Analysis of High-Dimensional Signal Data by Manifold Learning and Convolution Transforms

Mijail Guillemard and Armin Iske
Department of Mathematics, University of Hamburg, Germany.
guillemard@math.uni-hamburg.de, iske@math.uni-hamburg.de

Abstract

Recent advances in nonlinear dimensionality reduction and manifold learning have provided novel methods in the analysis of high-dimensional signals. In this problem, a very large data set $U \subset \mathbb{R}^n$ of scattered points is given, where the data points are assumed to lie on a compact submanifold \mathcal{M} of \mathbb{R}^n, i.e. $U \subset \mathcal{M} \subset \mathbb{R}^n$. Moreover, the dimension of \mathcal{M} is assumed to be much smaller than the dimension of the ambient space \mathbb{R}^n, i.e. $\dim(\mathcal{M}) \ll n$. Now, the primary goal in the data analysis through dimensionality reduction is to construct a low-dimensional representation of U. The dimensional reduction map is required to preserve intrinsic geometrical and topological properties of the manifold \mathcal{M} in order to obtain a sufficiently accurate (low-dimensional) approximation of U. In this project, we analyze the effects of combining convolutions filters (using in particular suitable wavelet transformations) with dimensionality reduction maps in order to improve the construction of low-dimensional representations. This task involves the understanding of the geometrical distortion caused by the convolution transform in the manifold \mathcal{M}. The properties of the resulting nonlinear dimensionality reduction method are illustrated by numerical examples concerning low-dimensional parametrization of scale modulated signals and solutions to the wave equation at varying initial conditions.

References

