Calculus — 13. Series, Solutions

1. Let f(xz) = z® be defined for positive real numbers x > 0. Compute liglof(a:).
T—r
Determine the local extrema of f. On which parts of its domain is f convex; on
which parts is f concave?
Solution. By Homework11.4 lim, ,o oxlogz = 0. This implies li{)rio logz® =0
T—r

and since e” is continuous, lim, ,g;¢ 2" = 1.
By Homework 12.1, f'(z) = 2®(logz + 1). We compute the second derivative.

1
f"(z) = 2"(logx + 1)* + 2" ~.
T

Since both summands are nonnegative, f”(z) > 0 for all positive z. By Proposi-
tion 13, f is convex on its domain. For the local extrema consider f'(z) = 0. This
implies logz = —1 and finally z = 1/e. Since f”(z) > 0, by Proposition12, f
attains its local (and global) minimum at 1/e.

2. Prove that for every z > 0
x
— <log(1 < z.
14+z — gl +z) <@

Hint. Apply the mean value theorem to f(x) = log(1 + ).

Proof. Since f is continuous on the closed interval [0,z] and differentiable on the
open interval (0, ), by the mean value theorem there exists £ € (0, z) such that
ey = {@ =1 _log(1 +3)
z—0 x
1 log(l+x)
1+€6 x
Solving this equation for £ and noting 0 < £ < z gives

T
I<f=—7——-1<uz.
g log(1 + z) v

Since log(1 + z) > 0 for £ > 0 this yields on the one hand log(1 + z) < z and on
the other hand = < (z + 1) logz. The assertion follows. m

3. Compute the limits where a > 0 and b > 0 denote fixed positive real numbers.
log cosh(ax)

=0 log cos(bz)

1 —sin®t »

(b)  lim
vo/2 \/(1 — sin® z)(1 — sin® z)

(¢) lim arccos(Vz?+ z — )

T—+00
xr
z+1

) s
(d) wll)llloox (Z — arctan
() i cos % sin? z

e im—%——

x—0 €



Solution. (a) The limit in question is of the form 0/0. Using I'Hospital’s rule twice

we find
asinh(ax)
log cosh(ax) . cosh(az) _  a . sinh(az)
20 logcos(br)  =—0 —bsin(bz) b a0 sin(bx)
cos(bx)

a .. acosh(ax) a?

=—lim— > = ——.

b z—0 bcos(bx) b?

(b) The limit in question is of the form 0/0. To simplify computations we first
consider the square of the function and take the root of the limit afterwards. This is
justified by the continuity of the square root. After first application of 'Hospital’s
rule we can cancel the term cosz, apply I’Hospital’s rule a second time and just
cancel cosx in all terms.

_ . a_|_b 2
lim (1 sin x)
a—=n/2 1 —sin® 2 — sin® z + sin®™ ¢

2 (1 —sin®*z) (—(a + b) sin"*~! z cos z)
a+b—1

+b

= lim a1 ) :
z—7/2 —asin® ' zcosx — bsin® ' zcosz + (a + b) sin

ra+b—1 1 —si a+b
— 2a+b) lim S rlmsinTa)
z—or/2 —asin® 'z — bsin® 'z + (a+b)sin®’ gz
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T COST

= —2(a+0b) li
(a+b) m—1>1732 —a(a —1)sin® %z — b(b— 1)sin®? +(a+ b)(a + b — 1) sin® "2 g
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Taking the square root we obtain the final result

N

(c) Since arccos x is continuous on its domain,

lim arccos(vVa? + z — x) = arccos ( lim Va2 + 2z — x) :

T—+00 T—00

The limit is now of the form oo — co. We give two possible solutions.
First solution. We multiply both the numerator and the denominator (which is 1)

by V2 + x + x and obtain

SE e 2
lim (\/:E2+a:—:v)= lim Tt T lim ___r
T—+00 \/.T2+37+.T SL“)+OO\/./L‘2+Z‘+./E

T——+00
i 1 1
= m —F— = —.
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In the last step we used continuity of the square root:

. V4 R
lim — = lim =
T—+00 T T—+00 2




Second solution. We substitute h = 1/x and consider the limit

. 1 1 1 . vh+1-1 —\'
h1—1>IOI-|1-0< ﬁ+g_ﬁ>_hl—l>IO&OT_< I+1) [o=0=

1 1
W7+ 1 [2=0= -

Hence the limit in question equals arccos § = Z.

(d) Since arctan 1 = /4, the limit is of the form oo - 0. We substitute h = 1/z and
compute the limit

n i

i 7 — arctan e ~ ot 7 — arctan 1+Lh

h=50-4-0 h h—0+0 h

1 !
- _ t _
(arc an o " :v) lz=0

T (11%)2 (‘(Hlx)?) = %

(e) The limit is of the form 0/0 but I’Hospital’s rule does not apply since the deriva-
tive of the numerator has no limit as x approaches 0. We show directly that the
limit is 0 using the fact that

sinx
<2

X

for small z (Corollary 3.25) and |cosy | < 1 for every y. We have for |z | < §

sin

cos % sin? z

<1-|sinz| < 2|sinz|.

T

Since the right hand side tends to 0 as x approaches 0, the limit in question is
also 0.

. Compute the Taylor polynomial of degree 3 of the function
flz) =eTcosz

at g = 0. Give an estimate for the remainder if |z | < 1.

Solution. We need the first three derivatives of f at point 0 and the 4th derivative
to estimate the remainder term. We have

fl(z) =—e"cosz —e sinx = —e *(cosx + sinx),
f"(z) =e *(cosz +sinz + sinz — cosz) = 2e”sinz,
f"(x) = —2e*(sinz — cos ),
W (x) =2 %(sinz — cosz — cosz — sinz) = —4e % cos z.

Therefore, f(0) = 1, f'(0) = —1, f"(0) = 0, and f"(0) = 2. Hence the Taylor
polynomial of degree 3 reads

1
ps(z)=1—z+ gaz?’.



The Lagrange form of the remainder term gives

f“’(&) "

X

<4e— i<£<01717
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Iro(a) | = | fla) - <>|—\

In the last estimate we used the fact that e is strictly decreasing and therefore it
attains its maximum at & = —%; e~€ < e3.

. (a) Compute the Taylor series Ty and T, of f(z) = cosz and g(z) = log(1 + ) at
xo = 0, respectively. Compute their radii of convergence.

(b) Show that Tf(x) converges to f(z) for all z € R. Show that T,(x) converges to
g(z) for all z € (0,1).

Solution. (a) Since the sequence of derivatives for the cosine function is of period 4
with
(f™(2))n=0,1,.. = (cosz, —sinx, — cos z,sinz, cos , . ...

we have at 2o = 0 the sequence (1,0, —1,0,1,...). Hence the Taylor series at o = 0
is

1 1 1
The Taylor series obviously coincides with the deﬁnltion of the cosine function given

in Proposition 3.20. The radius of convergence is also R = +o0.

Since ¢'(z) = H%, g"(z) = (1+ 7o) it 18 easy to prove using induction on n that
- 1!
(n) — (=1 n+1 (n )
0 @) = (0 o

Hence ¢ (0) = (=1)"*'(n — 1)! and the Taylor series of g(z) at 2o = 0 reads

1 2 1 3 = (_1)n+1 n
Tg(x):0+x—§x +§x —+"':ZT£E.
n=1

Since

I_VT 1 .
o = Iim - - =
n o limy, 0 /N ’

the radius of convergence of Ty is R =1/a = 1.
(b) For f there is nothing to show. To show convergence for g we must prove that for
every z € (0,1) the remainder term r,(z) tends to 0 as n goes to co. The Lagrange

remainder term allows the following estimate since |z | < 1 and T+e <1
1 1
r = |- "< =
@)= g | <
which proves the claim. Note that this estimate also holds for x = 1, hence
log2 =1 L + L1 +
B T R '



