Übungen zur Vorlesung Einführung in dynamische Systeme

Blatt 8

Aufgabe 1:

Sei X ein beliebiger endlicher Raum, bestehend aus N Punkten, versehen mit der Topologie, in der alle Teilmengen von X offen sind (die "feinste Topologie"; sie wird erzeugt durch die diskrete Metrik d(x,y)=1 für alle $x\neq y$).

- a) Geben Sie ein Beispiel einer topologisch transitiven Abbildung $f: X \to X$ an.
- b) Bestimmen Sie die Zahl T(N) aller topologisch transitiven Abbildungen $f: X \to X$.
- c) Gibt es eine topologisch mischende Abbildung auf *X*? (Beispiel oder Gegenbeweis)

Aufgabe 2:

Sei $k \in \mathbb{N}$ und $B_k := \{\omega \in \Omega = \Omega_2 | \forall m, n \in \mathbb{N} : |\sum_{i=n}^m (-1)^{\omega_i}| \leq k\}$ die Menge aller $\omega \in \Omega$, für die gilt, dass für jeden endlichen Block von Ziffern von ω , egal wie lang, sich die Zahl der 0-en von der Zahl der 1-en höchstens um k unterscheidet.

- a) Zeigen Sie: B_k ist eine Shift-invariante und abgeschlossene Teilmenge von Ω .
- b) Ist $\sigma: B_k \to B_k$ ist topologisch transitiv? (Beweis oder Widerlegung)
- c) Zeigen Sie: $\sigma: B_k \to B_k$ ist nicht topologisch mischend.

Aufgabe 3:

Sei A eine 2×2 -Matrix mit ganzzahligen Einträgen.

- a) Zeigen Sie: Für $|\det(A)| = 1$ ist die Abbildung $L_A : \mathbb{T}^2 \to \mathbb{T}^2$, $\left[\binom{x}{y}\right] \mapsto \left[A \cdot \binom{x}{y}\right]$ ein Diffeormorphismus auf dem 2-Torus.
- b) Zeigen Sie: Die Abbildung $L_A: \mathbb{T}^2 \to \mathbb{T}^2$ hat für jedes $n \in \mathbb{N}$ endlich viele periodische Punkte der Periode n genau dann, wenn A keine Eigenwerte λ mit $|\lambda| = 1$ hat.

Aufgabe 4:

Sei $A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$, L_A die arnoldsche Katzenabbildung. $G_q := \left\{ \begin{bmatrix} a/q \\ b/q \end{bmatrix} \mid a, b \in \mathbb{N} \right\}$ das $q \times q$ -Gitter auf dem 2-Torus $(q \in \mathbb{N})$. Zeigen Sie:

- a) Es gibt kein $n \in \mathbb{Z}$, so dass $L_A^n = id$.
- b) Für jedes $q \in \mathbb{N}$ gibt es ein n = n(q), so dass $(L_A|_{G_q})^n = \mathrm{id}$.
- c) Finden Sie eine obere Schranke für n(100).

Abgabe: Montag, 13.6.2005 in der Vorlesung