Calculus – 14. Series

(turn in: April 13, 2004)

1. Compute directly (without using the Fundamental Theorem of Calculus)

$$\int_0^1 x \, \mathrm{d}x^2$$

Hint. Consider equidistant partitions of [0,1] and use $\sum_{k=1}^{n} k = \frac{1}{2}n(n+1)$ and $\sum_{k=1}^{n} k^2 = \frac{1}{6}n(n+1)(2n+1).$

- 2. Suppose α increases on [a, b], $a \leq c \leq b$, α is continuous at c, f(c) = 1, and f(x) = 0if $x \neq c$. Prove that $f \in \Re(\alpha)$ and that $\int_a^b f \, d\alpha = 0$.
- 3. Suppose α strictly increases on [a, b], $f \geq 0$, f is continuous on [a, b], and $\int_{a}^{b} f \, d\alpha = 0$. Prove that f(x) = 0 for all $x \in [a, b]$. Compare this with homework 14.2. *Hint.* Make an indirect proof; use homework 10.4 and Proposition 9 (b) and (c).
- 4. Let

$$f(x) := \frac{x(1-x)}{x^2 + 1}.$$

Find the area of the bounded region enclosed by f(x) and -f(x).

5. If $f \in \Re(\alpha)$ on [a, b] and if a < c < b, then $f \in \Re(\alpha)$ on [a, c] and on [c, b] and

$$\int_{a}^{b} f \, \mathrm{d}\alpha = \int_{a}^{c} f \, \mathrm{d}\alpha + \int_{c}^{b} f \, \mathrm{d}\alpha.$$

Hint. Let $\varepsilon > 0$, consider a partition P of [a, b] with $U(P, f, \alpha) - L(P, f, \alpha) < \varepsilon$; pass to a refinement P^* of P which contains the point c and write this in terms of upper and lower sums over the intervals [a, c] and [c, b].