
1 Introduction
We want to give a short overview on the basic concept of fixed point index theory and especi-
ally the index theory for periodic orbits. This last index was first invented by Fuller in [F67]
and then lay a long time dormant. We are not dealing with Fullers constructions here but ex-
plain two different approaches. The first chapter is only a summary of the classical analytical
approach to fixed point index theory, as can be found e.g. in [D85], where one has to note
that the degree defined there counts zeros and not fixed points. The concept nevertheless is the
same. The second chapter is a condensation of material in [CM78], as is the theorem which we
prove in chapter 3. See also the references in [CM78]. The fourth chapter deals with a topo-
logical approach to index theory. What has to be done was already evident in Fullers original
paper [F67], but the first satisying treatment from a modern point of view is, as far as we know,
[Fr90]. The last chapter gives an outlook on equivariant index theory, see [BKS06, IV03]. For
equivariant homology theories, [tD87] might be the best reference.

2 Classical Fixed Point Index
The classical idea of index theory is to assign to each continuous self map of an n-dimensional
manifold with boundary (for example an open subset of Rn with smooth boundary) a number
which should count the number of fixed points. Of course one can not assume that the assi-
gnment of the actual number of fixed points is a quantity that has nice properties to work with.
Instead, a more conceptual approach should be taken.

Firstly, we know that having only hyperbolic fixed points is a generic property of a map
f . Secondly, if f has a hyperbolic isolated fixed point, then all maps sufficiently close to f
also have a fixed point. So it is reasonable to demand of an index to be invariant under small
perturbations. In fact, we can even allow large perturbations, as long as no fixed points appear
on the boundary. This is the most important property of the index which makes it computable
for a large class of maps (granted that we have some kind of nontriviality).

Now the idea how one should count fixed points is to take the orientation behaviour into
account. We work in charts first, since the degree should be a local quantity. If f : Ω → Rn

is a smooth map and x a hyperbolic fixed point of f , then we assign an index to f by defining
it to be 1, if 1 − f preserves orientation, and −1, if 1− f reverses orientation. This property
can be expressed by the Jacobian of 1− f at x: If the sign of its determinant is positive, then
1 − f preserves orientation, if it is negative, it reverses orientation. So, to say the same thing
in other words, the index of the isolated fixed point is the number

ind(f, x) = (−1)σx ,

where σx is the number of eigenvalues of the Jacobian of f at x that lie in (1,∞).
Now it is clear that the index of f with respect to Ω should be just the sum over the indices

of its fixed points, if all of those are hyperbolic.
As we already mentioned above, smooth maps having only hyperbolic fixed points are dense

in the space of continuous maps, so it is reasonable, since the index should be invariant under
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small perturbations, to define the index for arbitrary continuous maps by an approximation
argument. Of course it is not obvious that this is well defined. But we have the following

Proposition 2.1 Let f0, f1 : Ω → Rn be two smooth maps having only hyperbolic fixed points
and no fixed points on the boundary. If H : Ω × I is a homotopy between f0 and f1 such that
no Ht has fixed points on the boundary, then the indices of f0 and f1 are equal.

In particular, if f : Ω → Rn has no fixed points on the boundary, then there is a neigh-
bourhood of f in the space of continuous functions such that no map in this neighbourhood
has fixed points on the boundary. So any two smooth maps in this neighbourhood having only
hyperbolic fixed points have the same index, since we can join them by the standard convex
homotopy. Thus, the index of f is well defined by approximating it with generic maps. Fur-
thermore it is clear that the definition extends to maps of manifolds, since all definitions are
local in nature.

We summarize the most important properties of the index.

Proposition 2.2 There is a map ind(·, Ω) : C → Z, where C ⊆ C(Ω,Rn) is the subset of maps
without fixed points on ∂Ω, with the following properties.

(i) ind is homotopy invariant under admissible homotopies, i.e.

ind(Ht, Ω) = ind(H0, Ω)

for a homotopy H : Ω× I → Rn in C and all t ∈ I.

(ii) ind is additive. If Ω1, Ω2 ⊆ Ω are open and disjoint such that f has no fixed points in
Ω\(Ω1 ∪ Ω2), then

ind(f, Ω) = ind(f
∣∣
Ω1

, Ω1) + ind(f
∣∣
Ω2

, Ω2).

(iii) ind has the solving property, i.e. if ind(f ; Ω) 6= 0, then f has a fixed point in Ω.

If Ω is understood, we sometimes write ind(f) instead of ind(f, Ω). Applications of index
theory are clear. On the one hand, one can just solve a fixed point problem f(x) = x by either
computing ind(f) directly and noticing that it is not zero, or by computing ind(g) 6= 0 for
some map where the index is easy to calculate and then showing that there is an admissible
homotopy between f and g.

But there are many more possibilities. For example, if one can join two maps by a homotopy
but the indices are not equal, then the homotopy could not have been admissible. But then,
there must have been a fixed point on the boundary of the set for some parameter value. This
is important for applications in bifurcation theory by finding nontrivial solutions, because they
lie on the boundary of, say, a ball, in an arbitrary neighbourhood of some possible bifurcation
point.
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3 The Index for Periodic Orbits
Periodic orbits of flows are closely connected to fixed points by considering a Poincaré map
of the orbit. If the orbit is isolated, then the Poincaré map has an isolated fixed point, namely
the point lying on the orbit. So a naive approach to defining an index for periodic orbits could
be to just take the fixed point index of a Poincaré map.

Unfortunately, this approach doesn’t work, because the periods of the orbit have to be taken
into account. Periodic orbits can vanish by expanding to infinity or by merging into a fixed
point. But it can also happen that the least period of the orbit goes to infinity. So instead of
working in Ω ⊆ Rn, we should add a factor R+, standing for the periods of the orbits. Let
f : Rn → Rn be smooth with flow given by ϕ(x, t) and denote with

Π(f) = {(x, t) ∈ Rn × R+ | ϕ(x, t) = x}
the set of periodic points. Then a subset Ω ⊆ Rn ×R+ is called admissible for f , if it is open,
bounded, bounded away from Rn × {0} and there are no periodic points on its boundary.

We want to define an index ind(f, Ω) that enjoys the same properties as the fixed point
index: Homotopic vector fields should have equal index, it should be additive and nontriviality
should imply existence of periodic orbits.

We take up the idea of using the Poincaré map, but a bit more subtle. As in the case of the
fixed point index we start with considering a hyperbolic periodic orbit γ with least period T >
0. Recall that a periodic orbit is called hyperbolic, if the nontrivial eigenvalues λ1, . . . , λn−1

of
Dxϕ(x, T )

have absolute value different from 1 for some x ∈ γ. In the above situation, (x, kT ) ∈ Π(f)
for all k ∈ Z. So we have to assign an index to γ, considered as an orbit with period kT . We
do this by defining

ind(f, (x, kT )) =
1

k
(−1)σ,

where σ is the number of eigenvalues λi such that λk
i ∈ (1,∞). In other words, the index is

the fixed point index of the k-th iterate of the Poincaré map, multiplied with 1
k
.

The rest of the definition is canonical: For a map with a finite number of hyperbolic periodic
orbits in Ω we define the index to be the sum over all orbit indices. Then, for an arbitrary map,
we can approximate with a map that has only hyperbolic periodic orbits by a theorem of
Kupka and Smale. Homotopy invariance can now be proven using bifurcation theory. It has
been shown that, if two hyprbolic maps are homotopic, the homotopy can be chosen that for all
parameters except for a finite number, the map Ht is hyperbolic. Furthermore, for the finitely
many exceptional parameters, the situation is easy to handle: The derivative of Htj for an
exceptional value tj at the trivial solution has either exactly two multipliers on the unit circle,
and these are of the form exp(±2πiϑ with ϑ irrational. Or it has a simple eigenvalue 1 and no
other eigenvalues on the unit circle. Or it has a simple eigenvalue−1 and no other eigenvalues
on the unit circle.

Now one only has to investigate the bifurcations that can occur here. In the first case, an
invariant torus bifurcates which contains all possible periodic solutions. But since ϑ is irratio-
nal, the periods of periodic orbits on this torus become large as we approach the bifurcation
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parameter, hence they can not be contained in Ω. So neither are orbits destroyed nor generated
inside Ω, which implies that the index remains the same.

In the second case two branches of periodic orbits emerge from tj in one or both directions,
whose minimal period approaches a common value at tj . The continuation of the eigenvalue
1 is lesser than 1 on one branch and larger than 1 on the other. Using this, one can easily
calculate the degree directly and find that it remains unchanged.

The most interesting case is the third case. The eigenvalue −1 indicates that a period doub-
ling bifurcation occurs, that is a branch of periodic orbits runs through tj and in addition, a
branch with minimal period approximately twice the minimal period of the other branch exists
on one side of tj . The multipliers of the doubled orbit are approximately the squares of the
multipliers of the single orbit. So one calculates the following indices of the orbits:

ind(γk
1 ) =





1
k
(−1)σ k odd

1
k
(−1)σ+τ+1 k even,t < tj

1
k
(−1)σ+τ k even,t > tj,

where σ is the number of multipliers of γ1 in (1,∞) corresponding to the minimal period,
whereas τ is the number of multipliers in (−∞,−1), and similarly by the arguments above,

ind(γk
2 ) =

1

k
(−1)σ+τ+1.

Since the period doubles, the orbit γk
2 branches from γ2k

1 . So for k odd, there is no contribution
of the doubled branch and we have the same index on both sides. For k even, on the left side
of tj the index is 1

k
(−1)σ+τ+1 and on the right we have to add up:

1

k
(−1)σ+τ +

2

k
(−1)σ+τ+1 =

1

k
(−1)σ+τ+1.

Hence, the index remains unchanged in all cases (modulo sign changes), proving homotopy
invariance.

We again summarize what we have achieved.

Proposition 3.1 There is a map ind(·, Ω) : C → Q, where C ⊆ C(Rn,Rn) is the subset of
vector fields without periodic orbits on ∂Ω, with the following properties.

(i) ind is homotopy invariant under admissible homotopies, i.e.

ind(Ht, Ω) = ind(H0, Ω)

for a homotopy H : Rn × I → Rn in C and all t ∈ I.

(ii) ind is additive. If Ω1, Ω2 ⊆ Ω are open and disjoint such that there are no periodic
orbits in Ω\(Ω1 ∪ Ω2), then

ind(f, Ω) = ind(f, Ω1) + ind(f, Ω2).
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(iii) ind has the solving property, i.e. if ind(f, Ω) 6= 0, then there exists a periodic orbit in
Ω.

Once one has established the existence of an index for periodic orbits, many classical theo-
rems on fixed points extend to the case of periodic orbits. Note, however, that it can be very
difficult to find appropriate sets Ω, since we must have a priori bounds for the periods of
periodic orbits in Ω.

4 A Global Bifurcation Result
As an application of the orbit index we give a version of a standard global bifurcation theorem
of Rabinowitz on the global behaviour of solution branches, but in this case of course for
branches of periodic orbits.

We consider the ODE
ẋ = f(λ, x),

where f is assumed to be C2 and λ is a real parameter in some open intervall J . Furthermore
assume f(λ, 0) = 0 for all λ. We have, by Taylors theorem,

f(λ, x) = A(λ)x + O(‖x‖2),

where A(λ) is some n × n-matrix, varying smoothly with λ. Now assume there is a discrete
subset P ⊆ J of parameter values such that A(λ) is hyperbolic, i.e. has no eigenvalues on the
imaginary axis for λ ∈ J − P and for λj ∈ P there is exactly one pair of eigenvalues ±iωj

which cross the imaginary axis with nonzero velocity. It is well known that periodic orbits
can only branch from a parameter λj ∈ P and only with period 2πk

ωj
. So the set of possible

bifurcation points is given by

B =
⋃
j

{(λj, 0,
2πk

ωj

) | k ∈ N}.

Let
Λ = {(λ, x, t) ∈ J × Rn × [0,∞) | ϕλ(x, t) = x},

the union of the set of periodic orbits (and fixed points) for all parameter values. Then the set
of nontrivial periodic orbits is just Λ− (J × {0} × R+). Thus we set

K = Λ− (
J × {0} × R+

) ∪B.

Then a bifurcating branch is contained in a connected component of K which intersects B.
Now fix a possible bifurcation parameter p = (λj, 0,

2πk
ωj

). We want to describe the connected
component K0 of K which contains p. There are the following possibilities.

(1) K0 contains a nontrivial fixed point of the flow, i.e. there is an x 6= 0, f(λ, x) = 0 and
(λ, x, t) ∈ K0 for some λ, t. That is, a branch of periodic orbits bifurcates from p and
runs into a stationary point. Then K0 is clearly unbounded since (λ, x, t) ∈ K0 for all
t ∈ R+.
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(2) Otherwise, K0 is disjoint from the set J ×Rn × {0}, i.e. it consists of proper nontrivial
periodic orbits (and possible bifurcation points). Then there are again two possibilities.

(a) K0 is unbounded in the space/period component for λ varying in a compact subset
of J .

(b) K0 is bounded in the space/period component for λ varying in any compact subset
of J . Then for any ε > 0 there is an open neighbourhood Ω of K0 in J ×Rn×R+

that is bounded for every fixed λ, whose boundary is ε-close to K0 and whose
boundary has empty intersection with K.

The main ingredient in the bifurcation theorem is the following

Proposition 4.1 Suppose in the above alternative we have (2)(b). Take two parameters λ−, λ+

such that λj is the only critical parameter between λ− and λ+ and the distance from λ− and
λ+ to the critical parameter set P is greater than ε. Let Ω = Ωε by the set provided by the
above statement for such an ε. Let Ω(λ) be the λ-fibre of Ω. Then we have

ind(f(λ+, ·), Ω(λ+)) = ind(f(λ−, ·), Ω(λ−))± 1

k
(−1)ρ,

where ρ is the number of eigenvalues of A(λj) with positive real part and the sign is + or −
according to the eigenvalues moving from left to right or from right to left over the imaginary
axis.

The idea of the proof is the following. One constructs the set Ω by standard analysis with
addition of a nontrivial theorem giving a lower bound for the periods. Approximate f by a
sequence of smooth functions which have the same derivative at x = 0, λ = λj as f , have
the same set of possible bifurcation parameters, have 0 as trivial fixed point for all λ and such
that the support of f − fn converges to {λj, 0}. For n large enough, the set Ω, constructed for
some ε > 0 and the map f , has the same properties for the map fn. Furthermore, since we
have some control over the higher order terms of fn, we can require that λj is a generic Hopf
bifurcation parameter for fn, thus there is a unique periodic solution bifurcating from λj of
standard form. To be precise, let v1, v2 be a basis for the subspace of Rn corresponding to the
pair ±iωj of eigenvalues of A(λj). Then one can write

λ = λ(δ) = λj + c · δ2 + O(δ3),

where c 6= 0 and its sign depends on the direction in which the orbit bifurcates. The periodic
orbit is then given by

xn(t, λ) = δ(cos(ωjt)v1 + sin(ωjt)v2) + O(δ2)

with least period 2π
ωj

+ O(δ).
Choose an ε > 0 as in the proposition and take the according set Ω. By the properties of the

index, ind(fλ± , Ω(λ±)) = ind(fn
λ± , Ω(λ±)) for n large enough. But since the bifurcation of fn

is generic, the index changes when crossing λj just by the orbit index of the bifurcating nontri-
vial branch. This is certainly nonzero. The concrete form is a somewhat tedious computation
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of the eigenvalues of the Poincaré map for the standard orbit above. But for our applications,
the only thing one needs to know is that the index changes when crossing λj , because this is
the ingredient to prove

Theorem 4.2 For the component K0 there holds one of the following statements.

(i) K0 contains another bifurcation point q = (λ`, 0,
2πm
ω`

) which is distinct from p.

(ii) K0 is unbounded, meaning that either the periods blow up or the orbits approach infinity
or the parameter approaches a boundary value of J ⊆ R.

PROOF. Suppose neither (1) nor (2) holds. Then, since K0 is bounded in parameter space,
there is a compact subset J1 ⊂ J such that p1(K0) ⊆ J1. Since by assumption K0 is also
bounded in period and spatial dimension, we are in case (2)(b) of the above proposition, so
for any ε > 0 we get a set Ω = Ωε. If we take ε sufficiently small, the parameters λ+, λ−
can be chosen independently of ε, so fix these parameters accordingly. Now take µ− < inf J1,
µ+ > sup J1 in J . Since K0 contains no bifurcation point different form p and certainly no
point of the form (λ, 0, t) for a non-bifurcation parameter λ, there is an ε > 0 such that the
distance of K0 and the set J × {0} × R+ is greater than ε. But since K ∩ ∂Ω = ∅, we have
∂Ω ∩ Λ ⊆ J × {0} × R+, so, since Ω is an ε neighbourhood of K0, there are no points in
∂Ω ∩ Λ with parameter in [µ−, λ−] ∪ [λ+, µ+], i.e. the set Ω(λ) is admissible for fλ. So by
homotopy invariance,

ind(fµ± , Ω(µ±)) = ind(fλ± , Ω(λ±)),

and by the formula for the index change when crossing λj ,

ind(fλ− , Ω(λ−)) = ind(fλ+ , Ω(λ+)) + c

for some c ∈ Q − {0}. The formula states that c = ± 1
k
, but since we didn’t go into the

calculation, it is enough to know c 6= 0. Because now we have

ind(fµ− , Ω(µ−)) = ind(fµ+ , Ω(µ+)) + c,

but Ω(µ±) = ∅ for ε sufficiently small, so both indices are zero, giving the intended contra-
diction. 2

5 The Topological Approach
So far we defined the index analytically, counting signs of Jacobians and approximating in
the non-generic case. There is also a topological approach which is conceptually much ea-
sier, but maybe a bit less accessible for intuition. We assume that M is an orientable, n-
dimensional compact manifold. The orientability assumption can be dropped when conside-
ring Z2-orientability, but we will not do so. The idea how to count fixed points is now the
following. Let f : M → M and let U ⊆ M be some open set such that there are no fixed
points of f on the boundary. Then f induces a map of pairs

(1, f) : (U, ∂U) → (M ×M, M ×M\∆) , x 7→ (x, f(x))
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where ∆ denotes the diagonal. Since M is compact, there is a small neighbourhood V ⊆
M ×M of the diagonal such that ∆ is a deformation retract of V and where V is disjoint from
the image of ∂U under f . We have canonical isomorphisms in homology

Hn(V ) ∼= Hn(∆), Hn(M ×M,M ×M − V ) ∼= Hn(M ×M,M ×M − V ).

Thus, we can take the orientation class OM ∈ Hn(M) and send it through the following
sequence of maps

Hn(M)
i∗
∼=

//

$$IIIIIIIII
Hn(∆)

i∗∼=
²²

// Hn(M ×M,M ×M −∆)
(1,f)∗ //

j∗∼=
²²

Hn(U, ∂U)
PD
∼=

// H0(U)
i∗ // H0(M)

Hn(V )
PD
∼=

// Hn(M ×M,M ×M − V )

.

We end up in H0(M), which, if M is connected, is naturally isomorphic to Z, i.e. we get
an integer. Now, if U is contained in a coordinate chart and if f is fixed point free, then
the map (1, f) can be deformed into a constant map by a homotopy without fixed points
on the boundary of U . But then, we will end up with 0 ∈ H0(M). So, our element in fact
has the property that nontriviality implies existence of fixed points. Homotopy invariance and
additivity follows immediately from the properties of homology. Hence it is justified to call the
image of OM under this sequence the index of f . In fact, this number is called the Lefschetz
number of f and it equals the fixed point index defined analytically.

To generalize this definition to the periodic orbit setting, we again take a factor R+ for the
periods. Then let U ⊆ M × R+ be an open subset such that there are no periodic orbits on its
boundary. We get the map

(p1, ϕ) : (U, ∂U) → (M ×M, M ×M −∆), (x, t) 7→ (x, ϕ(x, t)).

As above we find a neighbourhood V of ∆ and so we can imitate the construction above:

Hn(M)
i∗
∼=

//

$$IIIIIIIII
Hn(∆)

i∗∼=
²²

// Hn(M ×M,M ×M −∆)
(p1,ϕ)∗//

j∗∼=
²²

Hn(U, ∂U)
PD
∼=

// H1(U)
i∗ // H1(M)

Hn(V )
PD
∼=

// Hn(M ×M,M ×M − V )

.

There is one significant difference: We end up in H1(M), so we do not get (in general) an
integer but a 1-homology class as index. This can be interpreted as follows. If γk is an isolated
periodic orbit, considered with period kT , then the homology class of γ, considered with its
least period T , is a generator of H1(U) for a tubular neighbourhood of γ. Thus, the index is of
the form c · k · [γ], where c is some integer and [γ] the generator. It is not difficult to show that
c = ind(P )

k
, where ind(P ) is the classical fixed point index of a Poincaré map for the orbit, so

this agrees with the analytical definition. The problem that the first homology may vanish can
also be solved to give the analytical index as a rational number, but we will not go into detail
here. It is also worth noting that the homological index is a finer invariant (after solving the
triviality problem), than the analytical one.
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6 Equivariant Indices
When considering equivariant problems, the indices constructed above are not the appropriate
tools in some sense. We state some of the defects that might occur.

• It may well happen that two G-maps are homotopic, so would give the same index,
but are not G-homotopic. So a degree that would respect only G-homotopies might
give different degrees of those maps, which would provide finer results than the non-
equivariant method.

• The index counts the number of periodic orbits, or fixed points. So for a G-map, a
nontrivial index implies existence of periodic orbits or fixed points in the ordinary sense.
But we know nothing about the symmetry properties. It is desirable to conclude from
looking at the index, that a solution which at least a given symmetry occurs.

• Assume we have a Z2-action on some euclidean space and an equivariant map which
has only two fixed points, which are assumed to be hyperbolic, so they are necessarily
connected by symmetry. Assume further more that the action of Z2 reverses orientation.
Then by definition, one of these fixed points is calculated as 1 and the other as −1, so
the index of our map is zero. But of course, from an equivariant viewpoint, the index of
an isolated group orbit of hyperbolic fixed points should be non-zero.

So for the study of equivariant systems, there should be a modified index which should have
properties derived from the properties in the non-equivariant case adjusted to the G-action.

For fixed points, there have been several approaches in constructing a suitable degree. All
constructions known to me use equivariant extensions of G-maps to some representation sphe-
re and then assign an element of some G-homotopy group as index. There are some unsatisfac-
tory points to this definition. Though homotopy groups serve some geometric intuition, they
are hard to understand topologically. Furthermore, the geometric intuition also vanishes when
one stabilizes, which is usually done and necessary for sufficient nontriviality of the index.
Also, the problems become even greater when dealing with compact Lie groups instead of
finite groups.

My work (to be done) focuses on three aspects. I want to define an equivariant periodic
orbit index which has all the desired properties. This might be done in a similar way the
orbit index is constructed from the fixed point index, but maybe one needs a conceptually
different approach. This leads to the second aspect. I try to find a more topological viewpoint
on equivariant index theory, namely the use of equivariant homology theories might be a very
fruitful attempt. It generalizes the concepts developed so far, it inserts more geometric objects,
such as G-vector bundles, in the area of interest and it is easier to deal with in a topological
sense, so there might be theoretical results obtainable in general from a homological approach
which are very hard to see in homotopy theory. The last aspect is of course the application of
the equivariant orbit index to prove equivariant bifurcation results and to investigate related
topics. Especially the case of an action of compact Lie groups of dimension greater than zero
is poorly understood from an index theoretic viewpoint.
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