iterated splittings

In this section, we will prove that one process of splittings of a quasi-transitive
locally �nite connected graph stops if and only if every process of splittings of
that graph does that. In preparation for that, we de�ne the following property
for all i ∈ N and for a factorisation (G1, G2) of a quasi-transitive locally �nite
connected graph G.

Every process of splittings of G that starts with (G1, G2) ends after
at most i steps.

(∗(i))

Lemma 4.1. Let (G1, G2) be a factorisation of a quasi-transitive locally �nite
connected graph G and let S ⊆ V (G) be a �nite set. Then there exists a fac-
torisation (H1, H2) of G such that
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(i) S is contained in some part of the tree-decomposition corresponding to
(H1, H2) and

(ii) if (H1, H2) satis�es (∗(i)), then (G1, G2) satis�es (∗(i)).

Proof. Let (T,V) be the tree-decomposition corresponding to (G1, G2). Let
S′ ⊆ V (G) be �nite and connected and such that S ⊆ S′. Let TS′ be the
minimal subtree of T such that for every t ∈ V (T − TS′) we have Vt ∩ S′ = ∅.
This subtree is �nite since G1 ∗G2 is of �nite identi�cation. For every t ∈ V (T ),
we set

V ′
t := Vt ∪

⋃
{α(S′) | α ∈ Aut(G), t ∈ α(TS′)}

and
V ′ := {V ′

t | t ∈ V (T )}.
To see that (T,V ′) is a tree-decomposition it su�ces to prove (T3). For this, it
su�ces to see that, for every v ∈ V (G), the subgraph of T that contains v is a
tree. But this follows immediately from the de�nition of the subtrees TS′ and
the parts Vt′ . By construction, (T,V ′) corresponds to a factorisation (H1, H2)
of G such that for some edge t1t2 ∈ E(T ) and every i ∈ {1, 2} the graph Hi is
isomorphic to the subgraph of G induced by V ′

ti . This proves (i).
In order to prove (ii), we note that there is a canonical bijection between

the ends of G[Vt] and those of G[V ′
t ]. Starting with a process of splittings that

starts with (G1, G2), we obtain one that starts with (H1, H2) if we add all
vertices of α(S′) to each adhesion set if it contains one vertex of α(S′). That
way, we obtain a process of splittings that starts with (H1, H2). Thus, if all of
those processes that start with (H1, H2) stop after at most i steps, so must the
processes starting with (G1, G2). This proves (ii).

Let us now de�ne recursively, what it means for a tree-decomposition to
correspond to a factorisation of more than two factors. A tree-decomposition
(T,V) of a graph G corresponds to a factorisation (G1, . . . , Gn) of G if the
following hold:

(i) there is a factorisation (H1, . . . ,Hn−1) of G and a factorisation (Gi, Gj)
of some Hm such that

{Gk | 1 ≤ k ≤ n, k ̸= i, k ̸= j} = {Hℓ | 1 ≤ ℓ ≤ n− 1, ℓ ̸= m},

(ii) there is a tree-decomposition (T ′,V ′) corresponding to the factorisation
(H1, . . . ,Hn−1) and a tree-decomposition (T ′′,V ′′) corresponding to the
factorisation (Gi, Gj) such that (T,V) is a re�nement of (T ′,V ′) where the
only non-trivial subtrees in the covering of T are those that get contracted
to nodes whose parts correspond to Hm and the tree-decompositions in-
duced by those trees are isomorphic to (T ′′,V ′′) in a canonical way.

While in general there need not be a tree-decomposition corresponding to a
given factorisation, we will show in Proposition 4.3 how to alter the factorisation
slightly to �nd a tree-decomposition corresponding to that new factorisation. In
order to prove that result, we need the following lemma.
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Lemma 4.2. Let G and H be quasi-transitive locally �nite connected graphs
such that G = H ∗T H is a tree amalgamation of Type 1 respecting the group
actions such that the induced action of Aut(G) on the connecting tree T is with
inversion of the edges. Then there exists a �nite connected graph K ̸∼= H such
that G = H ∗K.

Furthermore, (H,H) satis�es (∗(i)) if and only if (H,K) satis�es (∗(i)).

Proof. Let S be an adhesion set of the tree amalgamation in some Gu with
u ∈ V (T ) and let S′ ⊆ V (Gu) be connected and �nite with S ⊆ S′. Let
φ ∈ Aut(G) such that it reverses the edge uv ∈ E(T ) whose adhesion set is S.
Then we have S = φ(S). If S′ ̸= V (Gu), let K be the subgraph of G induced
by π(S′) ∪ φ(π(S′)). If S′ = V (Gu), let K be the subgraph of G induced by
π(Gu) and π(Gv). In both cases, the graph K is �nite and connected and H
and K are not isomorphic. The tree amalgamation H ∗K is G with adhesion
sets the copies of S′ in the �rst case and of V (H) in the second case.

The additional assertion holds since each of the two factorisations (H,H)
and (H,K) satis�es (∗(i)) if and only if every process of splittings of H stops
after at most i− 1 steps.

Proposition 4.3. Let (G1, . . . , Gk) be a factorisation of a quasi-transitive lo-
cally �nite connected graph G and let (T,V) be an Aut(G)-invariant inversion-
free tree-decomposition corresponding to (G1, . . . , Gk) with |Aut(G)\E(T )| <∞.
Assume that Gi has more than one end and let (H1, H2) be a factorisation
of Gi. Then there is a factorisation (H ′

1, H
′
2) of Gi such that (H1, H2) satis�es

(∗(i)) if (H ′
1, H

′
2) satis�es (∗(i)) and there is an Aut(G)-invariant inversion-free

tree-decomposition (T ′,V ′) with |Aut(G) \ E(T ′)| < ∞ such that (T ′,V ′) is a
re�nement of (T,V) that corresponds to (G1, . . . , Gi−1, Gi+1, . . . , Gk, H

′
1, H

′
2).

Furthermore, we may assume that the tree-decomposition of Gi correspond-
ing to (H1, H2) distinguishes the same ends of G as the one corresponding to
(H ′

1, H
′
2).

Proof. Let t ∈ V (T ) such that G[Vt], the graph induced by Vt, corresponds
to the factor Gi. By iterated applications of Lemma 4.1 and since there are
only �nitely many Aut(G)-orbits on E(T ), we obtain a factorisation (H ′

1, H
′
2)

of Gi such that (H1, H2) satis�es (∗(i)) if (H ′
1, H

′
2) satis�es (∗(i)) and such that

for every adhesion set of (T,V) in G[Vt] there is some part of the tree-decom-
position (T̃ , Ṽ) corresponding to (H ′

1, H
′
2) that contains its image under the

canonical map G[Vt] → Gi. If the setwise stabiliser Γ of Gi in Aut(G) acts on T̃
without inversion of the edges2, set H ′′

2 := H ′
2. Otherwise, H ′

1 is isomorphic
to H ′

2. We apply Lemma 4.2 to obtain another factorisation (H ′
1, H

′′
2 ) of Gk,

where H ′′
2 is �nite and H ′

1 ̸∼= H ′′
2 and such that (H ′

1, H
′′
2 ) satis�es (∗(i)) if and

only if (H ′
1, H

′
2) satis�es (∗(i)). Let (T ◦,V◦) be the tree-decomposition that

corresponds to H ′
1 ∗ H ′′

2 . Note that Γ acts without inversion on T ◦ and that

2Technically, we would have to use an injective map of the setwise stabiliser of G[Vt] in
Aut(G) to Aut(Gi). For the sake of simplicity, we omit this map.
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for every adhesion set of (T ◦,V◦) in G[Vt] there is some part of the tree-decom-
position (T̃ , Ṽ) corresponding to (H ′

1, H
′′
2 ) that contains its image under the

canonical map G[Vt] → Gi.
For an adhesion set S of (T,V) that lies in Vt, let TS be the maximal subtree

of T ◦ such that for all v ∈ V (TS) the part V
◦
v contains S. This is a �nite tree

since our tree amalgamations are of �nite identi�cation and it is non-empty by
construction. Thus, it has either a central vertex or a central edge. If it is a
central vertex, let vS be this vertex. If it is a central edge, choose a vertex vS
that is incident with that edge so that for every adhesion set S′ = α(S) with
α ∈ Aut(G) we have vS′ = α(vS). This is possible since Γ acts on T ◦ without
inversion. Let (T ′,V ′) be the tree-decomposition that is a re�nement of (T,V)
where only the trees for vertices in the Aut(G)-orbits of t are non-trivial and
for these we take the tree-decomposition (T ◦,V◦) and its Aut(G)-images.

Note that Aut(G) acts on T̃ without inversion since this is true for the action
of Aut(G) on T and of Γ on T ◦.

For the additional statement, note that the ends contained in a single part
of the �rst tree-decomposition of Gi are precisely the ends contained in some
part of the second tree-decomposition since we just enlarged the parts �nitely
many times by �nite vertex sets in the above construction.

Remark 4.4. If (G1, G2) is a factorisation of a quasi-transitive locally �nite
connected graph G such that the tree-decomposition corresponding to that tree
amalgamation has only one orbit on the vertex set of the tree and the tree
amalgamation is of Type 1, then Proposition 4.3 implies that we �nd a di�erent
factorisation (G′

1, G
′
2) such that the tree amalgamation is of Type 1 but Aut(G)

does not act transitively on the tree of the corresponding tree-decomposition.

Let (T,V) and (T ′,V ′) be two tree-decompositions of G that correspond to
two factorisations of G and assume that the factorisation for (T,V) is terminal.
If there is a part Vt of (T

′,V ′) that contains more than one end, then there exists
a separation (A,B) that is induced by (T,V) and that distinguishes those ends,
since that tree-decomposition corresponds to a terminal factorisation. This
separation (A,B) induces a separation (A′, B′) := (A ∩ Vt, B ∩ Vt) of G[Vt].
Since (T,V) is an Aut(G)-invariant tree-decomposition, (A′, B′) is nested with
all its images under the stabiliser of Vt in Aut(G). Thus, the set of these
images induces a tree-decomposition (Tt,Vt) by [1, Theorem 3.2] and this tree-
decomposition distinguishes some ends of G[Vt], namely precisely those that are
distinguished by (A,B) and lie in G[Vt].

We want to introduce two types of re�nements, namely one-step and full re-
�nements. Following Section 4 in [6], in particular Proposition 4.1 and Corollary
4.3, we obtain an Aut(G)-invariant tree-decomposition (T ′

t ,V ′
t) with a unique

Aut(G)-orbit on E(T ′
t ) and all adhesion sets �nite that distinguishes the same

ends as (Tt,Vt).
3 Then Lemma 5.9 and Theorem 5.10 in [6] with their proofs

imply that there is a factorisation (G1, G2) of G[Vt] that corresponds to (T ′
t ,V ′

t).
Proposition 4.3 then implies the existence of a factorisation (G′

1, G
′
2) of G[Vt]

3Such a tree-decomposition is called splitting in [6].

11



such that the corresponding tree-decomposition is a re�nement of (T ′,V ′) and
such that the ends distinguished by that tree-decomposition which lie in Vt are
precisely those that are distinguished by (T ′

t ,V ′
t). We call the resulting tree-

decomposition a one-step re�nement of (T ′,V ′) by (T,V).
Now if we recursively do one-step re�nements by (T,V) starting with (T ′,V ′)

and �rst do one-step re�nements originating from one Aut(G)-orbit of separa-
tions induced by (T,V), then move on to the next orbit and so on, we must
stop after �nitely many steps since we only have �nitely many Aut(G)-orbits of
edges of T and the separator of each separation induced by one edge only meets
�nitely many parts and each part only �nitely many times. (Note that the
number of times that it meets parts and induces a separation that distinguishes
ends of that part may grow in previous steps but not while considering that
separation.) Once the recursion stops, we call the resulting tree-decomposition
a full re�nement of (T ′,V ′) by (T,V). By our discussion, we directly obtain the
following result.

Proposition 4.5. Let (T,V) and (T ′,V ′) be two tree-decompositions of G that
correspond to two factorisations of an accessible quasi-transitive locally �nite
connected graph G and assume that the factorisation for (T,V) is terminal.
Then there exists a full re�nement of (T ′,V ′) by (T,V) and a terminal factori-
sation of G to which that re�nement corresponds.

Let Γ be a group acting on a tree T . An edge e = uv ∈ E(T ) is Γ-compressible
if Γu ̸= Γv and either Γv = Γe or Γu = Γe.

Set T0 := T . For i ≥ 1, let Ei be an orbit of Γ-compressible edges of Ti−1

and let Ti be the tree obtained from Ti−1 by contracting Ei. If Γ \ E(T ) is
�nite, then there is some i ≥ 0 such that Ti has no Γ-compressible edge. Set
C(T ) := Ti and let c : V (T ) → V (C(T )) be the canonical map de�ned by all
contractions, i. e. a vertex is mapped to the vertex it ends up as after doing all
contractions. Note that, in general, C(T ) is not uniquely de�ned but relies on
the choices of the edge sets Ei. If (T,V) is a Γ-invariant tree-decomposition of
a graph G, then the pair(

C(T ),VC(T ) :=
{⋃

{Vs ∈ V | c(s) = t} | t ∈ V (C(T ))
})

is also a Γ-invariant tree-decomposition of G and we denote it by C(T,V). There
is a canonical factorisation of G associated to that tree-decomposition: the
graphs induced by the parts, one for each orbit, form a factorisation of G whose
corresponding tree-decomposition in C(T,V).

Proposition 4.6. Let (T,V) and (T ′,V ′) be two tree-decompositions obtained
from two terminal factorisations of an accessible quasi-transitive locally �nite
connected graph G. If the tree-decompositions have no Aut(G)-compressible
edges and if Aut(G) acts without inversion on T and T ′, then

|V (T )/Aut(G)| = |V (T ′)/Aut(G)|.
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Proof. Let t ∈ V (T ). If Vt is in�nite, then it contains a unique thick end.
Thus, there is a unique t′ ∈ V (T ′) that contains this thick end. Note that
the stabiliser of t in Aut(G) �xes the thick end and thus also �xes t′. We set
φ(t) := t′. Let us assume that Vt is �nite. Since the tree amalgamations have
�nite identi�cation, there exists a minimal �nite subtree Tt of T

′ such that all
t′ ∈ V (T ′) with Vt′ ∩ Vt ̸= ∅ lie in Tt. This �nite tree has a central vertex or
central edge, which must be �xed by the stabiliser Γ of t in Aut(G). Since the
action of Aut(G) on the tree is without inversion, Γ �xes both incident vertices
of that central edge in the second case. Thus, Γ �xes a vertex t′ of Tt in both
cases. We set φ(t) := t′ and for α ∈ Aut(G), we set φ(α(t)) := α(t′). That
way, we have de�ned a map φ : V (T ) → V (T ′). Analogously, we de�ne a map
ψ : V (T ′) → V (T ). Note that vertices in the same Aut(G)-orbit are mapped to
vertices in the same Aut(G)-orbit.

Let t ∈ V (T ) and let us assume that t ̸= ψ(φ(t)). Then there exists a unique
non-trivial t�ψ(φ(t)) path P in T . By the de�nition of φ and ψ, we obtain that
the stabiliser of t in Aut(G) also stabilises ψ(φ(t)). Thus, it must stabilise all
vertices on P and since the action on T is without inversion, the stabilisers of t
and of the edge st on P coincide. Since (T,V) has no Aut(G)-compressible edge,
the vertices s and t must lie in the same orbit. Inductively, all vertices on P lie
in the same orbit as t. Thus, φ and ψ are inverse to each other when lifted to
maps between the Aut(G)-orbits. This proves the assertion.

The following lemma follows directly from the de�nition of the types of tree
amalgamations.

Lemma 4.7. Let (G1, . . . , Gn) be a factorisation of G and let (H1, H2) be a
factorisation of G1. Let (T,V) and (T ′,V ′) be tree-decompositions corresponding
to the factorisations (G1, . . . , Gn) and (H1, H2, G2, . . . , Gn), respectively.

(i) If G1 is a tree amalgamation of Type 1 of H1 and H2, then we have

|V (T ′)/Aut(G)| = |V (T )/Aut(G)|+ 1

and
|E(T ′)/Aut(G)| = |E(T )/Aut(G)|+ 1.

(ii) If G1 is a tree amalgamation of Type 2 of H1 and H2, so in particular
H1 = H2, then we have

|V (T ′)/Aut(G)| = |V (T )/Aut(G)|

and
|E(T ′)/Aut(G)| = |E(T )/Aut(G)|+ 1.

A separation (A,B) of G satis�es (‡) if every vertex x ∈ A ∩B satis�es one
of the following statements:

(‡1) x has no neighbours in A∖B and B ∖A;
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(‡2) x has neighbours in A∖B and in B ∖A;

(‡3) x has neighbours in either A∖ B or B ∖ A but not both and there exists
φ ∈ Aut(G) such that φ((A,B)) = (B,A) and φ(x) is adjacent to x.

We say that a separation (A,B) of �nite order in a graph G distinguishes
ends ω and η if the rays in ω lie in A eventually and the rays in η lie in B
eventually or vice versa.

Proposition 4.8. Let G be a quasi-transitive locally �nite connected graph. Let
N be a nested Aut(G)-invariant set of separations of �nite order consisting of
only �nitely many Aut(G)-orbits. Then there exists a nested Aut(G)-invariant
set M of separations of �nite order satisfying (‡) and a surjective map α : N →
M such that each element of N distinguishes the same ends as its image in M.

Proof. Note that every vertex lies in only �nitely many separators of separations
in N since there are only �nitely many orbits in N . Let us assume that there
is a separation (A,B) in N that does not satisfy (‡). By exchanging (A,B) by
(B,A), if necessary, we may assume that there exists a ∈ A∩B with a neighbour
in A∖B but with no neighbour in B ∖A and that there exists no φ ∈ Aut(G)
with φ((A,B)) = (B,A) and such that a and φ(a) are adjacent. Let us show
that we may assume that there is no (A′, B′) > (A,B) such that a ∈ A′ ∩ B′

and a adjacent to A′∖B′ but not to B′∖A′. Indeed, if such a maximal (A′, B′)
exists and we could not replace (A,B) by (A′, B′), then a must be adjacent
to φ(a) for some φ ∈ Aut(G) with φ((A′, B′)) = (B′, A′), but then φ(a) has
neighbours in

φ(A)∖ φ(B) ⊆ φ(A′)∖ φ(B′) = B′ ∖A′ ⊆ B ∖A

but not in φ(B)∖φ(A). In particular, we have a ∈ φ(A)∩φ(B). This contradicts
the maximality of (A′, B′) since

(A′, B′) = (φ(B′), φ(A′)) < (φ(B), φ(A)).

We set

α1((A,B)) := (A∖ {φ(a) | φ ∈ Aut(G), φ((A,B)) = (B,A)},
B ∖ {φ(a) | φ ∈ Aut(G), φ((A,B)) = (A,B)}),

α1((B,A)) := (B ∖ {φ(a) | φ ∈ Aut(G), φ((A,B)) = (A,B)},
A∖ {φ(a) | φ ∈ Aut(G), φ((A,B)) = (B,A)})

and
α1(φ((A,B))) := φ(α1((A,B))),

α1(φ((B,A))) := φ(α1((B,A)))
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for all φ ∈ Aut(G). For all elements of N that do not lie in a common Aut(G)-
orbit with (A,B), we let α1 be the identity on them. We shall prove the follow-
ing.

The set α1(N ) is nested and Aut(G)-invariant and, for every
(C,D) ∈ N , the separations (C,D) and α1((C,D)) distinguish the
same ends.

(3)

Once we have proved (3), we apply recursion and obtains new maps α2, . . . , αk

for some k ∈ N till for no separation (C,D) in the resulting set αk ◦ · · · ◦α1(N )
of separations its separator contains a vertex x that does not satisfy (‡1)�(‡3).
Then all separations in the resulting set M of separations satisfy (‡). It follows
from (3) that all other claimed properties hold for M and α := αk ◦ · · · ◦ α1.
Thus, it su�ces to prove (3).

By construction, the set α1(N ) is Aut(G)-invariant. Since a is not adjacent
to any φ(a) with φ ∈ Aut(G) such that φ((A,B)) = (B,A), the pair α1((C,D))
is a separation for every (C,D) ∈ N . Obviously, all separations (C,D) with
α1((C,D)) = (C,D) distinguish the same ends as their images under α1. By
symmetry, it su�ces to prove that (A,B) and (A′, B′) := α1((A,B)) distinguish
the same ends. So let ω, η be two ends that are distinguished by (A,B). Then
one of them has only rays that lie in A∖B, and thus in A′∖B′, eventually, and
the other one has only rays that lie in B ∖ A, and thus in B′ ∖ A′, eventually.
This implies that ω and η are distinguished by (A′, B′), too. By a symmetric
argument, all ends that are distinguished by (A′, B′) are distinguished by (A,B),
too. Thus, (A,B) and (A′, B′) distinguish the same ends.

Let (C,D), (E,F ) ∈ N and let (C ′, D′) := α1((C,D)) and (E′, F ′) :=
α1((E,F )). Assume that (C,D) < (E,F ). Let us �rst suppose that F ′ ̸⊆ D′.
Since F ′ ⊆ F ⊆ D, there exists a vertex in D ∖ D′ and hence there exists
φ ∈ Aut(G) such that C = φ(A) and D = φ(B). We have

F ′ ⊆ D′ ∪ {ψ(a) | ψ ∈ Aut(G), ψ((A,B)) = (C,D)}.

By the maximal choice of (A,B), there exists a neighbour of φ(a) in F ∖ E ⊆
D ∖ C which contradicts the choice of a. Thus, we have F ′ ⊆ D′.

Let us now suppose C ′ ̸⊆ E′. Then there exists φ ∈ Aut(G) with φ(A) = F ,
φ(B) = E and φ(a) ∈ C ′. Since φ(a) must have a neighbour in F ∖E ⊆ D∖C,
it must lie in D′. Thus, we have φ(a) ∈ C ′ ∩D′. By the maximality of (A,B),
either φ(a) has a neighbour in C ∖ D ⊆ E ∖ F or it has no neighbour in
D ∖ C ⊆ F ∖ E. Both cases contradict the choice of φ(a). This contradiction
shows C ′ ⊆ E′ and hence we have (C ′, D′) ≤ (E′, F ′). Thus, N is nested, which
implies (3) and �nishes the proof as discussed above.

Proposition 4.9. There exists N ∈ N such that, for every tree-decomposition
(T,V) of a quasi-transitive locally �nite connected graph G that corresponds to
a factorisation of G, we have

|E(T )/Aut(G)| ≤ |V (T )/Aut(G)|+N.
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Proof. By Lemma 4.7, it su�ces to show that there exists N ∈ N such that
among the tree amalgamations involved in a process of splittings that leads to
a factorisation of G there are at most N tree amalgamations of Type 2.

By contracting edges from the tree-decomposition that belong to tree amal-
gamations of Type 1, joining the parts whose tree nodes are incident with the
edges and adjusting the factorisation accordingly, we may assume that the tree-
decomposition corresponds to a factorisation that uses only tree amalgamations
of Type 2.

Let (T,V) and (T ′,V ′) be two tree-decompositions corresponding to factori-
sations that are obtained by processes of splittings that use only tree amalga-
mations of Type 2 and such that the latter is a re�nement of the �rst with one
additional factorisation of Type 2. It follows from Lemma 4.7 that each of V (T )
and V (T ′) consists of a unique Aut(G)-orbit.

If an adhesion set of (T,V) covers a part of (T ′,V ′), then this part is �nite and
thus will not be splitted any further. Since V (T ′) consists of a single Aut(G)-
orbit, this happens only once and then the factorisation corresponding to that
tree-decomposition is terminal.

Let us now assume that no adhesion set of (T,V) covers any part of (T ′,V ′).
Note that also no adhesion set of (T ′,V ′) covers any part of (T ′,V ′). We now
apply Proposition 4.8 to the set of separations induced by the tree-decomposi-
tion (T ′,V ′). Let M be the resulting set of separations and let (T ′′,V ′′) be the
tree-decomposition corresponding to M, cp. [5, Lemma 2.7]. Then we obtain
that for every adhesion set S corresponding to an edge eS in T ′′ there is an edge
e = xy ∈ E(G) inside a part V ′′

t such that t ∈ eS and such that y ∈ S and
x ∈ V ′′

t ∖ S. By the choice of (T ′′,V ′′), there exists either an edge f = yz or a
path P = yy′z of length two such that in both cases z is separated from x by S
and moreover lies in a part V ′′

t′ for t
′ ∈ V (T ′′) such that eS separates t and t′:

the latter case follows from the case (‡3) in the de�nition of (‡). In particular
those end vertices do not lie in S. Note that in the �rst case xyz is an induced
path of length 2 and in the second case xyy′z is an induced path of length 3.
Let us denote the resulting path of length 2 or 3 by Q. We say that the pair
(x, z) is de�ned by eS .

As there are only �nitely many orbits of pairs (u, v) of vertices of distance
2 or 3, it su�ces to show that no two adhesion sets de�ne the same pair of
vertices. So let us suppose that there were two distinct adhesion sets de�ning
the same pair (u, v). Since both separations induced by the edges corresponding
to the adhesion sets separate u from v, their nestedness implies that they must
lie on a path in T ′′ between the two subtrees each of whose nodes contains x
or y, respectively. This contradicts the choice of (u, v) as there is a unique
edge between those two subtrees that is incident with the subtree whose nodes
contain u.

This shows that the number of Aut(G)-orbits of E(T ′′), and thus of E(T ′)
is bounded by the sum of 1 and the number of Aut(G)-orbits of pairs of vertices
of distance 2 or 3.

Remark 4.10. Proposition 4.9 implies for inaccessible quasi-transitive locally
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�nite connected graphs that all but �nitely many splittings involved in any
splitting process correspond to tree amalgamations of Type 1.

Now, we are ready to prove the main result of this section.

Theorem 4.11. Let G be a quasi-transitive locally �nite connected graph. If
some process of splittings stops after �nitely many steps, then there exists n ∈ N
such that every process of splittings stops after at most n steps.

Proof. Let (G1, . . . , Gn) be a terminal factorisation of G that is the result of
a process of splittings and let (T,V) be the tree-decomposition corresponding
to that factorisation. Let us suppose that there exists an in�nite process of
splittings. By Proposition 4.3, we may assume that the splitting in each step
of the in�nite process was done so that the factorisation (Gi,1, . . . , Gi,ni

) of G
obtained in the i-th step of that process gives rise to a corresponding tree-
decomposition(Ti,Vi) such that (Ti+1,Vi+1) is a re�nement of (Ti,Vi) as in that
proposition. By Proposition 4.3 and Remark 4.4, we may assume that Aut(G)
acts on all trees T and Ti without inversion, since it does so on the trivial tree
on one vertex, and that we add in each step at least one new Aut(G)-orbit
of vertices, if it came from a tree amalgamation of Type 1. By construction,
E(Ti)/Aut(G) is �nite. For every i ∈ N, let (T ′

i ,V ′
i) be a full re�nement of

(Ti,Vi) by (T,V) and set (T ′′
i ,V ′′

i ) := C(T ′
i ,V ′

i). Let (G′
i,1, . . . , G

′
i,ni

) be the
terminal factorisation to which (T ′

i ,V ′
i) corresponds by Proposition 4.5 and let

(G′′
i,1, . . . , G

′′
i,ni

) be the terminal factorisation to which (T ′′
i ,V ′′

i ) corresponds.
Let us look at the construction of C(T ). We claim the following.

In each step j of the construction of C(T ) the graph H induced by the
set Ej of edges that get contracted is a disjoint union of stars each of
which contains at most one node t whose part in the corresponding
tree-decomposition is in�nite.

(4)

Let uv be an Aut(G)-compressible edge in some step. We may assume that
the stabiliser of uv is the stabiliser of u. Let w be a neighbour of u such that
uv and uw lie in the same Aut(G)-orbit, i. e. there is some φ ∈ Aut(G) with
φ(uv) = uw. By de�nition of compressible edges, we have φ(u) = u, so φ lies in
Aut(G)u = Aut(G)uv. Thus, φ �xes v and hence u has degree 1 in H. Since the
stabiliser of a leaf acts quasi-transitively on the part of that leaf, an in�nite part
would imply the existence of a second adhesion set in that part that lies in the
same orbit as the �rst one. But then the stabiliser of the leaf cannot stabilise
the incident edge, which contradicts compressibility. Thus, all parts of leaves
of the star are �nite. So at most the part of one node of the star, its center, is
in�nite. This proves (4).

Let us show

|V (T ′
i )/Aut(G)| ≤ |V (T ′′

i )/Aut(G)|+
∑
v∈Y

(dY (v)− 1), (5)

where Y is a set of representatives of the Aut(G)-orbits on V (T ′′
i ) and dY (v)

denotes the number of Aut(G)-orbits of E(T ′′
i ) that contain edges that are

incident with v.
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We note that due to (4), the quantity
∑

v∈X(dX(v) − 1) strictly increases,
where X is a set of representatives of the Aut(G)-orbits on the vertices of the
tree of the j-th step of the construction of V (T ′′

i ), while the number of Aut(G)-
orbits is decreased by exactly one in each step. This shows (5).

Thus, we obtain

|V (Ti)/Aut(G)| ≤ |V (T ′
i )/Aut(G)|

≤ |V (T ′′
i )/Aut(G)|+

∑
v∈Y

(dY (v)− 1)

≤
∑
v∈Y

dY (v)

≤ 2|E(T ′′
i )/Aut(G)|,

where Y is a set of representative of the Aut(G)-orbits in V (T ′′
i ). Note that the

�rst inequality holds by construction of (T ′
i ,V ′

i).
According to Proposition 4.9, there exists N ∈ N depending only on G such

that
|E(T ′′

i )/Aut(G)| ≤ |V (T ′′
i )/Aut(G)|+N.

Thus, we obtain

|V (Ti)/Aut(G)| ≤ 2|V (T ′′
i )/Aut(G)|+ 2N.

Note that we obtain the same inequality for (T,V) and C(T,V). Then Propo-
sition 4.6 implies

|V (C(T ))/Aut(G)| = |V (T ′′
i )/Aut(G)|.

Thus, |V (Ti)/Aut(G)| is bounded in terms of |V (C(T ))/Aut(G)|, which implies
that the number of steps of the splitting process before it stops is bounded in
terms of |V (C(T ))/Aut(G)|.

5 The main theorem

In this section, we are going to prove our main result, Theorem 5.1. Theorem 1.2
follows immediately from Theorem 5.1.

Theorem 5.1. Let G be a quasi-transitive locally �nite connected graph. Then
the following statements are equivalent.

(i) G is accessible.

(ii) G is accessible in the sense of Thomassen and Woess.

(iii) S(G) is an Aut(G)-�nitely generated semiring.

(iv) There is an n ∈ N such that Sn(G) = S(G).
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(v) Every process of splittings of G must end after �nitely many steps.

(vi) There exists κ(G) ∈ N such that every process of splittings of G stops after
κ(G) steps.

Proof. The equivalence of (i) and (ii) is [6, Theorem 6.3]. The implication (ii)
to (iv) holds by Proposition 3.4. Theorem 4.11 implies the implication (i) to
(vi). The implications (vi) to (v) and (v) to (i) are trivial.

To prove (iv) to (ii), let n ∈ N such that Sn(G) = S(G). Let ω1 and ω2 be
ends of G. We are going to show that there is a separation of order at most n
distinguishing ω1 and ω2. Let (A,B) be a separation of �nite order separating
ω1 and ω2. Since Sn(G) = S(G), there are separations (A1, B1), . . . , (Am, Bm)
of order at most n such that (A,B) is generated by these separations. Note
that neither the sum nor the product of two separations distinguishes two ends
if none of the summands or factors does so. Thus, there is some i ∈ {1, . . . ,m}
such that (Ai, Bi) distinguishes ω1 and ω2. Hence, (ii) holds.

It remains to prove the equivalence of (iii) and (iv). If (iii) holds, let X be an
Aut(G)-invariant generating set that consists of �nitely many orbits. Let n be
the maximum order of separations in X . Then S(G) = Sn(G) by Proposition 3.2
and (iv) holds.

Assume that there is some n ∈ N such that S(G) = Sn(G). By Proposi-
tion 3.1 and as G is quasi-transitive, there are only �nitely many orbits of tight
separations of order at most n. Thus, Sn(G) and hence S(G) is Aut(G)-�nitely
generated.
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