
Calculus – 14. Series, Solutions

1. Compute directly (without using the Fundamental Theorem of Calculus)

∫

1

0

x dx2.

Hint. Consider equidistant partitions of [0, 1] and use
n

∑

k=1

k =
1

2
n(n + 1) and

n
∑

k=1

k2 =
1

6
n(n + 1)(2n + 1).

Solution. By Theorem5 and the remark to Example 1, since f(x) = x is continuous,

given ε > 0 there exists δ > 0 such that for all partitions with ∆xi < δ,
∣

∣

∣

∣

∣

n
∑

i=1

f(ti)∆αi −

∫ b

a

f dα

∣

∣

∣

∣

∣

< ε, (1)

where ti ∈ [xi−1, xi].

Consider the equidistant partition Pn = {x0, x1, . . . , xn}, xi = i/n, i = 1, . . . , n of

[0, 1]. Since f is increasing,

U(Pn, f, α) =

n
∑

i=1

xi ∆αi,

where

∆ αi = α(xi) − α(xi−1) =
i2 − (i − 1)2

n2
=

2i

n2
.

Using the hint we have

U(P, f, α) =

n
∑

i=1

i

n

2i

n2
=

2

n3

n
∑

i=1

i2 =
2

n3

1

6
n(n + 1)(2n + 1) =

n(n + 1)(2n + 1)

3n2
.

Taking the limit n → ∞ we assure ∆xi = 1/n < δ; now (1) shows that U(Pn, f, α)

converges to the integral

∫

1

0

x dx2 = lim
n→∞

n(n + 1)(2n + 1)

3n2
=

2

3
.

2. Suppose α increases on [a, b], a ≤ c ≤ b, α is continuous at c, f(c) = 1, and f(x) = 0

if x 6= c.

Prove that f ∈ R(α) and that
∫ b

a
f dα = 0.

Proof. Consider the partition P = {x0 = a, x1, x2, x3 = b} of [a, b] with x1 < c < x2.

Since mi = 0, i = 1, 2, 3, and M1 = M3 = 0, M2 = 1, we have

U(P, f, α) = ∆α2, and L(P, f, α) = 0.



Since α is continuous at c,

lim
x1→c−0
x2→c+0

(α(x2) − α(x1)) = α(c) − α(c) = 0.

Therefore both the upper and lower integrals of f with respect to α are 0. This

shows f ∈ R(α) and
∫

f dα = 0.

3. Suppose α strictly increases on [a, b], f ≥ 0, f is continuous on [a, b], and
∫ b

a
f dα = 0.

Prove that f(x) = 0 for all x ∈ [a, b]. Compare this with homework 14.2.

Hint. Make an indirect proof; use homework 10.4 and Proposition 9 (b) and (c).

Proof. Suppose to the contrary, f(c) = A > 0 for some c ∈ [a, b]. By homework 10.4,

there exists δ > 0 such that

f(x) >
A

2
if |x − c | ≤ δ, x ∈ [a, b].

Put r = max{a, c − δ} and s = min{b, c + δ}. By Proposition 9 we have

∫ b

a

f dα =

∫ r

a

f dα +

∫ s

r

f dα +

∫ b

s

f dα ≥ 0 +
A

2
(α(s) − α(r)) + 0.

Since α is strictly increasing and s > r one has α(s) > α(r) and the right hand

side of the above inequalities is positive. However this contradicts the assumption
∫

f dα = 0; hence f(x) = 0 on [a, b].

Homework 14.2 shows that the continuity of f is a necessary assumption to conclude

f(x) = 0.

4. Define three functions βj, j = 1, 2, 3, as follows: βj(x) = 0 if x < 0, βj(x) = 1 if

x > 0, β1(0) = 0, β2(0) = 1, and β3(0) = 1

2
. Let f be a bounded function on [−1, 1].

(a) Prove that f ∈ R(β1) if and only if lim
x→0+0

f(x) = f(0) and that

∫

1

−1

fdβ1 = f(0).

(b) State and prove a similar result for β2.

(c) Prove that f ∈ R(β3) if and only if f is continuous at 0.

(d) If f is continuous at 0 prove that

∫

1

−1

fdβ1 =

∫

1

−1

fdβ2 =

∫

1

−1

fdβ3 = f(0).

Proof. Consider the partition P = {x0 = −1, x1, x2 = 0, x3, x4 = 1} with

x1 < 0 < x3. Then ∆(βj)1 = ∆(βj)4 = 0, j = 1, 2, 3. Since βj(x1) = 0 and



βj(x3) = 1 we have

L(P, f, βj) = m2∆(βj)2 + m3∆(βj)2 = m2βj(0) + m3(1 − βj(0))

U(P, f, βj) = M2βj(0) + M3(1 − βj(0))
(2)

(a) In case j = 1, β1(0) = 0 and (2) yields

L(P, f, β1) = m3, U(P, f, β1) = M3. (3)

If f ∈ R(β1), the Riemann criterion and (3) show that given ε > 0 there exists

x3 > 0 such that

ε > M3 − m3 ≥ | f(t) − f(y) | , for all t, y with 0 ≤ t, y ≤ x3.

In particular, inserting y = 0 and t > 0 we have

| f(t) − f(0) | < ε if 0 < t < x3.

This means lim
t→0+0

f(t) = f(0).

Conversely, suppose lim
t→0+0

f(t) exists and equals f(0). Then for ε > 0 there exist

x3 > 0 such that

| f(t) − f(0) | ≤ ε if 0 ≤ t ≤ x3.

It follows

f(0) − ε < f(t) < f(0) + ε, t ∈ [0, x3]

f(0) − ε ≤ m3 < f(0) + ε

f(0) − ε < M3 ≤ f(0) + ε.

Hence M3 − m3 ≤ 2ε. The Riemann criterion is satisfied, f ∈ R(β1). Since the

integral is always inbetween the lower and the upper sums we have

f(0) − ε ≤ m3 ≤

∫

1

−1

f dβ1 ≤ M3 ≤ f(0) + ε

Since ε was arbitrary,
∫

f dβ1 = f(0).

(b) In case j = 2, β2(0) = 1 and (2) yields

L(P, f, β2) = m2, U(P, f, β2) = M2 (4)

The same arguments as in (a) show that f ∈ R(β2) if and only if lim
t→0−0

f(t) = f(0).

In this case
∫

1

−1

f dβ2 = f(0).

(c) If f is continuous at 0, f ∈ R(β1) and f ∈ R(β2) by (a) and (b). Since

β3 = 1

2
β1 + 1

2
β2, it follows from Proposition 9 (e) and that f ∈ R(β3) and

∫

1

−1

f dβ3 =
1

2

∫

1

−1

f dβ1 +
1

2

∫

1

−1

f dβ2 = f(0).



Conversely, suppose f ∈ R(β3) on [−1, 1], then f ∈ R(β3) on [−1, 0] and on [0, 1]

by Proposition 9 (c). Then f ∈ R( 1

2
β2) on [−1, 0] since 1

2
β2 = β3 on [−1, 0] and

f ∈ R(1

2
β1) on [0, 1] since β3 = 1

2
β1 + 1

2
on [0, 1].

Hence f ∈ R(β2) on [−1, 0] and f ∈ R(β1) on [0, 1] by Proposition 9 (e). Since β2 = 1

is constant on [0, 1] every bounded function is in R(β2) on [0, 1]. Since the converse

statement to Proposition 9 (c) is also true (see below, the proof of homework 5)

f ∈ R(β2) on [−1, 1]. Similarly, f ∈ R(β1) on [−1, 1]. From (a) and (b) it follows

lim
x→0+0

f(x) = f(0) = lim
x→0−0

f(x).

That is, f is continuous at 0.

(d) If f is continuous at 0, the left-hand and the right-hand limits exist at 0 and

they coincide with f(0). The statement follows from (a), (b), and (c).

5. If f ∈ R(α) on [a, b] and if a < c < b, then f ∈ R(α) on [a, c] and on [c, b] and

∫ b

a

f dα =

∫ c

a

f dα +

∫ b

c

f dα.

Hint. Let ε > 0, consider a partition P of [a, b] with U(P, f, α) − L(P, f, α) < ε;

pass to a refinement P ∗ of P which contains the point c and write this in terms of

upper and lower sums on the intervals [a, c] and [c, b].

Proof. Let ε > 0 be given; consider a partition P0 of [a, b] with

U(P0, f, α) − L(P0, f, α) < ε

and pass to a refinement P of P0 which contains the point c. By Lemma4 (a),

U(P, f, α) − L(P, f, α) < ε.

Since c ∈ P , the partition P = {x0, . . . , xn} can be viewed as the union of the

partitions P1 = {x0, . . . , c} of [a, c] and P2 = {c, . . . , xn} of [c, b]. By the above

inequality

U(P1, f, α) + U(P2, f, α) − L(P1, f, α) − L(P2, f, α) < ε.

This shows U(Pi, f, α)−L(Pi, f, α) < ε for i = 1, 2; hence f ∈ R(α) on [a, c] and on

[c, b].

With the same P1 and P2 we have

U(P1, f, α) −

∫ c

a

f dα < ε, and U(P2, f, α) −

∫ b

c

f dα < ε.

Hence
∫ b

a

f dα ≤ U(P, f, α) = U(P1, f, α) + U(P2, f, α) <

∫ c

a

f dα +

∫ b

c

f dα + 2ε.



Since ε > 0 was arbitrary,

∫ b

a

f dα ≤

∫ c

a

f dα +

∫ b

c

f dα.

If we replace f by −f , the above inequality is reversed and we obtain equality.

Note that the reverse statement is also true. If f ∈ R(α) on [a, c] and f ∈ R(α)

on [c, b] then f ∈ R(α) on [a, b]. Start with partitions P1 and P2 of [a, c] and [c, b],

respectivly, satisfying the Riemann criterion with ε > 0. Then

U(P, f, α) − L(P, f, α) < 2ε

for the common refinement P of P1 and P2 on the interval [a, b]. The rest is

completely the same as above (
∫ b

a
f dα =

∫ c

a
f dα +

∫ b

c
f dα.)


