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ABSTRACT. We show that on a compact manifold of nonpositive curva-
ture the volume of spheres (hence also that of balls) has an exact asymp-
totic; it is purely exponential, and the growth rate equals the topological
entropy.

The resulting formula is the sharpest one which is known. It gener-
alizes results of G.A. Margulis to the nonuniformly hyperbolic case. It
improves the multiplicative asymptotic bound by G. Knieper.

1. INTRODUCTION

Let
�

be a compact smooth Riemannian manifold whose sectional cur-
vature is nonpositive. We assume the rank of

�
to equal 1; that is, there

exists a geodesic which has no parallel Jacobi field except multiples of its
velocity vector. (For the geometric background, see [Jos], [BuKa], [BuSp],
[Esch], [Bal], [Ebe], [Gro], [BGS] and [KaHa].)

Let �������	��
���������������	� be the Riemannian volume of the ball of radius �
around � in �� (the universal cover of

�
). Let � be the topological entropy

of the geodesic flow on
���

We show that�������	��� �!�"�	�$#&% �
for a continuous function �'
 � (*) .

This result was obtained by G.A. Margulis in the special case that the
curvature is strictly negative everywhere; in that case the geodesic flow is
uniformly hyperbolic. His result was published ([Mar2]), but unfortunately
the proofs (which were part of his doctoral dissertation [Mar1]) were not.

In our situation, the problem is somewhat more difficult since we are
dealing with a non-uniformly hyperbolic system. In particular, in our setup
one has to deal with the singular set where the product structure of sta-
ble and unstable manifolds breaks down. We show how to overcome this
problem.
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It is known ([Man]) that in nonpositive curvature the exponential growth
rate of volume equals � � The best known result so far in this setting is
the estimate in [Kni2] and [Kni3] provided by G. Knieper which says that
there exist a constant + such that asymptotically ,�-!+/.0#�1 %32 � 2 ���	�4.5+ �
However, the upper and lower bound in his estimates cannot be made to be
asymptotically close with the methods he provides. Our methods presented
in this article give upper and lower bounds which are asymptotically the
same.

2. CONSTRUCTION OF (UN-)STABLE MEASURES ON FIBERS WHICH

ARE NOT IN THE (UN-)STABLE FOLIATION

Let 6 � be the unit sphere bundle of
�

and let �"7 2 � 2983: be the geodesic
flow. Recall that the regular set ;=<?>@
�BA�CEDF6 � 
 rank �"CG�H�I,�J is open
and dense in 6 ��� Recall that the regular set has a local product structure
with respect to the foliations KIL (stable manifolds), K M (unstable man-
ifolds), and flow lines of the geodesic flow. Denote by KINOM the weakly
unstable leaves (integral manifolds of K M and flow lines). The set ;=<?> has
full measure with respect to the measure P of maximal entropy, and P is
supported on ;4<Q> �

The articles [Gun1] and [Gun2] give independent proofs of the follow-
ing: On ;4<Q> , the measure of maximal entropy has conditional measuresPRNOM?STPUL , supported on the weakly unstable and on the stable foliation, re-
spectively. They have the property of being uniformly expanding and con-
tracting, i.e. PUNOMWVW7 2 �X# %�2 PRNOM and PUL�VW7 2 �X#!1 %�2 PUL � Moreover, they
are holonomy invariant, i.e. two nearby sets in K NOM which are pointwise
uniquely connected by short K L -fibers have the same P NOM -measure. Those
two articles also provide different constructions of the conditionals.

Let Y[Z�6 � be a compact submanifold of dimension \G]_^ � ` , which
is transversal to K NOM � Let a�Z�6 � be a compact submanifold of dimension\b]_^ � which is transversal to K L � Let c be an open subset of the regular
set which has diameter at most d , which has such a product structure and
which is topologically a ball. We use the notation �eLf �hgT�i
j�k�lLm �ngo�qpEc �
Definition 2.1. For a point grDsc define the projection t Lfvu w 
Qc ( � Lf �hgT�
by t Lfvu w �"�	�x
j��� NOMm �"�	�qpr� Lf �hgo� �
For a set yzZ{Y�p|c define the function

preimg } u fvu w �"�	�x
� ~4A��=D�y�
�t Lfvu w ���G�����qJ �
This function is integer-valued and semicontinuous from below, hence

integrable.
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Definition 2.2. DefineP Lfvu w ��ys�i
� �b������ w�� preimg } u fvu w �"�	�$�?P L �"�	� �
In the following, we will often deal with pairs of quantities whose prox-

imity we want to quantify. For �?� and ��� which are such that ����-���� is close
to 1 we define the logarithmic difference by\G]���������S3���3�x
j�B���� �_� ������ ���� �This quantifies the proximity of �?� and ��� . Evidently for ����-�����D���� �� S&, � ,���S
the expressions  �����-���� ` ,¡  and \b]��¢�����3S������ differ by at most a factor 2.
However, error estimates are easier using \G]�� since\b]£��������S3��¤��¢¥{\G]���������S3���3�q¦§\G]��������&S���¤�� �
Lemma 2.3. Let Y , d and c be as above, let c=¨©Zªc be open and have a
product structure. For gED�crS�g ¨ D�c and yzZ«cIp|c ¨ we have\b]£�¬OP Lfvu w ��ys�3S�P Lf�®£u w�® ��ys��¯l.°�bd �
Proof. Recall that the measure P|L contracts uniformly with exponent � in
the time direction, i.e. P L VQ7 2 �k# 1 %�2 P L S and is invariant under holonomy in± -direction. Using the product structures in c and cR¨ there is a bijective � ± -
holonomy from t Lfvu w ��ys� to t Lf ® u w ® ��ys� that moves points by at most d � ²
Definition 2.4. A regular partition-cover of Y of size d is a triple��³�S�´S�µ�� where ³ � ��c·¶"�¸¶ 8�¹ is an open cover of ;=<?> so that all cº¶
have a product structure and are of diameter at most d , where µ»�¼�hgo¶"�½¶ 8¾¹
with gb¶�D«c·¶ for all ¿ , and where ´ �À��yÁ¶��¸¶ 8¾¹ is a (disjoint) partition ofY«pE;=<?> such that ye¶ÂZ«cÃ¶ for all ¿ �

For a regular partition-cover ��³�S�´ÄS�µÅ� we define a measure on Y by
declaring that for yÆZ«Y«pE;4<Q> the measure isP LÇ u È�u É ��ys�x
�kÊ ¶ 8�¹ P Lf	Ë9u w3Ë ��yÌprye¶��
and declaring that P Ç u È�u É ��Y�pÎÍqÏ�ÐÂ>��x
j��� � Hence PULÇ u ÈÑu É is defined on all
of YÁS including the singular part.

Lemma 2.5. Let ��³�S�´ÄS�µÅ� and ��³ ¨ S�´ ¨ SÒµ ¨ � be regular partition-covers ofY of size d � Then \G]�� ¬ P LÇ u ÈÑu É ��ys�3S�P LÇ ® u È ® u É ® ��ys� ¯ .{Ó��Gd �
Proof. Use lemma 2.3 for a common refinement of ³ and ³|¨ � Note that the
common refinement contains only sets which are d -small and d -close to a set
in each ³ and ³ ¨ � Thus each holonomy from t LfoË_Ô�f ®Õ u w ��ys� to t Lf	Ë£Ô�f ®Õ u w3® ��ys�
moves points by distance at most Ó�d . ²
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Definition 2.6. Choose a sequence ��³U¶½S�´U¶�S�µ©¶"�½¶ 8¾¹ of regular partition-
covers of Y of size ,�-!¿ � LetP LÖ ��ys�x
j�¼�_]_^¶h×�Ø P LÇ Ë"u ÈÅË_u ÉÙË ��ys� �

By the previous lemma, this does not depend on the sequence��³=¶OS�´|¶�S�µÂ¶��¸¶ 8¾¹ chosen. Note that for all y Z0Y and for all dÄÚ0� there
is Û@�"d�� so that for all ¿�Ú°Û@�"d�� we have\b]£�Ü��P LÖ ��ys��SÒP LÇ Ë�u È�Ë_u ÉÙË ��ys���x.«�Gd �
Hence PULÖ is an additive measure.

Similarly, for a compact and transversal to KIL we construct a measureP NOMÝ by repeating the construction with Þ and � ± exchanged.Once again, we
declare that PRNOMÝ ��ß�� is zero for ß»ZkÍàÏ�Ð©> , which makes PUNOMÝ defined on all
of a'S including the singular part.

It is interesting to note that for the construction of PENOMÝ , we do not even
need the limit of ¿ ( á since the holonomy along Þ -fibers (as opposed to� ± -fibers) leaves the measure in the � ± -direction strictly invariant.

Similarly, for â compact and transversal to KIN¸L we get a measure PRM .
3. FIBERWISE ERGODIC THEOREMS

Definition 3.1. A family ã of functions 6 � ( ) is called uniformly
equicontinuous in the � ± -direction iff äod�Ú¼��åbæ@Ú¼�väà�ªDªã'S$äQgàS�ç�D6 � the condition �?NOM¡�hgàS�ç��i.°æ implies   ���hgo� ` �Å��ç��� �.»d �

We apply this later to nonnegative functions in +lN���6 � SÙ�è�GS á �Ò� �
Lemma 3.2. For any � which is continuous in the � ± -direction, the familyã°�éA!�eVx7 2 
�êx¥«�¡J is uniformly equicontinuous in the � ± -direction.

Proof. Note that by compactness of 6 � S the function � is automatically
uniformly continuous in � ± -direction, i.e. äodFÚ5��åbæ@Ú5�väQgqS�çëDI6 � 
��NOM¡�hgqS�ç��°. æ implies  ì���hgo� ` ����ç��� Á. d � By nonpositivity of the cur-
vature, �?NOM is nondecreasing with the flow (in positive time direction),
i.e. �?NOM¡�ngqS�ç��í. æ implies �?NOM¡��7 2 gqSÒ7 2 ç���. æ for all êí¥ �GS thus ì�Å�"7 2 go� ` ����7 2 ç��� ?.»d � ²

If the set c has a product structure, then for all g in crS the measureP NOM ��� NOMf �ngo�Ò� is the same (because of strict holonomy invariance along K L -
fibers). We call this number 6���cR� �
Lemma 3.3. Assume yzZ�KªL3S�c5Z�6 � open and with product structure,
for all ¿|Dïî let c·¶ be open in c , with � f �hgo�rZ�c·¶ for gðD[c·¶OS with



ASYMPTOTIC VOLUME ESTIMATES 5y ��p�¶ 8�¹ cÃ¶ and cÃ¶ÃZñ�lNOM��ò�¶ ��ys� � Let ã be uniformly equicontinuous in� ± -direction. Then, for all ��D�ã we have,6���c·¶"� � foË �'��P5� � } �ó��P L3ô
in fact, \G]��°õ ,6���cÃ¶�� � f	Ë �'��P�S � } �'��P L�ö . � ¿ �
Proof. It suffices to note that for all g@D§crS holonomy invariance and uni-
form expansion gives\b]���÷ �b� �� Ë � w�� �'�?P�S � } �W��P L½ø . � ¿ �
This, averaged over � ± -fibers, gives the claim.

²
Proposition 3.4. Assume yÆZ�KIL3S&c¼Z�6 � open and with product struc-
ture, for all ¿¢Dëî let cÃ¶ be open in c , with � f �hgT��Zªc·¶ for gD@c·¶½S withyí� pÅ¶ 8¾¹ c·¶ and cÃ¶vZ��lNOM��ò�¶ ��ys� � Let ��
?c ( ���GS á � be uniformly contin-
uous in � ± -direction. Then�Gù$ú } �'��P L �é# 1 %�2�P L ��ys� �bû!ü �ó��P
for ê ( ák� Indeed,\b]£� õ �¡ù ú } �'��P L S�# 1 %�2�P L ��ys� �bû!ü �ó��P ö .°�&��� diam ��cÃ¶9�Ò�q¦§���Ù�"ê�� �
Proof. Using the previous two lemmata, for all d�Ú¼�¡S for ¿ large enough
and for all êx¥«�GS\b]£� õ ,6���c·¶�� � f	Ë �eVx7 2 ��P�S � } �ºV¢7 2 ��P L ö . � ¿ �
Using the mixing property (see [Bab]),� f	Ë �ÃVx7Q2!��P5� � û!ü@ý f	Ëoþ ���ºVx7?2�����P ( P��c·¶�� � û!ü �ó��P
for ê ( `'ák� (Here

ý f	Ë is the characteristic function of cº¶ � ) In other words,\G]�� õ � foË �ºVx7?2��?P�SÒP��c·¶�� �bû�ü �'�?P ö .{�3����ê�� �
Hence \b]£� õ � } �ºV¢7?2"��P L S P��cÃ¶"�6���c·¶�� �bû!ü �'��P ö . � ¿ ¦§���Ù�"ê�� �
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Note that P��c·¶��6���c·¶9� ( P L ��ys� �
Thus, using the uniform expansion property� ù ú } �'��P L ��# 1 %�2 � } �ºV¢7?2���P L S
we get the claim.

²
Lemma 3.5. For c5Z�6 � open and yÆZ�KILi
P L ��cªp|7 2 ys�ÿ� # %�2 P L ��ys�$P��cR� �
Proof. First assume that c has a product structure. Choose a decreasing
nested sequence ��cÃ¶"�¸¶ 8�¹ of open sets with cí��� ¶ 8¾¹ c·¶ � Choose a point-
wise nonincreasing sequence of continuous functions ��¶ which are 1 on c
and 0 outside cÃ¶ � Then the previous proposition states that�Gù ú } �Ù¶���P L � # 1 %32 P L ��ys� �¡û!ü ��¶���P�S
and letting ¿ ( á shows the claim (for this c ). Next, note that both sides of
the claimed equation are additive in c � Any open subset of ;=<?> is the union
of product cubes, thus the claim is proven for regular c � Finally, recall thatP�½ÍàÏ�Ð©>������GS and hence the claim is true for arbitrary open c � ²

4. HOLONOMY CONTINUITY AND REGULAR NEIGHBORHOODS

The counting argument in section 7 requires a certain function to be con-
tinuous. That property is easily established in the uniformly hyperbolic
case; however, for the nonuniform case that we are dealing with in this ar-
ticle, it is quite nontrivial. This section is devoted entirely to that point. We
use several fairly new results about the measure of maximal entropy for the
geodesic flow, in particular existence of conditional measures, holonomy
invariance and uniform expansion for those. The holonomy continuity dis-
cussed here differs from the holonomy invariance proved in [Gun1] and
[Gun2]: Instead of taking a set and its holonomic counterpart and showing
that the conditional measure is preserved, we show that nearby sets of given
geometry have similar conditional measure.

Definition 4.1. For �©S��=Ds6 � let � L ���©S��b� be the distance of � and � along
stable leaves; if ���DÌKªL����G� then �QL����©S��b�U� ák� For �«D �è�¡S á � define� �Ü
T���GS á � ( �è�¡S á � by � ����ê��i
j��^����à���GS�� ` ê�� �
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For �ÃD����GS á � and CTS
	 Ds6 � define� ����CTS
	ó��
j� � ����� L �"CoS�	ó�Ò� �
Finally, define  ����C¡�x
� � � 8 � �� ��� � � ���"CoS
���b��P L ����� �

Evidently � ��� � S � � is symmetric. Note that it is also Lipschitz with Lips-
chitz constant 1 along KªL -leaves, i.e. for all � contained in at least one of
the leaves KªL��"�	� and KéL����G� we have  � ���"CTS���� ` � ����	lS����� ?¥�� L �"CTS
	ó� �
This is so because

�
is 1-Lipschitz.

Theorem 4.2.

 ����C¡� is continuous in � � It is continuous in C along anyKéL -leaf. If � L� ��C¡�iZ{;=<?> then

 �Ù��C¡� is continuous in all variables at C �
Proof. Continuity int � easily follows from the fact that � ���"CoS�	ó� is contin-
uous in � for any CTS
	 �

To show continuity of

 � in Þ -direction, let CTS
	 be such that �¡L¾��CTS
	ó��.{æ �
Write � �¢
���lL� �"CG�qp|�·L� ��	ó� and ��� 
���R�"CG���ï�·L� ��	'� ; then   ���"CG� `  ����	ó�� ?¥{P L ���W���������� 8��!   � ���"CTS���� ` � ����	lS����� ¦�P L ��� �3� þ õ �"���� 8��$#   � ����	lS����Ù ¾¦%���$�� 8&��#   � ����CTS����Ù  ö �
Note that if �ºD'�'� then �?L¾��CTS
	ó��D��è�¡S�æ��3S thus � ���"CTS����x.°æ and � ����	lS����x.æ � Thus the first summand on the right hand side is at most æ�PrL¾���W�Ò� and the
second at most Ó�æ�P|L¾��� ��� � Thus

 ����C¡� and

 �Ù��	ó� are arbitrarily close forCTS
	 sufficiently close. Thus

 � is continuous along any K L -leaf.
Now let � L� ��C¡�ÄZ*;=<?> ô we want to show continuity in C � Continuity

in the Þ -direction is shown above. Next we deal with the � -direction. Let	��«7)($C � Then �Ù��	ó�À� �
� 8 � �� � ù * � � � ���"7 ( CoS
���b��P L ������ �
� ® 8 ù + * � �� � ù * � � � �Ù�"7 ( CoS�7 ( � ¨ �b��P L �"7 ( � ¨ � �(4.1)

Recall that on a manifold of nonpositive curvature, any stable Jacobi field
is nonincreasing in length; hence the map ,X
àê.-( � L ��7 2 CoS�7 2 	ó� is nonin-
creasing, thus for ê0/«� its values are bounded by �¡L��"CoS�	ó� � Thus7 ( � L� �"C¡�¢Z«� L� ��7 ( C¡� �
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On the other hand, the decrease of , is bounded by the derivative of the
unstable Jacobi field, which is bounded by compactness of

���
Hence for

all dëÚ � there is æ N Ú0� so that for all æë.0æ N we have � Lm ��7 ( � L� ��C¡����1�·L� �"7)(�C¡� �
First note that æ2-( � ����7)(�CTSÒ7)("�!¨£� is continuous in æ because the foliationKéL is continuous. Next note that ��PEL���7)(��!¨h� is continuous in æ because it is

uniformly expanding in æ and # % ( is arbitrarily close to 1 for æ sufficiently
small. Finally note that ä	C=D�6 � äodÃÚ°�Ñåbæ N Ú»�Åä�æ·.»æ N we have� L� �"7 ( C¡�01°7 ( � L� �"C¡�31«� L� 1 m �"7 ( C¡�3S
hence the value of � � is at most d on the set �ÃL� �"7)(�C¡��4Ü7¡�·L� ��C¡� � This shows
that

 ����	ó� and

 ����C¡� are close because in the last line of equation (4.1) all
terms are continous with respect to æ �

Finally, we show that

 � is continuous in the ± -direction. Assume that	éD�� M( �"CG� � Recall that the measure P|N¸L is invariant under holonomy alongK M -fibers. Hence if 5 is a holonomy map along K NOM from some set �[ZKéL to some set �XZ KªL so that for all C?� D6� the points C?� and 5EC?� ared�� -close, then \b]��U��P|L¾���'��S�PUL¾���Ã���Î.��Gd?� � We are interested in the case���k�·L� ��C¡��S7	éD�� �
Note that due to the condition that � L� �"CG�RZX;4<Q>ÂS there is some open

neighborhood of � L� ��C¡� which lies inside ;4<Q> and on which KIL�S3K NOM are
uniformly transversal.

Note that for 5 as above we have   � ���85rC��3S�5EC!�3� ` � ����C��3S�C��3�� ¡¥�Ó�d�� by
1-Lipschitzness of � � � Thus ����	ó��� �

� 8 � �� �:9 � � �����GS
	ó�b��P L �8���¥ �
� ® 8�; +  � �� ��9 � � � ���8� ¨ S�C¡�à¦»Ó�d?�$����P L �85<� ¨ �¥ �
� ® 8 �����=?> # ��� � � � �Ù�8� ¨ SÒCG�q¦ Ó�d��$����P L ��� ¨ �¥  �Ù��C¡�q¦A@�d?�½P L ��� L�CB m  ��C¡�Ò� �

Letting d�� ( � shows that

 ����	ó� and

 �Ù��C¡� are arbitrarily close for CoS�	
close enough.

²
5. MEASURING RIEMANNIAN VOLUME BY COUNTING INTERSECTIONS

Let �©S��=D ��� DefineD ���"�©SÒ�b�Ñ
� ~U���Ü���"�	�©pÄ�"tà��� � � þ �G�Ò�
to be the number of copies of � under Deck transformations that are inside
the ball of radius � around � �
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Lemma 5.1. �����"�	�ÿ� � E 8 ü D �Ù�"�©S��G���ÿ���������G��S
where ����� is the Riemannian volume on

���
Proof. Let , be a fundamental domain of

���
Denote the characteristic

function of � by
ý � �

Then�������	��� ÊF 8&GH � ü � �����O�JIK,°pr�������	�Ò�� ÊF 8&GH � ü � � E 8 FML ý
�
� ��N � �ÿ�������"�b�� �

E 8 FML ÊF 8&GH � ü � ý
�
� ��N � �ÿ�������JI 1 � �G�� �

E 8 ü D ���"�©SÒ�b�$���������"�b� � ²
For �©S��§D � assume Y*
�X6 E � to be transversal to K NOM and â N 
j�6 N � to be transversal to KIL � Let a 
�[7!O N u PRQ â N � Let YÁSÒâ N be the disjoint

unions YI�TS2U	y U S�â N �TS ¶ ß�¶ � ThenD 2 ���©S��G�À� ~U�Ò�"tà��� � � þ �G�qpE� 2 ���	�Ò�� ~U��6 E � pU7 O N u 2 Q 6 N � �� ~U��Y�pU7 O N u 2 Q â N �� Ê ¶ u U ~U��y U p|7 O N u 2 Q ß�¶"� �
Therefore it suffices to be able to count these intersections in order to find �¾� �
Note that these intersections are always finite, even though the components
of intersection of stable and unstable manifolds can be uncountable.

6. PRODUCT NEIGHBORHOODS

Let c be open with c Z/;=<?> � Hence it has a product structure and
transversality is uniform on c � Let ß«Zéc be transversal to K L � Note that
for each C=D�ß we have �_]�^�¸× N  �Ù��C¡�H�k� �
By compactness of c and continuity of

 ����C¡� in ��S the convergence
 �Ù��C¡� ( � as � ( � is uniform with respect to C � Hence there exists� N Ú�� so that for all �F.�� N and all CéD ß there exists �HVU�/��V��"C¡� so



ASYMPTOTIC VOLUME ESTIMATES 10

that

 ��W ��� � �"CG�Ñ�é� � From the product structure of c follows that for � suffi-
ciently small, for each CUDß , the intersection of �eL��W �:� � ��C¡� contains exactly
one point of ß �
Definition 6.1. WriteX � X ��ß¢S��¾�¢
��� L�8W ��ß��i
�ZY� 8�[ � L��W �:� � �"C¡� �
Let t [ 
 X ( ß be the projection defined by t [ �8���'�]\ for �ÎD§� L� W �:^ � �8\�� �
Define the function � [ u V supported on

X
by� [ u V3�8���x
� � ���"t [ �8�����

for �eD X and � [ u V3�8���x
�k� otherwise.
It is easy to see that �

_ � [ u V½��P5���3P NOMÝ ��ß��
since ��P �¼��P L ��P NOM on c and since the stable measure of each Þ -fiber
equals � �

For two subspaces `ó�3S�`�� of a vector space leta ��`ó��S�`��3�x
��� ; ��`ó�qpÎ6 � S�`��vpÎ6 � �
be the distance in the Grassmannian bundle induced by the Hausdorff dis-
tance on unit spheres.

Lemma 6.2. Let Y be compact and transversal to K NOM � Then for all dÃÚ{�
there exists ê N so that for all êxÚ»ê N we havea ��b�7 1 2 YeS�b K L �x. d �
Proof. Each cÄDdb�7T1 2 Y can be written as c��ec$fÅ¦dchg with c$fÃDib KéL�Schgkjlb KéL (perpendicular with respect to the Sasaki metric on 6 � ). Recall
that for ê ( ` á S any unstable Jacobi field is bounded and any stable Jacobi
field is unbounded. Since ����7 2 c?� f is unbounded for ê ( `'á and ����7 2 c?� g
is bounded, it follows that m �Ò����7 2 c���S�b KéL¸� ( � for ê ( ` ák� ²

7. INTERSECTION ESTIMATE

Definition 7.1. For Y compact and transversal to KINOM and a compact and
transversal to KªL�S!yzZ{YeS�ß»Z{a definen ��yÎS�ß¢SÒê��x
�k~U��ßÎp|7 1 2"ys��S

define oó��yÎS�ß¢S���SÒê�� to be the set of components p of

X pU7o1 2 Y such that
if grD'p and g|D�� L��W ��\�� for \ÅD�ß then � L��W ��\����qpÑS and finally defineÛ@��yÎS�ß�S���SÒê��i
� ~roó��yÎS�ß�S���SÒê�� �
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For a set y as above with the property that yÆZ«c where c is open andc carries a product structure, we abbreviate the notation t fvu w ��ys� by y ¨ �
This means that the choice of g is suppressed in the notation. ys¨ may be
disconnected even if y is connected.

For a set yr¨	Z�KéL with �ts?yr¨oZ«c for u@Ú{� we writev� Ls y ¨ 
�«t fvu w �ws�y ¨ S
i.e. the set yÎ¨ is (arbitrarily) extended by distance u in the Þ -direction.
Similarly, for u@.°� we writev� Ls y ¨ 
�ï��y�4�� 1 so�8xTys�Ò� ¨
for the opposite, namely shrinking y ¨ by distance u from its boundary.

Note that by the previous lemma, for each YeS�a there exists ê N such that
for êxÚ§ê N the number

n ��yÎS�ß¢SÒê�� is finite.
Clearly ä�yÎS�ß as before, � Ú{�GS�êy/«�Ã
Û@��yÎS�ß¢S���SÒê��i¥ n ��yÎS�ß¢SÒê�� �

On the other hand, unboundedness of stable Jacobi fields for ê ( ` á and
hence unboundedness of the diameter of the image of the annulus � v�·Ls yr¨£�)4y ¨ under 7 1 2 gives ä�yÎS�ß¢S�� Ú°�ÅäKu@Ú»�Üåzb��{bl�8uÅ��äoêxÚ|bk
n ��y ¨ S�ß¢SÒê��i¥«Û@� v� Ls y ¨ S�ß¢SÒê�� �
Moreover, ä}pFD~oó��yÎ¨�S�ß¢S���SÒê��i
�

� � [ u V¸��P L �k� ô
hence ä�yÎS�ß¢S���SÒêi
Ûë��y ¨ S�ß¢S���SÒê��i¥ ,� �bû�ü � [ u V þ � ý } ® V¢7?2��$��P L �
On the other hand, äKuFÚ°��åzb«�{bl��u��?äoêÑÚ|b 
Û@� v� Ls y ¨ S�ß¢S���SÒê��0/ ,� � û!ü � [ u V þ � ý } ® Vx7 2 ����P L �
Note that P|LÖ �8xTyr¨£�ÿ�k� ��PRNOMÝ �8xTß�� �

In the following, the only type of ß we need to consider is ß��ï7 O N u 2�� Q â
for some â contained in some cº¶ with a product structure (which makesâ transversal to KéN¸L ). This ß is without loss of generality the disjoint
union ß@��S�� 1 �¶�� N ß�¶ with ßH¶ÂZ°7 O ¶ 2 � ò � u � ¶�B	� � 2 � ò � � â , and we can further assume
without loss of generality that that ßÿ¶�Zéc·¶ for ¿¢.{� (by renumbering thec·¶ appropriately).
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Lemma 7.2. For all u@Ú{� there exists b such that for all êiÚAb 
�Ê ¶��	� n ��y ¨ S v� M1 s ß�¶½SÒê ` d��i¥ �Ê ¶��	� n ��yÎS�ß�¶OSÒê��x¥ �Ê ¶��	� n ��y ¨ S v� Ms ßH¶OSÒêq¦Fd�� �
Proof. Note that once more the nonpositivity of the curvature gives un-
boundedness of the boundary annulus as ê ( ` ák�

Moreover 7 1 2 y ¨ is
arbitrarily close to K L as ê becomes large. Note also that each point g|D�y
which lies on ßH¶ gets moved by at most d in the flow direction under the
map y�-( yr¨ and hence gets mapped back to ß�¶ or gets mapped to ß U with  ¿ `'�   D -��=.»d � Note that, for ¿��� � S increasing the term

n ��y�¨_S v� Ms ß U SÒê ` d��
by 1 and simultaneously decreasing the term

n ��ys¨�S v� Ms ßH¶�SÒê ` d�� by 1 does
not change the sum in the statement of the lemma.

²
Theorem 7.3.�_]�^������2 ×�Ø # 1 %32 �Ê ¶��	� n ��yÎS�ß�¶½S�ê�� ¥ # � %�2"P LÖ ��ys� �Ê ¶��	� P NOMÝ ��ß�¶��3S�_]�^°]_�z�2 ×ÜØ # 1 %32 �Ê ¶��	� n ��yÎS�ß�¶½S�ê���/ # 1 � %�2"P LÖ ��ys� �Ê ¶��	� P NOMÝ ��ß�¶�� �
Proof. For the first inequality, we see that for all uFÚ°���]_^��"���2 ×�Ø # 1 %�2 �Ê ¶��	� n ��yÎS�ß�¶OSÒê��i¥«��]_^��"���2 ×�Ø # 1 %�2 �Ê ¶��	� n ��y ¨ S v� Ms ß�¶½S�êq¦Fd�� �
Hence�_]_^|�����2 ×�Ø # 1 %�2 �Ê ¶��	� n ��yÎS�ß�¶OS�ê��¢¥ð�_]�^s�× N �_]�^������2 ×ÜØ # 1 %32 �Ê ¶��	� n ��y ¨ S v� Ms ß�¶OSÒêà¦�d��¥ �_]_^� × N ��]_^s�× N ��]_^��"���2 ×�Ø # 1 %�2 �Ê ¶��	� Û@� v� L� y ¨ S v� Ms ß�¶½SÒêà¦�d��¥ ,� ��]_^� × N ��]_^s�× N ��]_^��"���2 ×�Ø # 1 %�2 �Ê ¶��	� � û�ü ���� �� [ Ë�u V þ � ý �� �� } ® Vx7?2 B m ����P L¥ # � %�2 P LÖ ��ys� �Ê ¶��	� P NOMÝ ��ßH¶�� �
Here we have used lemma 3.4. Note that the necessary continuity of � �� �� [ Ë9u Vis provided by theorem 4.2.

The second inequality is proven the same way, using the opposite esti-
mates for exchanging

n
with Û and Û with the integral.
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Using the fact that P|LÖ �8xTyr¨£�l�5�r�5PRNOMÝ ��xoß��3S we reach the following
conclusion:

²
Corollary 7.4. For ß regular and y arbitrary (or for y regular and ß
arbitrary), we get�_]_^2 ×ÜØ # 1 %�2 �Ê ¶��	� n ��yÎS�ß�¶½SÒê��H��P LÖ ��ys� �Ê ¶��	� P NOMÝ ��ß�¶"� �

Note that regularity is invariant under the flow. Hence if ß is regular, any
intersection of ß with 7T1 2 y can only occur at regular points. It is therefore
sufficient if just one of the two sets ß�S�y is regular. Hence the case we have
treated before suffices.

If neither y nor ß is regular, then we split it as y ��S2U	y U and ß[�S ¶ �ß�¶ where each y U and ß�¶ is a subset of ;=<?> or ÍàÏ�ÐÂ> � We have dealt
with the former and are going to show that the latter does not distort the
count. Without loss of generality �ßÿ¶��lS � 1 �� � N 7 � 2 ò � ß�¶ and ß�¶��«7!O N u 2 � Q â�¶ �
Proposition 7.5. There exists IÎÚ{� such that for y U ZkÍqÏ�Ð©> or ß�¶ÂZkÍqÏ�Ð©>
there exists bkD ) such that for êxÚAb we have�Ã¥kÊ¶ u U u � ~ ¬ y U pU7 � 2 ò � ß�¶ ¯ ¥«# � % 1 F � 2 �
Proof. Let CTS
	ðD@y Zé6 E � be such that 7T1 2 CTSÒ7�1 2 B P  	ïDëâ�¶HZé6 N � forêy/«� and �º¥ D �i¥{ê N . Then the geodesic segments 7�O 1 2 u N Q C and 7!O 1 2 B P  u N Q 	
either form a geodesic biangle (i.e. 2-gon, bounding a topological 2-disc)
or form a topologically nontrivial loop.

Note that in a space of nonpositive curvature, any geodesic biangle is de-
generate, i.e. subset of a single geodesic. This is so because any biangle is
in particular a triangle with one side of zero length, and by triangle com-
parison with flat 2-space the nonpositivity of the curvature shows that both
angles of the biangle are 0.

Hence either CI� 	 or the orbits of CoS�	 are ��ê3S�\ N � -separated, whereÓ�\ N Ú°� is the length of the shortest closed geodesic in
���

Since the growth rate of any separated set in ÍàÏ�Ð©> is less or equal to the
topological entropy of ÍàÏ�ÐÂ> and since ���H���&�·.«�àS the claim follows.

²
This proves:

Theorem 7.6. For each ��D � there exists �!�"�	� so that������� 2 �"�	�ÿ�é�����	��#&%�2 �
The function �'
 � (*) is continuous. It satisfies�����	�ÿ� ,� � E 8 ü D ���©S��b�$�����������G�



ASYMPTOTIC VOLUME ESTIMATES 14

where D �"�©S��G�H��P LÖ ��6 N � �¸P M� � ��6 E � � �
Proof. For � as above, the preceding arguments show thatD 2 ���©S��G�H� #&%32"P LÖ ��6 N � �$P M� � ��6 E � � �
In particular,

D 2 ���©S��b�ÿ�é# %�2 D �"�©S��G� where

D �"�©S��G�ÿ�kP|LÖ ��6 N � �¸P=M� � ��6 E � � �The function

D ���©S��b� is evidently independent of ê �
For continuity, simply note that if � is another point of

�
with �	���©S��G�i¥d then � 2 ���	���{������� 2 �"�	� satisfies� 2 1 m ���	�x¥«� 2 �"�b�Ñ¥«� 2 B m �"�	� �

Thus # 1 % m ¥ � 2 ���G��!�"�	�$# %32 ¥«#&% m �
Thus � 2 ���G� and � 2 ���	� are arbitrarily close for � and � sufficiently close.

²
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