Calculus – 12. Series

(turn in: January 23, 2004)

1. Compute the derivatives of $f: (0, 1) \to \mathbb{R}$ where

(a)
$$f(x) = x^{x^{x}}$$

(b) $f(x) = (x^{x})^{x}$
(c) $f(x) = x^{a^{x}}$

and a > 0 is a constant. Note that $a^{b^c} = a^{(b^c)}$ by definition.

2. Let $g \colon \mathbb{R} \to \mathbb{R}$ be defined by

$$g(x) = \begin{cases} x^2 \cos \frac{1}{x}, & \text{if } x \neq 0\\ 0, & \text{if } x = 0. \end{cases}$$

Prove that g(x) is differentiable for all $x \in \mathbb{R}$ and compute g'(x). Prove that g' is not continuous at x = 0. What kind of discontinuity has g' at x = 0?

- 3. Compute the derivatives of
 - (a) $\cosh x$, $\sinh x$, and $\tanh x$,
 - (b) $\operatorname{arcosh} x$, $\operatorname{arsinh} x$, and $\operatorname{artanh} x$,
 - (c) $\arccos x$.
- 4. Compute $(x^3 e^x)^{(2003)}$.
- 5. Let $f: (a, b) \to \mathbb{R}$ be a function and $c \in (a, b)$. (a) Prove: If f is differentiable at c then

$$\lim_{h \to 0} \frac{f(c+h) - f(c-h)}{2h}$$
(1)

exists and is equal to f'(c).

(b) Suppose the limit (1) exists. Does this imply that f is differentiable at c?