Übungen zur Vorlesung

Einführung in Dynamische Systeme

Aufgabenblatt 7

Aufgabe 1:

a) Zeigen Sie:

$$d_{\lambda,N}(\alpha,\omega) := \sum_{i\in\mathbb{Z}} \lambda^{-|i|} |\alpha_i - \omega_i|$$

ist für jedes $\lambda > 1$ eine Metrik auf der Menge Ω_N aller **zweiseitigen Symbolsequenzen** über dem Alphabet $\{0, 1, ..., N-1\}$.

b) Zeigen Sie: Für alle $\lambda>2N-1$ ist f''ur jede Wahl von $\alpha_{-n},\ldots,\alpha_n\in\{0,1,\ldots,N-1\}$ der **Zylinder**

$$Z_{\alpha_{-n},\ldots,\alpha_n} = \{\omega \in \Omega_N : \omega_{-n} = \alpha_{-n},\ldots,\omega_n = \alpha_n\} \subset \Omega_N$$

ein offener Ball mit Radius λ^{-n} in Ω_N bezüglich der Metrik $d_{\lambda,N}$.

c) Zeigen Sie: Für $\lambda > N$ ist der Zylinder $Z_{\alpha_0,...,\alpha_n} \subset \Omega_N^R$ ein offener Ball mit Radius λ^{-n} bezüglich der Metrik

$$d_{\lambda,N}(\alpha,\omega) := \sum_{i \in \mathbb{N}_0} \lambda^{-i} |\alpha_i - \omega_i|$$

auf der Menge Ω_N^R aller **einseitigen Symbolsequenzen** über dem Alphabet $\{0,1,\ldots,N-1\}$.

Aufgabe 2:

- a) Zeigen Sie: Wenn $(U_i)_{i\in\mathbb{N}}$ eine Basis der Topologie auf X ist, d.h. jede offene Menge U in X kann geschrieben werden als $U=\bigcup_{k\in A}U_{i_k}$ mit $A\subset\mathbb{N}$, dann genügt es, die Bedingung für topologische Transitivität für die Mengen U_i,U_j nachzuweisen.
- b) Dasselbe für topologisches Mischen.

Aufgabe 3:

Finden Sie für jedes $n \in \mathbb{N}$ die Zahl der periodischen Punkte $\omega \in \Omega_N$ des Shift-Operators auf Ω_N , die Periode n haben und für die gilt, dass $\omega_i = 0$ für alle geraden Zahlen i.

Aufgabe 4:

a) Sei G die **G-förmige Hufeisen-Büroklammer**

$$G: \Lambda \to \Lambda, \quad G(x,y) := \begin{cases} \left(3x, \frac{y}{3}\right) & \text{f''ur } x \le 1/3 \\ \left(3x - 2, \frac{y + 2}{3}\right) & \text{f''ur } x \ge 2/3 \end{cases}$$

auf dem G-invarianten Cantor-Staub

$$\Lambda = C \times C = \bigcap_{i \in \mathbb{Z}} G^i([0,1]^2).$$

Sei $h:\Omega\to\Lambda$ die Konjugation zwischen G und dem Shift auf Ω , definiert durch

$$\omega \mapsto h(\omega) := \bigcap_{n \in \mathbb{Z}} G^{-n}(R_{\omega_n}),$$

wobei $R_0 = \left[0, \frac{1}{3}\right] \times [0, 1]$ und $R_1 = \left[\frac{2}{3}, 1\right] \times [0, 1]$.

Finden Sie $n \in \mathbb{N}_0$ und einen Zylinder $Z_{\alpha_{-n},\dots,\alpha_n} \subset \Omega$ mit $h(Z_{\alpha_{-n},\dots,\alpha_n}) = \Lambda \cap R$ für das Rechteck $R = \left[\frac{6}{9}, \frac{7}{9}\right] \times \left[0, \frac{1}{3}\right]$.

Tipp: Wenn $x \in \left[\frac{6}{9}, \frac{7}{9}\right]$ und $y \in \left[0, \frac{1}{3}\right]$, welche Ziffern von x, y sind dann in der triadischen Darstellung festgelegt?