Übungen zur Vorlesung

Einführung in Dynamische Systeme

Aufgabenblatt 9

Aufgabe 1:

Eine **Isometrie** eines metrischen Raums X ist eine Abbildung $f: X \to X$, so dass für alle $x, y \in X$ gilt

$$d(f(x), f(y)) = d(x, y).$$

Sei $f: \mathbb{T}^k \to \mathbb{T}^k$ eine Isometrie des k-Torus. Zeigen Sie: Es existiert $\delta > 0$, so dass für alle $\varepsilon > 0$ ein ε -Pseudo-Orbit $(x_i)_{i \in \mathbb{N}}$ existiert, welches nicht von einem echten Orbit δ -beschattet wird. D.h. für jeden Punkt $y \in \mathbb{T}^k$ gibt es $i \in \mathbb{N}$ mit $d(f^i(y), x_i) > \delta$.

Aufgabe 2:

a) Zeigen Sie, dass für eine Funktion $H \in C^2(\mathbb{R}^{2n}, \mathbb{R})$ der Fluss des hamiltonschen Systems

$$\dot{u} = \begin{pmatrix} 0 & \mathrm{id} \\ -\mathrm{id} & 0 \end{pmatrix} \operatorname{grad} H(u), \quad u \in \mathbb{R}^{2n}, \quad \text{d.h.}$$

$$\frac{d}{dt}(u_1, \dots, u_{2n})^T = \left(\frac{dH}{du_{n+1}}, \dots, \frac{dH}{du_{2n}}, -\frac{dH}{du_1}, \dots, -\frac{dH}{du_n}\right)^T,$$

volumenerhaltend ist.

- b) Zeigen Sie, dass für dieses hamiltonsche System die Funktion H (genannt **Hamilton-Funktion**) selbst invariant ist.
- c) Zeigen Sie: Für eine Hamilton-Funktion $H \in C^2(\mathbb{R}^2, \mathbb{R})$ ist jede Niveaumenge von H, die eine geschlossene Kurve ist und keine kritischen Punkte von H enthält, ein periodisches Orbit des hamiltonschen Systems

$$\frac{d}{dt}(u_1, u_2)^T = \left(\frac{dH}{du_2}, -\frac{dH}{du_1}\right)^T, \quad u \in \mathbb{R}^2.$$

Aufgabe 3:

Sei $f: M \to M$ ein Diffeomorphismus einer Mannigfaltigkeit M. Auf $M \times [0,1]$ ist die Äquivalenzrelation \sim so definiert, dass sie genau die folgenden Äquivalenzen enthält: Jeder Punkt in $M \times [0,1]$ ist zu sich selbst äquivalent, und außerdem gilt

$$\forall x \in M: (x,1) \sim (f(x),0).$$

a) Zeigen Sie: Die Formel

$$\psi_t([(x,\theta)]) := \left[\left(f^{\lfloor t+\theta \rfloor}(x), t+\theta - \lfloor t+\theta \rfloor \right) \right]$$

mit

$$\lfloor a \rfloor := \max\{k \in \mathbb{Z} : k \le a\}$$

$$S := (M \times [0,1]) / \sim$$
.

b) Zeigen Sie: Das diesen Fluss erzeugende Vektorfeld $V:S\to TS=TM\times\mathbb{R}$ hat die Form

$$V \equiv (0,1).$$

Bemerkung: Dieser Fluss heißt die **Suspension** bzw. der **Suspensionsfluss** von f.

Aufgabe 4:

Sei $a_n :=$ die letzte Ziffer von 2^n in Dezimaldarstellung, $b_{n,k} :=$ die letzten k Ziffern ($k \in \mathbb{N}$) von 2^n und $c_n :=$ die erste Ziffer von 2^n . Sei $d_{n,\alpha} := \alpha \cdot 2^n \pmod{1}$ (mit $\alpha \in \mathbb{R}$).

Beweisen oder widerlegen Sie:

- a) a_n ist periodisch mit Periode 4 und durchläuft die Folge 2,4,8,6.
- b) $b_{n,k}$ ist periodisch für jedes k.
- c) c_n ist periodisch mit Periode 10 und durchläuft die Folge 2,4,8,1,3,6,1,2,5,1.
- d) Wenn α rational ist, dann ist die Folge $d_{n,\alpha}$ prä-periodisch.