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Abstract. Consider a log Calabi-Yau pair (X,D) consisting of a smooth
del Pezzo surface X of degree ≥ 3 and a smooth anticanonical divisor D.
We prove a correspondence between genus zero logarithmic Gromov-Witten
invariants of X intersecting D in a single point with maximal tangency and the
consistent wall structure appearing in the dual intersection complex of (X,D)
from the Gross-Siebert reconstruction algorithm. More precisely, the logarithm
of the product of functions attached to unbounded walls in the consistent wall
structure gives a generating function for these invariants.
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Introduction

A smooth projective surface X over the complex numbers C together with
a reduced effective anticanonical divisor D forms a log Calabi-Yau pair (X,D),
meaning that KX +D is numerically trivial. The case where D = D1 + . . .+Dm

is a cycle of smooth rational curves (maximal boundary) has been studied in
[GHK1]. In [GPS] it was shown that generating functions of logarithmic Gromov-
Witten invariants of X with maximal tangency at a single point on D in this case
can be read off from a certain scattering diagram. The statement of [GPS] was
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generalized in [Bou2] to q-refined scattering diagrams and generating functions
of higher genus Gromov-Witten invariants.

In this work we consider the somewhat complementary case with D a smooth
irreducible divisor. We restrict to the case where X has very ample anticanonical
bundle −KX , i.e., is a smooth del Pezzo surface of degree ≥ 3. Let Q ⊂ R2 be a
Fano polytope, that is, a convex lattice polytope containing the origin and with
all vertices being primitive integral vectors. From this one can construct (see §1)
a family (XQ → A2,DQ) such that fixing one parameter s 6= 0 one obtains a toric
degeneration of (X,D) and fixing s = 0 gives a toric degeneration of (X0, D0),
where X0 is a smooth nef toric surface admitting a Q-Gorenstein smoothing to
X and D0 = ∂X0 is the toric boundary.

Let (B,P, ϕ) be the dual intersection complex of the toric degeneration of
(X,D). The affine manifold with singularities B is non-compact without bound-
ary. In [CPS] it is described how to construct a tropical superpotential from such
a triple (B,P, ϕ), leading to a Landau-Ginzburg model1. This perfectly fits into
the picture, since the idea of the Gross-Siebert program is that toric degenera-
tions constructed from Legendre dual polarized polyhedral affine manifolds are
mirror to each other, and in fact the mirror of a Fano variety together with a
choice of anticanonical divisor is believed to be a Landau-Ginzburg model. The
construction involves the scattering calculations described in [GS3], leading to a
consistent wall structure S∞ on (B,P, ϕ). This is a collection of codimension
1 polyhedral subsets of B (slabs and walls) with attached functions describing
the gluing of canonical thickenings of affine pieces necessary to obtain a toric
degeneration with intersection complex (B,P, ϕ). See [GS4] for an overview of
this construction.

The statement.

Definition. For an effective curve class β ∈ H+
2 (X,Z) let β be the class of 1-

marked stable log maps to X of genus 0, class β and maximal tangency with
D at a single unspecified point. Let M (X, β) be the moduli space of basic
stable log maps of class β (see [GS5]). By the results of [GS5] this is a proper
Deligne-Mumford stack and admits a virtual fundamental class JM (X, β)K. It has
virtual dimension zero. The corresponding logarithmic Gromov-Witten invariant
is defined by integration, i.e., proper pushforward to a point:

Nβ =
∫
JM (X,β)K

1.

1In fact, there is additional information captured in so called gluing data ([GS1], Definition 2.25).
In this paper we always make the trivial choice, setting se = 1 for any inclusion e : ω → τ of
cells ω, τ ∈P, and will not mention gluing data.
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Let S∞ be the consistent wall structure defined by the dual intersection com-
plex (B,P, ϕ) of (X,D) via the Gross-Siebert algorithm [GS3]. Figure 1 shows
S∞ for (P2, E) up to order 6.

Figure 1. The wall structure of (P2, E) consistent to order 6. For
the functions attached to unbounded walls see §7.1.

The unbounded walls in S∞ are all parallel in direction mout ∈ ΛB. Here ΛB

is the sheaf of integral tangent vectors on B and mout is the primitive vector in
the unique unbounded direction of B (the upward direction in Figure 1). Let
fout be the product of all functions attached to unbounded walls in S∞, regarded
as elements of CJxK for x := z(−mout,0) ∈ C[ΛB ⊕ Z]. Then the main theorem
is the following. It can be interpreted as a tropical correspondence theorem,
since the wall structure S∞ is combinatorial in nature and supported on the dual
intersection complex (B,P, ϕ) of (X,D).

Theorem 1.
log fout =

∑
β∈H+

2 (X,Z)

(D · β) ·Nβ · xD·β.
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For (P2, E), this correspondence respects the torsion points on E: Consider
the group law on E with identity a flex point of E. The 3d-torsion points form a
subgroup Td of S1×S1 isomorphic to Z3d×Z3d. The stable log maps contributing
to Nd meet E in such a 3d-torsion point (Lemma 6.1). For P ∈ ∪d≥1Td, let k(P )
be the smallest integer such that P ∈ Tk(P ). Let Nd,k be the logarithmic Gromov-
Witten invariant of stable log maps contributing to Nd and intersecting E in a
point P with k(P ) = k. In §6 we will show that this is well-defined.

Let sk,l be the number of points in Td ' Z3d × Z3d with k(P ) = k that are
fixed by Ml = ( 1 3l

0 1 ), but not fixed by Ml′ for any l′ < l. Let rl be the number
of points on S1 of order 3l, defined recursively in Lemma 6.7. For an unbounded
wall p ∈ S∞ let l(p) be the smallest integer such that log fp has non-trivial
x3l(p)-coefficient. The number of walls in S∞ with l(p) = l is rl.

Theorem 2. Let p be an unbounded wall in S∞ with l(p) = l. Then

log fp =
∞∑
d=1

3d
 ∑
k:l|k|d

sk,l
rl
Nd,k

x3d.

Subtracting multiple cover contributions of curves of smaller degree, one ob-
tains log BPS numbers nd and nd,k (see §2.4). Some of the nd,k have been calcu-
lated in [Tak1]. The nd can be calculated from local BPS numbers (see §7) which
in turn can be calculated using local mirror symmetry (see [CKYZ]).

The logarithmic Gromov-Witten invariants Nd and Nd,k and the log BPS num-
bers nd and nd,k are calculated, for d ≤ 6, in §7.1.

Remark. In [Bou3] Pierrick Bousseau proves an equality of the consistent wall
structure S∞ for P2 and a wall structure Sstab describing the wall crossing be-
havior of stability conditions on DbCoh(P2), the bounded derived of coherent
sheaves on P2. Sstab can be interpreted as describing wall crossing of counts of
coherent sheaves (generalized Donaldson-Thomas invariants) on P2. In [Bou4],
building on [Bou3] and Theorem 2 above, he proves a conjecture of Takahashi
([Tak2], Conjecture 1.6.) relating the Nd,k with primitive invariants Nd′,d′ in the
local setting.

There is a generalization of Theorem 1 to q-refined wall structures and higher
genus logarithmic Gromov-Witten invariants, similar to the maximally degener-
ated case [Bou2], since the main argument to obtain higher genus statements in
[Bou1] and [Bou2], the gluing and vanishing properties of λ-classes, are purely
local. Such a generalization is proved in [Bou4], Theorem 5.2.1.

Very recently, Yu-Shen Lin [Lin] worked out a symplectic analogue of the cor-
respondence described in this paper.
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Motivation. The reason for an enumerative meaning of wall structures is the
following. By the Strominger-Yau-Zaslow conjecture [SYZ], mirror dual Calabi-
Yau varieties admit mirror dual Lagrangian torus fibrations. To construct the
mirror to a given Calabi-Yau, one first constructs the semi-flat mirror by dualizing
the non-singular torus fibers. Then one corrects the complex structure of the
semi-flat mirror such that it extends across the locus of singular fibers. It is
expected that these corrections are determined by counts of holomorphic discs in
the original variety with boundary on torus fibers [SYZ][Fuk].

Kontsevich and Soibelman [KS] showed that in dimension two and with at most
nodal singular fibers in the torus fibration, corrections of the complex structure
are determined by algebraic self-consistency constraints which can be encoded
by trees of gradient flow lines in the fan picture (dual intersection complex) of
the degeneration, with certain automorphisms attached to the edges of the trees.
From this they constructed a rigid analytic space from B, in dimension two.

Under the discrete Legendre transform ([GS1], §1.4) the gradient flow lines in
the fan picture become straight lines in the cone picture (intersection complex).
This was used by Gross and Siebert to construct a toric degeneration from the
cone picture in any dimension. In the cone picture the self-consistency calcu-
lations are described by scattering diagrams (locally) and wall structures (glob-
ally). The fact that wall structures are used to construct a complex manifold in
the cone picture and at the same time give generating functions for holomorphic
curve counts of the fan picture can be seen as an explicit explanation for the
connection between deformations and holomorphic curves in mirror symmetry.

In [GHK1] Gross, Hacking and Keel construct the mirror to a log Calabi-Yau
surface (X,D) with maximal boundary. They use the above correspondence to
define a canonical consistent scattering diagram from the enumerative geometry
of (X,D). There is an affine singularity at the vertex of this scattering diagram.
Hence, the scattering diagram only gives an open subscheme of the mirror. To
obtain the whole mirror they use broken lines to construct theta functions – cer-
tain canonical global sections of line bundles on X̌◦. This gives enough functions
to define an embedding of X̌◦ into an affine space. Taking the closure gives the
mirror to (X,D) as a partial compactification of X̌◦. It can be defined explicitly
as the spectrum of an explicit algebra generated by theta functions, and with
multiplication rule defined by the enumerative geometry of (X,D). This has led
to the modern viewpoint of intrinsic mirror symmetry [GS6][GS7]. It circumvents
the constructions of scattering diagrams and broken lines and directly defines the
mirror to (X,D) as the spectrum of an algebra with multiplication rule defined
by certain punctured Gromov-Witten invariants of (X,D) [GS6][ACGS2].
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Plan of the paper. In §1 we describe how smoothing the boundary of a Fano
polytope leads to a family (XQ → A2,DQ) as above. Fixing one parameter s 6= 0
gives a toric degeneration (X→ A1,D) of (X,D). It contains logarithmic singu-
larities lying on the central fiber, corresponding to affine singularities in the dual
intersection complex (B,P, ϕ). In §2 we describe a small log resolution of these
singularities, leading to a log smooth degeneration (X̃→ A1, D̃) of (X,D). In §3
we describe tropicalizations of stable log maps to the central fiber of (X̃→ A1, D̃)
and show that there is a finite number of them. The tropicalizations induce a
refinement of P and hence a logarithmic modification. This is a degeneration
(X̃d → A1, D̃d) of (X,D) such that stable log maps to the central fiber are tori-
cally transverse. This enables us to use the degeneration formula of logarithmic
Gromov-Witten theory in §4. It gives a description of Nβ in terms of invariants
NV labeled by vertices of the tropical curves found in §3. In §5 we show that
the scattering calculations of [GS3] give a similar formula for the logarithm of
functions attached to unbounded walls in the consistent wall structure S∞. This
ultimately leads to a proof of Theorem 1. In §6 we explain that this correspon-
dence respects the torsion points on E, leading to Theorem 2. In §7 we explicitly
calculate some invariants for P2, P1 × P1 and the cubic surface. In Appendix A
we give the background to understand the logarithmic modification in §3.5.
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1. Deforming toric degenerations

Definition 1.1. A smooth very ample log Calabi-Yau pair is a log Calabi-Yau
pair (X,D) consisting of a smooth del Pezzo surface X of degree d ≥ 3 and a
smooth very ample anticanonical divisor D.

1.1. The cone picture.

Construction 1.2. Let M ' Z2 be a lattice and let MR = M ⊗Z R be the
corresponding vector space. Let Q ⊂ MR be a Fano polytope, i.e., a convex
lattice polytope containing the origin and with all vertices being primitive integral
vectors. Q can be seen as an affine manifold via its embedding into MR ' R2.
Let P̌ be the polyhedral decomposition of Q by inserting edges connecting the
vertices of Q to the origin. Let ϕ̌ : Q→ R be the strictly convex piecewise affine
function on (Q, P̌) defined by ϕ̌(0) = 0 and ϕ̌(v) = 1 for all vertices v of Q.
This means ϕ̌ is affine on the maximal cells of P̌ and locally at each vertex v
of P̌ gives a strictly convex piecewise affine function on the fan Σv describing
P̌ locally. The triple (Q, P̌, ϕ̌) is a polarized polyhedral affine manifold ([GHS],
Construction 1.1). From this one obtains a toric degeneration of a toric del Pezzo
surface with cyclic quotient singularities via the construction of Mumford [Mum]
(see also [GS4], §1) as follows. Let

Qϕ̌ = {(m,h) ∈MR × R | h ≥ ϕ(m),m ∈ Q}

be the convex upper hull of ϕ̌ and let

C(Qϕ̌) = cl (R≥0 · (Qϕ̌ × {1})) ⊂MR × R× R

be the cone over Qϕ̌. The ring C[C(Qϕ̌) ∩ (M × Z × Z)] is graded by the last
component and we can define

X0 := Proj (C[C(Qϕ̌) ∩ (M × Z× Z)]) .

By construction X0 comes with an embedding into PN−1 × Spec C[t], where N
is the number of lattice points of Q and t = z(0,1,0). Projection to the last
coordinate gives a toric degeneration X0 → A1 of a toric del Pezzo surface with
quotient singularities. The divisor

D0 = {z(0,0,0,1) = 0} ⊂ X0

defined by setting the coordinate corresponding to the origin in Q to zero is
a very ample anticanonical divisor, since it corresponds to the pullback of the
line bundle OPN−1(1), which is the anticanonical bundle on the general fiber of
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X0. By construction, the polarized polyhedral affine manifold (Q, P̌, ϕ̌) is the
intersection complex ([GS1], §4.2) of the toric degeneration X0.

Remark 1.3. Let M ′ ⊂ M be the sublattice generated by the vertices of P̌.
We naturally have an embedding X0 ⊂ PB̌,P̌ × A1, where PB̌,P̌ is the weighted
projective space of dimension |Q∩M ′−1| and weights (1, . . . , 1, d) for d the index
of M ′ in M .

One can deform X0 by perturbing its defining equations. This means we add
a term tlsf to each equation, where l is the lowest non-trivial t-order in the
defining equations of X0, s ∈ A1 is the deformation parameter and f is a general
polynomial defining a section of the anticanonical bundle of the general fiber of
X0. We give some examples below. By [Pri1], Theorem 1.1, this leads to a flat
2-parameter family

(XQ → A2,DQ)

such that
(1) for s = 0 we have a toric degeneration (X0 → A1,D0) of a log Calabi-Yau pair

(X0, D0) consisting of a toric del Pezzo surface with quotient singularities X0

and its toric boundary D0 = ∂X0;
(2) for s 6= 0 we have a toric degeneration (X→ A1,D) of a smooth log Calabi-

Yau pair (X,D) consisting of a Q-Gorenstein smoothing X of X0, i.e., a
smooth del Pezzo surface of the same degree, and a smooth anticanonical
divisor D.

Notation 1.4. We write the fibers of (XQ → A2,DQ) as (Xs
t , D

s
t ), where s is

the deformation parameter and t is the parameter for the toric degeneration. We
denote the 1-parameter families defined by fixing one parameter by (Xt → A1,Dt)
and (Xs → A1,Ds), respectively. When we fix a parameter different from zero, we
sometimes omit the index, e.g. X = Xs

t for s, t 6= 0. When writing (X→ A1,D)
we will always mean the toric degeneration (Xs → A1,Ds) for s 6= 0. Moreover,
we often supress the divisor in the notation.

Proposition 1.5. Let B̌ be the affine manifold with singularities obtained from
Q by introducing affine singularities on the interior edges of P̌ such that the
boundary of B̌ is a straight line, and let (B̌, P̌, ϕ̌) be the corresponding polarized
polyhedral affine manifold. Then the intersection complex of X→ A1 is (B̌, P̌, ϕ̌),
while the intersection complex of X0 → A1 is (B̌, P̌, ϕ̌).

Proof. First note that B̌ as above exists, since by reflexivity for any vertex v the
integral tangent vectors of any adjacent vertex together with v− v0 generate the
full lattice (see [CPS], Construction 6.2). Here v0 is the unique interior vertex.
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The t-constant term in the defining equation for X0 is independent of the
variable z(0,0,0,1), since (0, 0, 0, 1) is the only lattice point at which ϕ = 0. So the
central fiber of Xs → A1 is independent of s. As a consequence, the maximal cells
of the intersection complex of Xs → A1 are the same for each s. So the parameter
s only changes the affine structure, given by the fan structures at vertices of the
intersection complex. These fan structures are defined by local models for the
family at zero-dimensional toric strata of the central fiber.

For s 6= 0, locally at the zero-dimensional toric stratum of Xs
0 corresponding

to a vertex v on the boundary of B, the family Xs is given by {xy = tl} ⊂ A4 for
some l > 0. So the fan structure at v is given by the fan of P1 × A1. This shows
that the boundary is a straight line.

Note that for s = 0 locally at a 0-dimensional stratum corresponding to v ∈ ∂B
the family X0 is given by {xy = tlw} ⊂ A4 for some l > 0. The fan structure
at v is given by the fan with ray generators (1, 0), (0, 1) and (1, 1). So the affine
charts are compatible and there are no affine singularities. �

Example 1.6. Figure 1.1 shows the intersection complex (B̌, P̌, ϕ̌) of a toric
degeneration of the log Calabi-Yau pair (P2, E), where E ⊂ P2 is a smooth
anticanonical divisor, i.e., an elliptic curve. This is obtained by smoothing a toric
degeneration of (P2, ∂P2), where ∂P2 is the toric boundary of P2. One can write
down such a smoothing explicitly as follows.

XQ = V
(
XY Z − t3(W + sf3)

)
⊂ P(1, 1, 1, 3)× A2

DQ = V (W ) ⊂ XQ

Here X, Y, Z,W are the coordinates of P(1, 1, 1, 3), as shown in Figure 1.1, and
f3 is a general homogeneous degree 3 polynomial in X, Y, Z.

W

Z X

Y

Figure 1.1. The intersection complex (B̌, P̌, ϕ̌) of (P2, E). The
piecewise affine function ϕ̌ is 0 at the interior lattice point and 1
on the boundary.
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For t 6= 0 we have Xs
t = P2, since we can eliminate W by W = t−3XY Z − sf3.

For s 6= 0, Ds
t ⊂ P2 is defined by a general degree 3 polynomial, so is an elliptic

curve, and D0
t ⊂ P2 is a cycle of three lines. For t = 0 we have Xs

0 = V (XY Z)
in P(1, 1, 1, 3). This is a union of three P(1, 1, 3) glued along toric divisors as
described by the combinatorics of Figure 1.1. Ds

0 is again a cycle of three lines.

Example 1.7. Figure 1.2 shows the intersection complex of a toric degeneration
of a smooth cubic surfaceX (del Pezzo surface of degree 3) obtained by smoothing
the Fano polytope of the toric Gorenstein del Pezzo surface X0 = P2/Z3, where
Z3 acts by (x, y, z) 7→ (x, ζy, ζ−1z) for ζ a nontrivial third root of unity. This can
be given explicitly as follows.

XQ = V
(
XY Z − t3(W 3 + sf3)

)
⊂ P3 × A2

DQ = V (W ) ⊂ XQ

Again, X, Y, Z,W are the projective coordinates and f3 is a general homogeneous
degree 3 polynomial in X, Y, Z. For t, s 6= 0, Xs

t is a smooth cubic surface, and
Ds
t is a hyperplane section. For t 6= 0, s = 0, X0

t is given by V (XY Z−tW 3) ⊂ P3,
thus is a Z3-quotient of P2, and D0

t is a cycle of three lines. For t = 0 we have
Xs

0 = V (XY Z) ⊂ P3. This is a union of three P2 glued as described by the
combinatorics of Figure 1.2, and again Ds

0 is a cycle of three lines.

W
X

Y

Z

Figure 1.2. The intersection complex (B̌, P̌, ϕ̌) of a smooth cu-
bic surface, obtained by smoothing the Fano polytope of P2/Z3.

Example 1.8. Figure 1.3 shows the intersection complex of a toric degeneration
of P1 × P1 obtained by smoothing the Fano polytope of P(1, 1, 2). This can be
given explicitly as follows, with f2 a general homogeneous degree 2 polynomial in
X, Y, Z, U and W the degree 2 coordinate,

XQ = V
(
XY − U2 + t2sf2, ZU − t2(W + sf2)

)
⊂ P(1, 1, 1, 1, 2)× A2

DQ = V (W ) ⊂ XQ
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Indeed, t = 0 implies Z = 0 or U = 0 which in turn implies X = 0 or Y = 0. We
have V (X) = V (Y ) = P(1, 1, 2) and V (Z) = {XY = U2} ⊂ P(1, 1, 1, 2) which is
isomorphic to P(1, 1, 4). For t 6= 0 we have X0

t = {XY = U2 + t2sf2} ⊂ P3 by
elimination of W . For s = 0 this is a singular quadric X0

t ' P(1, 1, 2). For s 6= 0
it is a smooth quadric Xs

t ' P1 × P1. Again, Ds
t is smooth if and only if t, s 6= 0.

W

Z

YX U

Figure 1.3. The intersection complex (B̌, P̌, ϕ̌) of P1 × P1, ob-
tained by smoothing the Fano polytope of P(1, 1, 2).

Definition 1.9. Let X be a smooth del Pezzo surface. A toric model for X
is a toric del Pezzo surface with cyclic quotient singularities X0 that admits a
Q-Gorenstein deformation to X.

Remark 1.10. Note that there may be different toric models X0 for the same
smooth del Pezzo surface X. In fact, the Fano polytopes Q of such X0 are
related via combinatorial mutations ([ACC+], Theorem 3, see also [CGG+]).

Proposition 1.11. For each smooth del Pezzo surface X with very ample anti-
canonical class there exists a toric model X0 with at most Gorenstein singularities.

Proof. For any Q-Gorenstein deformation X → A1, the relative canonical class
KX/A1 is Q-Cartier. By definition, the degree of X0 is the self-intersection of
its (anti)canonical class. Hence, the degree of X equals the degree of any of its
toric models X0. We need to show that the degrees of the given toric models
are the ones shown in Figure 1.4. The Fano polytope Q of X0 is exactly the
Newton polytope of its anticanonical class. By the duality between subdivisions of
Newton polytopes and tropical curves, the self intersection can easily be computed
by intersecting two tropical curves dual to the Fano polytope Q. For (3a), i.e.,
X0 = P2/Z3 as in Example 1.7, the intersection of tropical curves is the following:
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The determinant of primitive tangent vectors at the intersection point is
|det ( 1 2

−1 1 ) | = 3. Indeed, this is the degree of P2/Z3. Similarly one computes
the degrees of the other cases in Figure 1.4. Alternatively, one can use the fact
that the degree of a del Pezzo surface equals |B̌ ∩M |+ 1 (see [CPS], §6). �

(9) (8′) (8) (7)

(6) (8′a) (7a) (6a)

(6b) (6c) (5a) (5b)

(4a) (4b) (4c) (3a)

Figure 1.4. Intersection complexes (B̌, P̌, ϕ̌) of smoothings X of
toric Gorenstein del Pezzo surfacesX0. The number in the labelling
is the degree of X and X0. In the first five cases X0 is smooth.

Remark 1.12. There are two smooth del Pezzo surfaces of degree 8, the blow up
of P2 at a point and P1 × P1. The del Pezzo surface X0 in case (8’a) is a toric
model for P1×P1 by Example 1.8. The other cases are determined by the degree.

1.2. Fan picture and refinement. Let Q be a Fano polytope and let XQ → A2

be the family from Construction 1.2. Let (B̌, P̌, ϕ̌) be the intersection complex
of the toric degeneration X := Xs 6=0 → A1, i.e., one of the polarized polyhedral
affine manifolds in Figure 1.4. Performing the discrete Legendre transform ([GS1],
§1.4) we obtain another polarized polyhedral affine manifold that is the dual
intersection complex ([GS1], §4.1) of X→ A1.

Definition 1.13. Let σ0 be the unique bounded maximal cell of the dual inter-
section complex of X→ A1.
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(9) (8′) (8) (7)

(6) (8′a) (7a) (6a)

(6b) (6c) (5a) (5b)

(4a) (4b) (4c) (3a)

Figure 1.5. Dual intersection complexes (B,P, ϕ) of smooth
very ample log Calabi-Yau pairs. The shaded regions are cut out
and the dashed lines are mutually identified. Compare this with
[KM], Figure 2, and [Pum], Figure 5.15.

Construction 1.14. Refine the dual intersection complex of X → A1 by in-
troducing rays starting at the origin and pointing to the integral points of the
bounded maximal cell. This yields another polarized polyhedral affine manifold
(B,P, ϕ), as shown in Figure 1.5. A refinement of the dual intersection complex
gives a logarithmic modification of XQ → A2 (see §A). Since the deformation pa-
rameter s is not part of the logarithmic data, the logarithmic modification does
not change the general fiber X = Xs 6=0

t6=0 . It can be constructed as follows.
(1) Blow up XQ ⊂ PP̌×A2 atXσ0×{(0, 0)}, whereXσ0 is the point corresponding

to σ0. This corresponds to inserting edges from the origin to corners of σ0.
(2) Introducing the ray starting at the origin and pointing in the direction of an

integral vector on the interior of a bounded edge ω of P corresponds to a
blow up at Xω×A1×{s = 0}, where Xω = P1 is the component corresponding
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to ω, i.e., the line through the points corresponding to the bounded maximal
cell and the unbounded maximal cell containing ω, respectively.

In cases where X0 is not smooth we refine the asymptotic fan of P. This cor-
responds to a toric blow up of the toric model X0. This blow up is nef but
not necessarily ample. By [KM], Proposition A.2, the deformation of such a nef
toric model still is (X,D) and has Picard group isomorphic to Pic(X). Note that
Pic(X) is isomorphic to H2(X,Z), since X is an integral surface over C.

Definition 1.15. By abuse of notation, from now on XQ → A2 will denote the
logarithmic modification from Construction 1.14. Note that X0 is smooth, toric
and nef, but not necessarily ample. We call it a smooth toric model of X. If X0

is ample it coincides with the toric model of X (Definition 1.9).

Remark 1.16. Note that (B,P) is simple ([GS1], Definition 1.60), since all affine
singularities have monodromy ( 1 1

0 1 ) in suitable coordinates. Thus we can apply
the reconstruction theorem ([GS3], Proposition 2.42) together with the construc-
tion of a tropical superpotential from [CPS] to construct the mirror Landau-
Ginzburg model to (X,D).

Example 1.17. Consider the smoothing of P(1, 1, 2) to P1 × P1 (case (8’a))
from Example 1.8. The logarithmic modification from Construction 1.14 is a 2-
parameter family XQ → A2 such that X→ A1 is a toric degeneration of P1 × P1

and X0 → A1 is a toric degeneration of the Hirzebruch surface F2, the P1-bundle
over P1 given by F2 = P(OP1 ⊕OP1(2)). This is the smooth surface obtained by
blowing up the singular point on P(1, 1, 2), corresponding the the subdivision of
the asymptotic fan given in Figure 1.6.

The Picard group Pic(F2) ' H2(F2,Z) is generated by the class of a fiber F
and the class of a section, e.g., the exceptional divisor E of the blow up. The
intersection numbers are F 2 = 0, E2 = −2 and E · F = 1. The anticanonical
bundle is −KF2 = 2F + S + E = 4F + 2E, where S = 2F + E is the class of a
section different from the exceptional divisor. The classes of curves corresponding
to the rays in the fan of F2 are given in Figure 1.6.

The Picard group of P1×P1 is generated by the class of a bidegree (1, 0) curve
L1 and a bidegree (0, 1) curve L2, with intersection numbers L2

1 = 0, L2
2 = 0 and

L1 · L2 = 1. There is an isomorphism

Pic(F2) ∼−→ Pic(P1 × P1), F 7→ L2, E 7→ L1 − L2.

Note that there is another isomorphism by the symmetry L1 ↔ L2 and we made
a choice here, fixed by the deformation X0 ↪→ XQ. We will use this isomorphism
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in §7.2.1 to calculate the logarithmic Gromov-Witten invariants of P1 × P1 in an
alternative way.

F 7→ L2 F 7→ L2

S = 2F + E 7→ L1 + L2

E 7→ L1 − L2

Figure 1.6. The dual intersection complex of a toric degeneration
of F2. The classes of curves corresponding to the rays and their
images under Pic(F2) ∼−→ Pic(P1 × P1) are given.

1.3. Affine charts. Figure 1.5 shows the dual intersection complexes (B,P, ϕ)
in the chart of σ0 (Definition 1.13). The shaded regions are cut out and the
dashed lines are mutually identified, so in fact all unbounded edges are parallel.

Definition 1.18. Let mout ∈ ΛB denote the primitive integral tangent vector
pointing in the unique unbounded direction on B.

(0, 0)

(0, 1)

(−3,−1)

(−3, 2) ϕ = 1

ϕ = 1

ϕ = 1

Figure 1.7. (B,P, ϕ) for (P2, E) in the chart of an unbounded
maximal cell. The dark region is cut out and the dashed lines are
mutually identified. A straight line is shown in red.
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Example 1.19. Figure 1.7 shows the dual intersection complex (B,P, ϕ) of
(P2, E) in the chart of an unbounded maximal cell. Intuitively, this picture can
be obtained by mutually gluing the dashed lines in Figure 1.5, (9). The two
horizontal dashed lines are identified. The monodromy transformation by passing
across the upper horizontal dashed line is given by ΛB → ΛB,m 7→ ( 1 9

0 1 ) ·m.

We can extend the description of the affine structure across the horizontal
dashed line by giving a chart of a discrete covering space B̄ of B (Figure 1.8).
Passing from one fundamental domain to an adjacent one amounts to applying
the monodromy transformation by crossing the horizontal dashed line in B.

This gives a trivialization ΛB̄ ' M = Z2 on B̄ \ (Int(σ̄0) ∪ ∆̄), where σ̄0 and
∆̄ are the preimages of the bounded maximal cell σ0 and the discriminant locus
∆, respectively. We will see in Lemma 5.14 that the consistent wall structure
S∞ defined by (B,P, ϕ) has support disjoint from Int(σ0). Hence, the whole
scattering procedure can be described in this affine chart of the covering space
B̄. This allows for a simple implementation of the scattering algorithm (see §7).

(0, 0)

(0, 1)

(−3,−1)

(−3, 2)

Figure 1.8. A chart of a covering space B̄ of B with fundamental
domain the white region (including one of the rays on its border).
The preimage of the straight line from Figure 1.7 is shown in red.

2. Resolution of log singularities

Let Q be a Fano polytope and consider the family XQ → A2 from Construction
1.14. Equip A2 with the divisorial log structure by V (t) ⊂ A2 and XQ with the
divisorial log structure by X0 ∪DQ ⊂ XQ, that is, the sheaf of monoids

M(XQ,X0∪DQ) := (j?O×XQ\(X0∪DQ)) ∩ OXQ , j : XQ \ (X0 ∪DQ) ↪→ XQ.

For an introduction to log structures see e.g. [Kat1] or [Gro2], §3.
If we consider the fibers Xs

r or the families Xt → A1 or Xs → A1 as log schemes,
we always mean equipped with the log structure by restriction of the above log
structure. Now for each s ∈ A1 the family Xs → A1 is log smooth away from
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finitely many points on the central fiber, corresponding to the affine singularities
of the dual intersection complex (B,P, ϕ). At these points Xs is locally given by
Spec C[x, y, w, t]/(xy − tl(w + s)) with log structure given by V (t) ∪ V (w). This
is isomorphic to Spec C[x, y, w̃, t]/(xy − tlw̃) with w̃ = w + s. The log structure
is given by V (t) ∪ V (w̃) for s = 0 and by V (t) for s 6= 0. Arguments as in
[Gro2], Example 3.20, show that for s 6= 0 this is not fine at the point given
by x = y = w = t = 0. For s = 0 the log structure is fine saturated but not
log smooth. Following [GS2], Lemma 2.12, we describe a small log resolution
X̃s → Xs such that X̃s is fine and log smooth over A1.

2.1. The local picture. Spec C[x, y, w̃, t]/(xy − tlw̃) is the affine toric variety
defined by the cone σ generated by (0, 0, 1), (0, 1, 0), (1, 0, 1) and (l, 1, 0). In fact,

Spec C[σ∨ ∩ Z3] = Spec C[z(1,0,0), z(−1,l,1), z(0,0,1), z(0,1,0)]

= Spec C[x, y, w̃, t]�(xy − w̃tl).

We obtain a toric blow up by subdividing the fan consisting of the single cone
σ. There are two ways of doing this and they are related by a flop. We choose
the subdivision Σ as in [GS2], Lemma 2.12, with maximal cones σ1 generated by
(0, 0, 1), (1, 0, 1) and (0, 1, 0), and σ2 generated by (l, 1, 0), (1, 0, 1) and (0, 1, 0).

(0, 1, 0) (l, 1, 0)

(1, 0, 1)(0, 0, 1)

Figure 2.1. Generators of the cone defining a toric model of a log
singularity and a choice of subdivision.

These cones define affine toric varieties

Xσ1 = Spec C[z(1,0,0), z(0,1,0), z(−1,0,1)] = Spec C[x, t, u] = A3,

Xσ2 = Spec C[z(−1,l,1), z(0,0,1), z(0,1,0), z(1,0,−1)] = Spec C[y, w̃, t, v]/(yv − tl),

Xσ12 = Spec C[z(1,0,0), z(0,1,0), z±(−1,0,1)] = Spec C[x, t, u±1] = A2 ×Gm.

The toric variety XΣ defined by Σ is obtained by gluing Xσ1 and Xσ2 along Xσ12 .
This is the fibered coproduct (with u = U/V and v = V/U)

XΣ = Xσ1 qXσ12
Xσ2 = Proj C[x, y, w̃, t][U, V ]�(w̃V − xU, yV − tlU).
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Note that we take Proj of the polynomial ring with variables U, V over the ring
C[x, y, w̃, t], so only U, V are homogeneous coordinates, of degree 1. The grading
is given by degree in U and V . The exceptional set of the resolution XΣ → Xσ is
a line contained in the irreducible component of the central fiber XΣ,0 given by
y = 0.

x
y

w u
v

Figure 2.2. Local picture of the central fiber of the resolution,
with exceptional line shown in red.

Equip XΣ with the divisorial log structure by its central fiber XΣ,0 and pull
this log structure back to XΣ,0. Then Xσ1 and Xσ2 are log smooth with respect to
the restriction of this log structure, since they are simple normal crossings. They
form an affine cover of XΣ,0, so XΣ,0 is log smooth.

Similarly, if we make the opposite choice of subdivision, the exceptional line is
contained in the irreducible component of the central fiber given by x = 0.

2.2. The global picture. There are two geometric descriptions of the toric blow
up XΣ → Xσ considered in §2.1 above:
(1) XΣ → Xσ is given by blowing up Xσ along {y = t = 0}. Indeed, this

corresponds to subdividing σ by cones connecting the face of σ corresponding
to {y = t = 0}, in our case the ray generated by (1, 0, 1), with all other faces
of σ, leading to the fan Σ.

(2) Let XΣ′ be the blow up of Xσ along the origin. This corresponds to inserting
a ray in the center of σ and connecting all faces of σ with this ray, leading
to a fan Σ′. The exceptional set of this blow up is isomorphic to P1 × P1.
Choose one of the P1-factors and partially contract the exceptional set in XΣ′

by projecting to this factor. This corresponds to one of the two ways to pair
off the four maximal cones in Σ′ into two cones. One choice leads to Σ, so we
obtain XΣ′ → XΣ by a partial contraction of the exceptional set in XΣ′ .

These constructions can also be performed globally on XQ.
In (1) we blow up XQ along one of the irreducible components of X0. We can do

this for all irreducible components of X0 and obtain a log smooth family over A2.
However, this family will depend on the order of the blow ups and the irreducible
components of its central fiber will contain different numbers of exceptional lines.
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In (2) we blow up XQ along curves on X0 and then partially contract the
exceptional sets. In each step we have two ways to choose the contraction. Making
the right choices we obtain a more symmetric resolution.

Construction 2.1 (The log smooth degeneration). For each log singularity on
XQ we have two choices of a small resolution as in (2) above, fixed by choosing
which irreducible component of X̃s 6=0

0 contains the exceptional line. We make
a symmetric choice such that we have one exceptional line on each irreducible
component of X̃0 (see Figure 2.4). The only reason for doing so is to avoid
distinction of cases. We obtain a log smooth family (X̃Q, D̃Q) → A2. Since we
only change the fibers Xs

0 , we still have that (X̃0,D0)→ A1 is a degeneration of
X0 and X→ A1 is a degeneration of X, but these are no toric degenerations.

s→ 0

t→ 0

s→ 0

t→ 0

N2N3 N N2N2 N2

N

N
N

s→ 0

t→ 0

s→ 0

t→ 0

N2N3 N2 N N2N3 N2N2

N

N
N

Figure 2.3. Fibers of the families XQ → A2 (left) and X̃Q → A2

(right) for (P2, E). The exceptional lines are red. Some stalks of
the ghost sheaves are given.

The small resolution does not change the local toric models at generic points
of toric strata. As a consequence, the dual intersection complex B̃ of X̃→ A1 is
homeomorphic to the dual intersection complex B of X → A1. But there is one
difference here. The irreducible components of X̃0 are non-toric, so there is no
natural fan structure at the vertices. Further, X̃0 has no log singularities. Hence,
there is no focus-focus singularity on bounded edges in the dual intersection
complex. However, the gluing is still in such a way that the unbounded edges
are parallel, leading to affine singularities at the vertices of B̃, coming from the
gluing. This gives a triple (B̃,P, ϕ) as in Figure 2.4. Affine manifolds with
singularities at vertices have been considered by Gross-Hacking-Keel [GHK1] to
construct mirrors to log Calabi-Yau surfaces.
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v
mv,+

mv,−

mout

Figure 2.4. The dual intersection complex (B̃,P, ϕ) of X̃0 for
(P2, E) away from σ0, with choices of resolutions indicated.

Definition 2.2. For a vertex v of P, let Lexc
v be the unique exceptional line

contained in the irreducible component X̃v of X̃0 corresponding to v.

For later convenience we indicate the choices of small resolutions by red stubs
attached to the vertices of P. The stub at a vertex v points in the direction
corresponding to the toric divisor of Xv intersecting Lexc

v . Denote the primitive
vector in the direction of the red stub adjacent to v by mv,+ ∈ ΛB̃,v. Denote
the primitive vector in the direction of the other edge of σ0 adjacent to v by
mv,− ∈ ΛB̃,v. Further, mout is the unique unbounded direction (Definition 1.18).

2.3. Logarithmic Gromov-Witten invariants. Logarithmic Gromov-Witten
invariants have been defined in [Che1][AC] and [GS5] as counts of stable log
maps. A stable log map is a stable map defined in the category of log schemes
with additional logarithmic data at the marked points, allowing for specification
of contact orders. This leads to a generalization of Gromov-Witten theory in log
smooth situations. For example, Gromov-Witten invariants relative to a (log)
smooth divisor can be defined in this context, avoiding the target expansion of
relative Gromov-Witten theory [Li1][Li2]. This is the case of interest to us.

Let X̃ := Xs 6=0 → A1 be the log smooth family from Construction 2.1. Note
that X̃t6=0 = X. For the definition of stable log maps and their classes, see [GS5].

Definition 2.3. For an effective curve class β ∈ H+
2 (X,Z) ' H+

2 (X0,Z) define
a class β of stable log maps to X̃Q → A2 as follows:
(1) genus g = 0;
(2) k = 1 marked point p;
(3) fibers have curve class β;
(4) contact data up = (D · β)mout, that is, full tangency with D at the marked

point. Here mout ∈ ΛB̃ is the primitive integral tangent vector pointing in
the unbounded direction on B̃ (Definition 1.18).
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A choice of s ∈ A1 gives an embedding γ : A1 → A2. Let γ! be the corresponding
refined Gysin homomorphism ([Ful], §6.6). Then γ!β defines a class of stable log
maps to Xs → A1 that, by abuse of notation, we also write as β.

Remark 2.4. One comment is in order about the space in which up lives. By
definition ([GS5], Discussion 1.8(ii)), up is an element of P∨p := Hom(f ?MX̃Q

|p,N)
and mout is an element of ΛB̃, the sheaf of integral tangent vectors on the dual
intersection complex B̃. Let ω be the cell of P corresponding to the minimal
stratum of X̃s

0 to which the marked point is mapped. Then ω is an unbounded 1-
or 2-dimensional cell and mout defines an element of ΛB̃,ω. Both, P∨p and ΛB̃,ω are
submonoids of ΛΣ(X̃s

0),ω and their intersection is N ·mout ⊆ ΛB̃,ω. Thus N ·mout

can be viewed as a submonoid of P∨p , so the definition above makes sense.

Definition 2.5. Let M (X̃, β) be the moduli space of basic stable log maps to
X̃ := Xs 6=0 → A1 of class β.

By [GS5], Theorems 0.2 and 0.3, M (X̃, β) is a proper Deligne-Mumford stack
and admits a virtual fundamental class JM (X̃, β)K. Since (X,D) is a log Calabi-
Yau pair, the class β is combinatorially finite ([GS5], Definition 3.3). Hence, the
virtual dimension of M (X̃, β) is zero and the following definition makes sense.

Definition 2.6. For β as in Definition 2.3 define the logarithmic Gromov-Witten
invariant

Nβ =
∫
JM (X̃,β)K

1.

Definition 2.7. Define wout = min{D · β | β ∈ H+
2 (X,Z)} so e.g. for (X,D) =

(P2, E) we have wout = 3, since E has degree 3. For d > 0 define

Nd =
∑

β∈H+
2 (X,Z)

D·β=dwout

Nβ.

Remark 2.8. Logarithmic Gromov-Witten invariants are constant in log smooth
families ([MR], Appendix A). This means the following. Let γ : {pt} → A1 be a
point and let γ! be the corresponding refined Gysin homomorphism . Then γ!β

defines a class of stable log maps to the fiber X̃t that, by abuse of notation, we also
write as β. We get a moduli space and a virtual fundamental class JM (X̃t, β)K.
Then, for all t ∈ A1,

Nβ =
∫
JM (X̃t,β)K

1.

This shows thatNβ equals the logarithmic Gromov-Witten invariantNβ defined in
the introduction. Moreover, as shown in [AMW], Nβ equals the relative Gromov-
Witten invariant of the smooth pair (X,D) as defined in [Li1].
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2.4. Log BPS numbers. The logarithmic Gromov-Witten invariantsNβ are not
integers but rather rational numbers. The fractional part comes from multiple
cover contributions of curves with class β′ such that β = k · β′.

Proposition 2.9 ([GPS], Proposition 6.1). The k-fold cover of an irreducible
curve of class β′ contributes the following factor to Nk·β′:

Mβ′ [k] = 1
k2

(
k(D · β′ − 1)− 1

k − 1

)

We use the same formula for reducible curves, though it may be unclear how
to interpret this as a multiple cover contribution.

Definition 2.10. Define numbers nβ by subtracting multiple cover contributions:

Nβ =
∑

β′:β=k·β′
Mβ′ [k] · nβ′ .

They are called Gopakumar-Vafa invariants or log BPS numbers as they are
related to BPS state counts in string theory [GV].

Remark 2.11. The logarithmic Gromov-Witten invariants Nβ are related to local
Gromov-Witten invariants N loc

β of the total space of the canonical bundle KX of
X by the formula Nβ = (−1)D·β−1(D ·β)N loc

β . This was conjectured by Takahashi
([Tak2], Remark 1.11) and proven by Gathmann ([Gat], Example 2.2) and more
generally by van Garrel, Graber and Ruddat [GGR]. The log BPS numbers nd
were shown to be integers in [GWZ], using integrality of local BPS numbers.

3. Tropical curves and refinement

In this section we analyze what tropicalizations of stable log maps contributing
to Nd look like. We prove that for each d there are only finitely many such tropical
curves (Corollary 3.21). Choosing a subdivision of the dual intersection complex
(B̃,P, ϕ) such that tropicalizations contributing to Nd are contained in the 1-
skeleton of the polyhedral decomposition leads to a logarithmic modification X̃d

of X̃ (Construction 3.30) with the property that stable log maps to the central
fiber Y of X̃d contributing to Nd are torically transverse.

3.1. Tropicalization of stable log maps.

Definition 3.1 ([ACGS1], 2.1.1, 2.1.2). Define Cones to be the category whose
objects are pairs (σR,M) where M ∼= Zn is a lattice and σR ⊆ MR = M ⊗Z R
is a top-dimensional strictly convex rational polyhedral cone. A morphism of
cones ϕ : σ1 → σ2 is a homomorphism ϕ : M1 → M2 which takes σ1R into
σ2R. It is a face morphism if it identifies σ1R with a face of σ2R and M1 with
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a saturated sublattice of M2. A generalized cone complex is a topological space
with a presentation as the colimit of an arbitrary finite diagram in the category
Cones with all morphisms being face morphisms.

Definition 3.2 ([ACGS1], 2.1.4). Let X be a fine saturated log scheme with
log structure defined in the Zariski topology. For the generic point η of a stra-
tum of X, its characteristic monoid MX,η defines a dual monoid (MX,η)∨ :=
Hom(MX,η,N) lying in the group (MX,η)? := Hom(MX,η,Z), hence a dual cone

ση :=
(
(MX,η)∨R, (MX,η)?

)
.

If η is specialization of η′, there is a well-defined generization mapMX,η →MX,η′ .
Dualizing, we obtain a face morphism ση′ → ση. This gives a diagram of cones
indexed by strata of X with face morphisms, hence gives a generalized cone
complex Σ(X), the tropicalization of X. This construction is functorial.

Let Q be a Fano polytope and let X̃ → A1 be a log smooth degeneration
(Construction 2.1) of the corresponding smooth very ample log Calabi-Yau pair
(X,D). Let β ∈ H+

2 (X,Z) be an effective curve class and consider a basic stable
log map f : C/ptQbasic

→ X̃0/ptN of class β (Definition 2.3). Here Qbasic is the
basic monoid2 of f ([GS5], §1.5). We will see in Corollary 3.21 that Qbasic = N,
so

(3.1) C
f
//

γ

��

X̃0

π̃0
��

ptN
g
// ptN

Tropicalization of (3.1) gives a diagram of generalized cone complexes. Note that
Σ(ptN) = R≥0. The fiber Σ(π̃0)−1(1) is homeomorphic to the dual intersection
complex B̃ of X̃0. Similarly, for all b 6= 0, the fiber Σ(γ)−1(b) is homeomorphic to
the dual intersection graph ΓC of C. Hence, tropicalization of the above diagram
and restriction to the fiber over 1 ∈ Σ(ptN) = R≥0 gives a continuous map

(3.2) h̃ : ΓC → B̃.

There is additional data on ΓC making h̃ : ΓC → B̃ into a tropical curve in the
sense of [ACGS1]. Note that such a tropical curve only fulfills a modified version
of the balancing condition ([GS5], Proposition 1.15). In §3.2 we will see what
this means in our case.
2The basic monoid Q has the property that Σ(ptQbasic

) = Hom(Qbasic,R≥0) is the moduli space
of deformations of Σ(C) as a tropical curve preserving its combinatorial type ([GS5], Remark
1.21).
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To make the connection with scattering diagrams in §5 it is useful to consider
tropical curves on B (not B̃) that are balanced in the usual sense but may have
some bounded legs.

There are many slightly different definitions of parametrized tropical curves,
depending on the context in which they are used. The following definition is a
synthesis of the definition in [ACGS1] and [Gro2], Definition 1.32. In [ACGS1]
only tropical curves with no bounded legs are considered, while in [Gro2] tropical
curves are required to be balanced.

Definition 3.3. Let B be a 2-dimensional integral affine manifold with singu-
larities. Let ∆ ⊂ B be the discriminant locus and write B0 := B \ ∆. A
(parametrized) tropical curve on B, written h : Γ → B, is a homogeneous map
h : Γ→ B0, where Γ is the topological realization of a graph3, possibly with some
non-compact edges (legs), together with
(1) a non-negative integer gV (genus) for each vertex V ;
(2) a non-negative integer `E (length) for each compact edge E;
(3) a n element u(V,E) ∈ i?ΛB0,h(V ) (weight vector) for every vertex V and edge or

leg E adjacent to V . Here ΛB0 is the sheaf of integral affine tangent vectors
on B and i : B0 ↪→ B is the inclusion. The index of u(V,E) in the lattice
ΛB,h(V ) is called the weight wE of E;

such that
(i) if E is a compact edge with vertices V1, V2, then h maps E affine linearly4 to

the line segment connecting h(V1) and h(V2), and h(V2)−h(V1) = `Eu(V1,E).
In particular, u(V1,E) = −u(V2,E);

(ii) if E is a leg with vertex V , then h maps E affine linearly either to the ray
h(V ) + R≥0u(V,E) or to the line segment [h(V ), δ) for δ an affine singularity
of B such that δ − h(V ) ∈ R>0u(V,E), i.e., u(V,E) points from h(V ) to δ.

We write the set of compact edges of Γ as E(Γ), the set of legs as L(Γ), the set of
legs mapped to a ray (unbounded legs) as L∞(Γ) and the set of legs mapped to an
open line segment (bounded legs) as L∆(Γ) (since such edges end at the singular
locus ∆ of B).

The genus of a parametrized tropical curve h : Γ→ B is defined by

gh := gΓ +
∑

V ∈V (Γ)
g(V ),

where gΓ is the genus (first Betti number) of the graph Γ.
3The topological realization of a graph Γ is a topological space which is the union of line segments
corresponding to the edges. By abuse of notation, we also denote this by Γ. Whenever we talk
about a map from a graph we mean a homogeneous map from its topological realization.
4The affine structure on Γ is given by the lengths `E of its edges.
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Remark 3.4. Note that if E is a leg of Γ, then h(E) must be parallel to the edge
of P containing δ, since there is only one tangent direction at δ, i.e., ΛB,δ ' Z.

Definition 3.5. An isomorphism of tropical curves h : Γ→ B and h′ : Γ′ → B is
a homeomorphism φ : Γ→ Γ′ such that h = h′ ◦ φ, gφ(V ) = gV and u(φ(V ),φ(E)) =
u(V,E). An automorphism of a tropical curve h is an isomorphism of h with itself.
Here we use the convention that an edge E is a pair of orientations of E, so that
the automorphism group of a graph with a single loop is Z/2Z.

Remark 3.6. We will only consider tropical curves of genus 0. In particular, our
tropical curves will have no loops.

Definition 3.7. Let (B,P) be a 2-dimensional polyhedral affine manifold. A
tropical curve h : Γ→ B is compatible with P if
(1) the edges of Γ do not extend across several maximal cells of P. In other

words, we have a well-defined map E(Γ) ∪ L(Γ)→P associating to an edge
or leg E the minimal cell of P containing it.

(2) there are no bivalent vertices in Γ mapped to a maximal cell of P.

Construction 3.8. Let h̃ : ΓC → B̃ be the continuous map from (3.2). We
describe additional data making h̃ a tropical curve compatible with P.
(1) For each vertex V , the genus is gV = 0.
(2) Let E ∈ E(ΓC) be a compact edge with vertices V1, V2, corresponding to a

node q ∈ C. ThenMC,q is isomorphic to the submonoid Seq of N2 generated
by (eq, 0), (0, eq) and (1, 1) for some eq ∈ N>0 ([Kat2], 1.8). Moreover, there is
an equation h̃(V2)− h̃(V1) = ±equq for some uq ∈ ΛB̃ (see [GS5], Discussions
1.8, 1.13). Then the length of E is `E = eq and the weight vectors are
u(Vi,E) = ±uq, with sign chosen such that u(Vi,E) points away from h̃(Vi).

(3) Let E ∈ L∞(ΓC) be an unbounded leg with vertex V , corresponding to a
marked point p ∈ C. ThenMC,p is isomorphic to N⊕ N and

f ?MX |p →MC,p
pr2→ N

is determined by an element of P∨p = Hom(f ?MX |p,N), inducing an element
up ∈ ΛB̃,h̃(V ). The weight vector is u(V,E) = up.

The properties for h̃ : ΓC → B̃ to be compatible with P can be achieved by (1)
inserting vertices at points mapping to vertices or edges of P and (2) removing
bivalent vertices mapping to a maximal cell of P, by replacing a chain of edges
connected via bivalent vertices with a single edge. The latter is possible, since
vertices of ΓC not mapping to vertices of P are balanced by Proposition 3.12,
(I), below.
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Definition 3.9. Let B be a 2-dimensional integral affine manifold with singular-
ities and m ∈ ΛB an integral tangent vector. A tropical curve h : Γ→ B is called
of degree d relative to m if there is exactly one unbounded leg Eout ∈ L∞(Γ), and
its weight vector is u(Vout,Eout) = d ·m. Here Vout is the unique vertex of Eout.

Proposition 3.10. Given a stable log map f : C/ptN → X̃0/ptN of class β as
in Definition 2.3, the continuous map h̃ : ΓC → B̃ from (3.2) together with the
additional data defined in Construction 3.8 is a tropical curve without bounded
legs, of genus 0, degree D·β relative to mout ∈ ΛB̃ (Definition 1.18) and compatible
with the dual intersection complex P. By abuse of notation, we call this tropical
curve h̃ : ΓC → B̃ the tropicalization of f .

Proof. The properties (i) and (ii) of Definition 3.3 follow by the structure of
f : C → X̃0 on the level of ghost sheaves (see [GS5], Discussions 1.8, 1.13).
Hence, h̃ is a tropical curve. Moreover, these discussions show that h̃ has no
bounded legs. h̃ is of degree dwout relative to mout by Definition 2.3, (4). �

Remark 3.11. There is one issue here, since we lost some information by smooth-
ing (X0, D0). An effective curve class β ∈ H+

2 (X0,Z) is determined by its in-
tersection numbers d1, . . . , dk with the components of D0 = D1, . . . , Dk. After
smoothing D0 we only see the sum d = d1 + . . . + dk. In particular, if X0 is
a smooth toric del Pezzo surface with Picard number > 1, i.e., different from
(P2, E), then we only see the total degree, not the multi-degree. One could solve
this problem using non-trivial gluing data capturing information of the divisor
D0. We will give a more geometric solution in §3.4 by looking at the limit of
curves under s → 0, where s ∈ A2 is the deformation parameter of the family
XQ → A2 from Construction 1.14.

3.2. Types of vertices. Let f : C/ptN → X̃0/ptN be a stable log map of class
β as in Definition 2.3 and let h̃ : ΓC → B̃ be the corresponding tropical curve.

Proposition 3.12. Let CV be an irreducible component of C, corresponding to
a vertex V of ΓC. Then the following three cases can occur:

(I) If CV is mapped to a 0- or 1-dimensional toric stratum of X̃0, i.e., if V is
not mapped to a vertex of P, then the ordinary balancing condition holds:∑

E3V
u(V,E) = 0.

The sum is over all edges or legs E ∈ E(ΓC) ∪ L(ΓC) containing V .
(II) If CV is mapped onto an exceptional divisor Lexc

v on some component X̃v

of X̃0 (Definition 2.2), then CV is a k-fold multiple cover of Lexc
v ' P1 for
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some k > 0. It is fully ramified at the point p = Lexc
v ∩ ∂X̃v, where ∂X̃v

is the proper transform of the toric boundary ∂Xv under the resolution
from §2. The vertex V is mapped to the vertex v of P. It is 1-valent
with adjacent edge E mapped onto the edge of P containing the red stub
adjacent to v. The balancing condition reads (with mv,+ as in Figure 2.4)

u(V,E) = kmv,+.

(III) Otherwise, V is mapped to a vertex v of P and has exactly one adjacent
edge or leg EV,out that is not mapped onto a compact edge of P. All other
edges (possibly none) are compact with other vertex of type (II) above. In
this case, for some k ≥ 0, the following balancing condition holds:∑

E3V
u(V,E) + kmv,+ = 0.

Proof. If CV does not intersect an exceptional line, the log structure on X̃0 along
the image of CV is the toric one. Hence for any section m ∈ Γ(CV , f ?MX |CV )
the associated O×CV -torsor κ

−1(m) is trivial. Here κ : f ?MX → f ?MX . Then by
[GS5], Proposition 1.15, the ordinary balancing condition holds. This proves (I).

If CV is mapped onto an exceptional line Lexc
v ' P1 on some component X̃v,

it is a k-fold multiple cover for some k > 0. Suppose it is not fully ramified
at the point where Lexc

v meets ∂X̃v, i.e., V has valency > 1. Let E1, E2 be two
distinct edges adjacent to V . We have V 6= Vout, since CV does not meet the
toric divisor of X̃v belonging to D̃0. By Proposition 3.10, ΓC has only one leg,
and this leg is attached to Vout. Thus E1 and E2 are bounded. Let V1, V2 be the
vertices of E1, E2 different from V , respectively. There is a chain of vertices and
edges (possibly the trivial one) connecting V1 to Vout and similarly for V2. These
two chains form a cycle of the graph ΓC , so g(ΓC) > 0 in contradiction with
rationality of C. Hence, there is a unique bounded edge E adjacent to V . Let V ′

be its other vertex. Then h(V ′)− h(V ) points in the direction of mv,+, since the
only special point (node) of CV is mapped to Lexc

v ∩ ∂X̃v. It follows by Definition
3.3 that u(V,E) points in the direction of mv,+. Its affine length, the weight wE, is
the multiplicity of the node which is the ramification order k. This proves (II).

Let CV be a component of C that intersects an exceptional divisor Lexc
v on

some component X̃v but is not mapped onto it. We first prove the balancing
condition. Let m ∈ Γ(CV , f ?MX |CV ) be the generator of the submonoid N of
Γ(CV , f ?MX |CV ) corresponding to the exponent of the degeneration parameter
t. The line bundle associated to m is f ?ν?OXv(−kDv,+), where ν : X̃v → Xv

is the resolution and Dv,+ is the toric divisor of Xv whose proper transform X̃v

intersects Lexc
v . This is because the condition that Cv intersects Lexc

v is equivalent
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to a point condition on Dv,+. The corresponding contact data is kmv,+. This
shows ∑E3V u(V,E) + kmv,+ = 0, where k is the sum of the affine lengths of the
additional up. Now we show uniqueness of an edge or leg EV,out as claimed. If
all legs and edges adjacent to V are mapped onto compact edges of P, this
balancing condition can not be achieved. So there is at least one such edge or leg.
We show by contradiction that there is at most one. Assume that there are two
edges or legs E,E ′ adjacent to V that are not mapped onto compact edges of P.
Then E,E ′ are either unbounded legs or bounded edges with other vertex of type
(I). If E or E ′ is unbounded, then, since vertices of type (I) fulfill the ordinary
balancing condition, we would have at least two unbounded legs, contradicting
the assumptions. If E and E ′ are bounded edges with other vertices of type (I),
their paths to Vout form a cycle, contradicting g = 0. So there is a unique edge
not mapped onto a compat edge of P. This proves (III). �

Definition 3.13. Denote the set of vertices of the given types in Proposition
3.12 by VI(ΓC), VII(ΓC) and VIII(ΓC), respectively.

Definition 3.14. Let H̃d be the set of isomorphism classes of tropical curves
h̃ : Γ̃→ B̃ compatible with P of genus 0 and degree dwout relative to mout ∈ ΛB̃,
without bounded legs and with vertices of one of the types (I)-(III) above.

9
(II)

(III)

(I)
(III)

(II)

9

Figure 3.1. A tropical curve h̃ : Γ̃ → B̃ in H̃3 for (P2, E), with
types of vertices indicated. The integer 9 is the weight of the outgo-
ing edge. All other edges have weight 1. Two vertices are mapped
to the same vertex of P, but not connected by an edge.

Lemma 3.15. Let h̃ : Γ̃ → B̃ be a tropical curve in H̃d for some d > 0. Then
h̃(Γ̃) is disjoint from the interior of σ0 (Definition 1.13).

Proof. Let h̃ : Γ̃→ B̃ be a tropical curve in H̃d. Give Γ̃ the structure of a rooted
tree by defining the root vertex to be the vertex Vout of the unique unbounded
leg Eout. Let V be a vertex of Γ̃ and let EV,out be the edge connecting V with its
parent, or EV,out = Eout if V is the root vertex Vout. By Proposition 3.12, if V
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is mapped to a vertex v of P, hence of type (II) or (III), then EV,out is mapped
to the conical subset R≤0mv,+ + R≤0mv,− of B̃, and if V is of type (I), then by
induction EV,out is mapped to the subset ⋃V ′ R≤0mh̃(V ′),+ + R≤0mh̃(V ′),− of B̃,
where the union is over all vertices of type (II) and (III) in the subgraph of Γ̃
with root V . In particular, h̃(Γ̃) is contained in⋃

V ′∈VII(Γ̃)∪VIII(Γ̃)

R≤0mh̃(V ′),+ + R≤0mh̃(V ′),−

This is disjoint from the interior of σ0. �

3.3. Balanced tropical curves. We describe a procedure to obtain tropical
curves in H̃d from tropical curves to B (not B̃!) that are balanced in the usual
sense. This makes the connection to scattering diagrams in §5 more transpar-
ent. Moreover, the degeneration formula gets more symmetric when expressed in
invariants labeled by balanced tropical curves (see Theorem 4.17).

Definition 3.16. Let Hd be the set of isomorphism classes of tropical curves
h : Γ → B compatible with P, possibly with bounded legs, of genus 0 and
degree dwout relative to mout, satisfying the ordinary balancing condition at each
vertex V of Γ: ∑

E3V
u(V,E) = 0,

Construction 3.17. We construct a surjective map Hd → H̃d as follows.
Let h : Γ → B be a tropical curve in Hd. Let E ∈ L∆(Γ) be a bounded leg

with vertex V . Then E is mapped to the line segment [h(V ), δ) for δ an affine
singularity on an edge ω of P. Since ΛB,δ is one-dimensional, h(E) is parallel to
ω. Since h is compatible with P and by the balancing condition, h(V ) must be
a vertex v of P. Let mv,δ be the primitive integral tangent vector pointing from
v to δ and let mv,+,mv,− be as in Figure 2.4. Two cases can occur.
(1) If mv,δ = mv,+, i.e., if E is mapped in the direction of the red stub attached

to v, then remove E from Γ.
(2) Otherwise, mv,δ = mv,−. Then add a vertex V ′ to E to obtain a compact

edge Ẽ. Define u(V ′,E) = −u(V,E) and h̃(Ẽ) = ω, such that h̃(V ′) = v′ is a
vertex of P. This determines the length `Ẽ by Definition 3.3, (i).

We show that the map Hd → H̃d constructed this way is surjective. Let h̃ : Γ̃→ B̃

be a tropical curve in H̃d. We can construct a preimage of h̃ as follows. (1) For
each vertex V ∈ VIII(Γ̃), add a bounded leg E with vertex V and weight vector
u(V,E) = −∑E′3V u(V,E′). The image of E is specified by Definition 3.3, (ii). (2)
For each vertex V ∈ VII(Γ̃), let E be the unique adjacent edge. It is a bounded
edge and we remove the vertex V from E to obtain a bounded leg. This shows
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that the map Hd → H̃d is surjective. Note that in step (1) we could also add
several bounded legs with weights a partition of ∑E′3V u(V,E′), so the number of
preimages of h̃ is the number of such partitions.

Definition 3.18. Let (B̄, P̄) be the covering space of (B,P) described in §1.3.
Let H̄d be the set of isomorphism classes of balanced tropical curves h̄ : Γ̄ → B̄

compatible with P̄ of genus 0 and degree dwout relative to mout satisfying the
ordinary balancing condition and such that the image of Eout lies in a fixed
fundamental domain.

Construction 3.19. Define a map H̄d → Hd by sending h̄ : Γ→ B̄ to h : Γ→ B,
where h is the composition of h̄ with the covering map B̄ → B. This map is
bijective. The inverse map is given as follows. Let h : B → Γ be a tropical
curve in Hd and choose an unbounded maximal cell of P. Choose a fundamental
domain of B̄ → B and let h̄(Eout) be the preimage of h(Eout) in that fundamental
domain. Whenever the image h(V ) of an edge V lies on the horizontal dashed line
in Figure 1.7 with respect to the chart on the unbounded maximal cell chosen,
we change the fundamental domain and apply the monodromy transformation.

2

9

2
9

Figure 3.2. A balanced tropical curve h : Γ→ B in H3 for (P2, E)
giving the tropical curve in Figure 3.1 under the map from Con-
struction 3.17. The integers are weights of edges 6= 1.

Lemma 3.20. The set H̄d is finite.

Proof. Let h̄ : Γ→ B̄ be a tropical curve in H̄d. We show that the set of weight
vectors of bounded legs {u(V,E) | V ∈ E ∈ L∆(Γ)} determines the image of h̄.
By Lemma 3.15 and the constructions of the maps Hd → H̃d and H̄d → Hd

(Constructions 3.19 and 3.17) the image of h̄ is disjoint from σ̄0, so we can work
in the chart from §1.3. Give Γ the structure of a rooted tree by defining the root
vertex to be the vertex Vout of the unique unbounded leg Eout.

Let V be a vertex of Γ. We show by induction on the height (maximal length
of chains connecting V with a leaf of Γ) of V that {u(V,E) | V ∈ E ∈ L∆(Γ)}
determines h̄(V ). For the base case, let E ∈ L∆(Γ) be a bounded leg. Then h̄
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maps E onto a line segment [v, δ) for v a vertex of P̄ and δ an affine singularity
of B̄. As the tangent vectors of these line segments are all different, the weight
vector u(V,E) determines the image of E. Hence, the images of all leaves are
determined by {u(V,E) | V ∈ E ∈ L∆(Γ)}. For the induction step, let V be a
vertex of height k > 0 and assume the image of all vertices of height < k is
determined. Then the images of all childs V1, . . . , Vn of V are determined. By the
balancing condition we know the weight vectors u(Vi,Ei) of all edges Ei connecting
V with its childs. This gives, for each child of V , a ray in B̄ with base h̄(Vi) and
direction mi, the direction of −u(Vi,Ei). Since h̄ is a tropical curve, all these rays
must intersect in a point. This is the image of V .

This shows that {u(V,E) | V ∈ E ∈ L∆(Γ)} determines the images of all vertices
and bounded legs of h̄. The image of Eout is determined, since we know h̄(Vout)
and the direction mout of the image of Eout. Hence, {u(V,E) | V ∈ E ∈ L∆(Γ)}
determines the image of h̄. By the balancing condition,∑

E∈L∆(Γ)
u(V,E) = u(Vout,Eout) = dwoutmout.

Hence, for finite d, there is a finite number of possible sets of weight vectors of
bounded legs {u(V,E) | V ∈ E ∈ L∆(Γ)}. This shows that Hd is finite. �

Corollary 3.21. The sets Hd and H̃d are finite. In particular, tropical curves in
H̃d are rigid and the basic monoid of stable log maps contributing to Nd equals N.

3.4. The limit s → 0. Here we consider the 2-parameter family X̃Q → A2 and
describe limits of stable log maps to X := Xs6=0 under s→ 0. This will enable us to
read off the curve class β ∈ H+

2 (X,Z) of a stable log map from its tropicalization.

Definition 3.22. For an effective curve class β ∈ H+
2 (X,Z) let M (X̃Q, β) be

the moduli space of basic stable log maps to X̃Q → A2 of class β (Definition 2.3).
Since X̃Q is projective over A1 by projection to s, the moduli space M (X̃Q, β) is
proper over A1 by [GS5], Theorem 0.2. Figure 3.3 shows the fibers of a stable log
map of degree 1 in M (X̃Q, β) for (P2, E).

Lemma 3.23. Let f : C→ X be a stable log map in M (X̃Q, β). Then the fibers
f 0
t : C0

t → X0
t map entirely to the divisor D0

t .

Proof. Suppose there is an irreducible component of C0
t not mapped to D0

t . Then,
since the marked point is mapped to D0

t , there exists an irreducible component
of C0

t that is not mapped onto D0
t and is not contracted to a point. But then the

tropicalization of f 0
t must have at least two legs, since the balancing condition

implies balancing of the legs. This means C0
t must have at least two marked

points, in contradiction with the definition of β (Definition 2.3). �



32 TIM GRÄFNITZ

s→ 0

t→ 0

s→ 0

t→ 0

N2N3 N N2N2 N2

N

N
N

s→ 0

t→ 0

s→ 0

t→ 0

N2N3 N2 N N2N3 N2N2

N

N
N

Figure 3.3. Fibers of a stable log map of degree 1 to X̃Q → A2

for (P2, E) (right) and their image on XQ → A2 (left) under the
resolution from §2. Some stalks of the ghost sheaves are given.

Definition 3.24. Let ΓD0
t
be the dual intersection graph of D0

t . This is a cycle
with r vertices. Let Gd be the set of graph morphisms g : Γ→ ΓX0

t
where Γ is a

tree (genus 0 graph) with vertices V decorated by dV ∈ N>0 such that
(1) if two vertices V and V ′ are connected by an edge, they are mapped to

different vertices of ΓX0
t

(2) ∑V dV = d

For g : Γ→ ΓX0
t
in Gd, the graph Γ consists of a single path.

Hence, there is an identification

Gd '
{

[i; d1, . . . , dk]
∣∣∣ i, k, di ∈ N>0,

k∑
i=1

di = d

}

as follows. Label ΓD0
t
cyclically by 1, . . . , r and label the vertices of Γ by V1, . . . , Vk

such that for all j = 1, . . . , k − 1 the vertex Vj is connected to Vj+1 by an edge
and such that lg(Vj) = lg(Vj+1)−1 mod r, where lv is the label of a vertex v of ΓX0

t
.

Then define i := lg(V1) and dj := dVj .

Definition 3.25. Note that projection to the unique unbounded direction defines
a map B → ΓX0

t
, where vertices of ΓX0

t
correspond to unbounded edges of B.

Define a surjective map
Hd → Gd

by composing h : Γ → B with this projection and collapsing vertices connected
by an edge and mapped to the same vertex of ΓX0

t
. The label at a vertex of the

image is given by the sum of degrees of classes attached to its preimages.
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Let f : C → X := Xs 6=0 be a stable log map in M (X, β). Since all the fibers Xs

are isomorphic for s 6= 0 this gives a family of stable log maps over A1×(A1\{0}).
Since M (X̃Q, β) is proper this family can be uniquely completed to a family over
A2. In other words, the limit of a stable log map in M (X, β) under s→ 0 is well
defined.

Proposition 3.26. Let f : C → XQ be a stable log map with tropicalization h̃

mapping to h ∈ Hd under the map from Construction 3.17. The limit of f with
respect to the family X0

t → A1 has dual graph that, after collapsing vertices that
are connected by an edge and mapped to the same vertex, is given by the image
of h under the map from Definition 3.25.

Proof. Let f : C → XQ be a stable log map with tropicalization h̃ mapping to
h : Γ → B. Consider the fiber f 0

0 : C0
0 → X0

0 . If a vertex V of Γ is mapped to
a vertex v of P or the unbounded edge adjacent to v, then the corresponding
irreducible component CV of C0

0 is mapped to the irreducible componentXv ofX0
0

corresponding to v. But then, for t 6= 0, the corresponding irreducible component
CV of C0

t is mapped to the irreducible component of D0
t corresponding to v. This

is precisely the image of V under the map from Definition 3.25. �

2

9
1

2

Figure 3.4. The tropical curve from Figure 3.4 under Hd → Gd

gives [i; 2, 1] for some choice of Di and some choice of ordering.

Definition 3.27. As above fix a cyclic ordering of the irreducible components of
D0
t = D1 + . . .+Dr. Define a surjective map

Gd → H+
2 (X,Z)

by sending [i; d0, . . . , dk] to the curve class β defined by

Di+j · β =
∑

λ∈N>0
λr+j≤k

dλr+j.

This is well-defined by the balancing condition and since H+
2 (X,Z) ' H+

2 (X0,Z),
where X0 is a toric variety.
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Definition 3.28. Let Hβ be the set of tropical curves mapping to β under the
decomposition of the maps from Definitions 3.25 and 3.27. Let H̃β be the preimage
of Hβ under the map from Construction 3.17.

Corollary 3.29. The tropicalization of a stable log map of class β is in H̃β.

3.5. Refinement and logarithmic modification. To apply the degeneration
formula in §4 we need a degeneration of (X,D) such that all stable log maps to
the central fiber are torically transverse. We achieve this as follows.

Construction 3.30 (The refined degeneration). Let Pd be a refinement of P

such that each tropical curve in H≤d = ∪d′≤dHd′ (or equivalently in H̃≤d) is con-
tained in the 1-skeleton of Pd. This defines a refinement of the generalized cone
complex Σ(X̃0) by taking cones over cells of Pd. In turn, Pd induces a loga-
rithmic modification X̃d → A1 of X̃→ A1 (see §A) without changing the generic
fiber. By making a base change A1 → A1, t 7→ te we can scale Pd and thus
assume it has integral vertices (c.f. [NS], Proposition 6.3).

Remark 3.31. The dual intersection complex of the central fiber Y of X̃d is given
by (B̃,Pd, ϕ). Hence, all stable log maps to Y → ptN of class β as in Definition
2.3 are torically transverse, since tropicalizations of such maps are contained in
the 1-skeleton of Pd, with vertices mapping to vertices of Pd.

It was shown in [AW] that Gromov-Witten invariants are invariant under log-
arithmic modifications. Hence,

Nβ =
∫
JM (Y,β)K

1.

In the next section we will apply the degeneration formula of logarithmic Gromov-
Witten theory to get a formula for Nd in terms of logarithmic Gromov-Witten
invariants of irreducible components of Y .

4. The degeneration formula

Consider a projective semi-stable degeneration π : X → T = Spec R, for R a
discrete valuation ring. This is a projective surjection such that the generic fiber
is smooth and the fiber X = π−1(0) over the closed point 0 ∈ T is simple nor-
mal crossings with two smooth connected (hence irreducible) components X1, X2

meeting in a smooth connected divisor D. In the logarithmic language this means
that π is log smooth when T and X carry the divisorial log structures given by
0 ∈ T and X ⊆ X, respectively. The degeneration formula relates invariants (rel-
ative or logarithmic Gromov-Witten invariants) on the generic fiber of π : X→ T

to invariants on the components X1, X2 of the special fiber.
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The degeneration formula was proved for stable relative maps, in symplectic
geometry [LR][IP] and in algebraic geometry [Li2][AF], as well as for stable log
maps using expanded degenerations [Che2]. A pure log-geometric version avoid-
ing the target expansions of relative Gromov-Witten theory was worked out by
Kim, Lho and Ruddat [KLR] using logarithmic Gromov-Witten theory [GS5].

While the formula in [KLR] is presented for the setup above, it easily generalizes
to the case where X1, X2 are quasi-projective and log smooth rather than projec-
tive and smooth. In particular, X1, X2 might be reducible. Applying the formula
repeatedly, we get a degeneration formula for several log smooth components
X1, . . . , Xn intersecting in smooth connected divisors such that Xi∩Xj ∩Xk = ∅
for all i 6= j 6= k ∈ {1, . . . , n} and with dual intersection graph a tree.

Fix an integer d > 0 and let X̃d → A1 be the refined log smooth degeneration
of (X,D) from Construction 3.30. Write the central fiber as Y and let β be a
class of stable log maps as in Definition 2.7 with D · β ≤ dwout. Let Y ◦ be the
complement of zero-dimensional toric strata in Y and write

Mβ := M (Y, β).

Since M (Y ◦, β) is canonically isomorphic to the moduli space of torically trans-
verse stable log maps to Y of class β and all such maps are torically transverse
(Remark 3.31), the canonical inclusion gives an isomorphism Mβ

∼= M (Y ◦, β).
For a vertex v ∈ P [0]

d , let Y ◦v be the complement of the 0-dimensional toric
strata of the irreducible component Yv of Y corresponding to v. Then Y ◦ is a
union of finitely many log smooth schemes Y ◦v over ptN, with Y ◦v ∩Y ◦v′ = ∅ if there
is no edge connecting v and v′, and D◦E := Y ◦v ∩ Y ◦v′ log smooth and a divisor of
both Y ◦v and Y ◦v′ if there is an edge E connecting v and v′. The intersection of any
triple of components is empty. Hence, we can apply the degeneration formula.

4.1. Toric invariants. We introduce logarithmic Gromov-Witten invariants of
toric varieties with point conditions on the toric boundary, following [GPS].

Let M ' Z2 be a lattice and let MR = M ⊗ZR be the associated vector space.
Let (m1, . . . ,mn) be an n-tuple of distinct nonzero primitive vectors in M and
let w = (w1, . . . ,wn) be an n-tuple of weight vectors wi = (wi1, . . . , wili) with
li > 0, wij ∈ N such that

n∑
i=1
|wi|mi = woutmout

for 0 6= mout ∈ M primitive and wout > 0. Here |wi| := ∑li
j=1wij. Let Σ be the

complete rational fan in MR whose rays are generated by −m1, . . . ,−mn,mout

and let XΣ be the corresponding toric surface over C. By refining Σ if necessary,
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we can assume that XΣ is nonsingular. Let D1, . . . , Dn, Dout ⊆ XΣ be the toric
divisors corresponding to the given rays. Let X◦Σ be the complement of the 0-
dimensional torus orbits in XΣ, and let D◦i = Di ∩X◦Σ, D◦out = Dout ∩X◦Σ. Then
define a class βw of stable log maps to XΣ as follows.
(1) genus g = 0;
(2) k = l1 + . . .+ ln + 1 marked points pij, i = 1, . . . , n, j = 1, . . . , li and p;
(3) βw ∈ H2(XΣ,Z) defined by intersection numbers with toric divisors,

Di · βw = |wi|, Dout · βw = wout;

(4) contact data upij = wijmi and up = woutmout.
By restriction we get a class of stable log maps to X◦Σ that we also denote by βw.
The moduli space M (X◦Σ, βw) in general is not proper, since X◦Σ is not proper.
However, the evaluation map

ev◦ : M (X◦Σ, βw)→
n∏
i=1

(D◦i )li

is proper ([GPS], Proposition 4.2) and we obtain a proper moduli space via base
change to a point. To be precise, let γ : Spec C→ ∏n

i=1(D◦i )li be a point. Then

Mγ := Spec C×∏n

i=1(D◦i )li M (X◦Σ, βw)

is a proper Deligne-Mumford stack admitting a virtual fundamental class, and
we can define the logarithmic Gromov-Witten invariant

(4.1) Nm(w) :=
∫

Mγ

γ!JM (X◦Σ, βw)K.

Since the codimension of γ equals the virtual dimension of M (X◦Σ, βw), this
definition makes sense. Note that we may add further primitive vectors mi to m,
with weight vectors wi = 0. This leads to a subdivision of Σ, hence to a toric
blow up of XΣ, but the logarithmic Gromov-Witten invariants do not change.

4.2. The decomposition formula. By the decomposition formula for stable
log maps ([ACGS1], Theorem 1.2), the moduli space Mβ decomposes into moduli
spaces indexed by certain decorated tropical curves. Here decorated means that
there are classes of stable log maps βV attached to the vertices. In this section
we show that a tropical curve in H̃d automatically carries such decorations.

Proposition 4.1. Let f : C/ptN → Y/ptN be a stable log map in Mβ with trop-
icalization h̃ : Γ̃ → B̃. For each vertex V ∈ P̃ [0]

d , the class [CV ] ∈ H+
2 (Yh̃(V ),Z)

is uniquely determined by the intersection numbers of CV with components of
∂Yh̃(V ), i.e., by h̃.
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Proof. If V is of type (I) as in Definition 3.13, then Yh̃(V ) is a toric variety, so
the statement is true. If V is of type (II), then CV is a multiple cover of some
exceptional line Lexc

v (Definition 2.2). Its intersection with ∂Yv determines the
degree d of the multiple cover, hence the curve class [CV ] = d[Lexc

v ] ∈ H+
2 (Yv,Z).

Let V be a vertex of type (III). It is mapped to a vertex v of P. Let Xv be
the corresponding component of X0. This is a toric variety. By Proposition 3.12,
(III), we know the intersection of the image of CV under the resolution ν : X̃→ X

from §2 with the toric divisors of Xv, hence the curve class [ν(CV )] ∈ H+
2 (Xv,Z).

But this determines [CV ] = [ν(CV )] − k[Lexc
v ] ∈ H+

2 (Yv,Z), where k is as in
Proposition 3.12, (III). �

Definition 4.2. For h̃ : Γ̃→ B̃ in H̃d, let Mh̃ be the moduli space of stable log
maps with tropicalization h̃. This is proper by [ACGS1], Proposition 2.34.

Remark 4.3. In fact [ACGS1] deals with moduli spaces Mτ̃ of stable log maps
marked by τ̃ = (τ,A), where τ is a type of tropical maps and A is a vertex
decoration by curve classes. Since the virtual dimension of Mβ is zero and tropical
curves in H̃d are rigid, such τ̃ are in bijection with vertex decorated tropical
curves. We showed in Proposition 4.1 that tropical curves in H̃d carry unique
vertex decorations. So τ̃ uniquely defines a tropical curve h̃ and Mτ̃ equals Mh̃.

Proposition 4.4 (Decomposition formula).

JMβK =
∑
h̃∈H̃β

1
|Aut(h̃)|

F?JMh̃K,

where F : Mh̃ → Mβ is the forgetful map and Aut(h̃) is the group of automor-
phisms of h̃ (Definition 3.5).

Proof. The decomposition formula ([ACGS1], Theorem 1.2) gives JMβK as a sum
over decorated types of tropical maps τ̃ . By Remark 4.3 this is a summation over
H̃β. The multiplicity mτ in [ACGS1], Theorem 1.2, is defined as the index of the
image of the lattice Σ(ptN) = N inside the lattice Σ(ptN) = N. Here the first ptN
is the base of the curve while the second ptN is the base of Y . In other words,
mτ is the smallest integer such that scaling B̃ by mτ leads to a tropical curve
with integral vertices and edge length. By Construction 3.30 Pd has integral
vertices (by the base change t 7→ te) and tropical curves in H̃β are contained in
the 1-skeleton of Pd with vertices mapping to vertices of Pd. So h̃ is integral
without rescaling and mτ = 1. Moreover Aut(τ) = Aut(h̃) by our definition
of automorphisms (see Definition 3.5). Then [ACGS1], Theorem 1.2, gives the
formula above. �
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4.3. Contributions of the vertices. Let h̃ : Γ̃→ B̃ be a tropical curve in H̃d.
Define

M ◦
V := M (Y ◦h̃(V ), βV ),

where X◦
h̃(V ) is the complement of the 0-dimensional toric strata in X◦

h̃(V ).
For V ∈ VII(Γ̃) (Definition 3.13) with adjacent edge E, the moduli space M ◦

V

is proper, since it is isomorphic to the moduli space of wE-fold multiple covers of
P1 totally ramified at a point.

For V ∈ V (Γ̃) \ VII(Γ̃) we obtain a proper moduli space as follows. Again,
Γ̃ is a rooted tree with root vertex Vout. There is a natural orientation of the
edges of Γ̃ by choosing edges to point from a vertex to its parent. For each vertex
V ∈ V (Γ̃) \ VII(Γ̃) there is an evaluation map

ev◦V,− : M ◦
V →

∏
E→V

D◦E,

where the product is over all edges of Γ̃ adjacent to V and pointing towards V .

Lemma 4.5. The evaluation map ev◦V,− is proper.

Proof. For V ∈ VI(Γ̃) this is [GPS], Proposition 4.2. For V ∈ VIII(Γ̃) it is similar
to [GPS], Proposition 5.1. Let us carry this out. Let V ∈ V (Γ̃) be a vertex.
We use the valuative criterion for properness, so let R be a valuation ring with
residue field K, and suppose we are given a diagram

T = Spec K //

��

M ◦
V

//

ev◦V,−
��

MV

evV,−
��

S = Spec R //
∏
E→V D

◦
E

//
∏
E→V DE

Since MV is proper, evV,− is proper and we obtain a unique family of stable log
maps

C //

��

Yh̃(V ) × S

��

S
=

// S

We will show that f is a family of stable log maps to Y ◦
h̃(V ). Let 0 ∈ S be the

closed point and consider f0 : C0 → Yh̃(V ). The marked points of C0 map to Y ◦
h̃(V ).

Suppose f0(C0) intersects a toric divisor D ⊂ Yh̃(V ) at a point of D\Y ◦
h̃(V ). The

intersection number of C0 with D is accounted for in Y ◦
h̃(V ). For V ∈ VI(Γ̃) this is

clear and for V ∈ VIII(Γ̃) this follows since the intersection number is accounted
for after composing with the resolution X̃→ X from §2. Hence, there must be an
irreducible component C of C0 dominating D. Let D1 and D2 be the two distinct
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toric divisors of Yh̃(V ) intersecting D only at two distinct torus fixed points of D.
It was shown in [GPS], Proposition 4.2, that there are irreducible components
C1, C2 ⊂ C0 intersecting C and dominating E1 and E2, respectively. By applying
this statement repeatedly, replacing C with C1 or C2, we find that C0 contains
a cycle of components dominating the union of toric divisors of Yh̃(V ). But then
C0 would have genus g > 0, contradicting the assumptions. We have shown by
contradiction that f : C → Yh̃(V ) × S is a family of stable log maps to Y ◦

h̃(V ).
Hence, ev◦V,− is proper by the valuative criterion for properness. �

Since properness of morphisms is stable under base change, we obtain a proper
moduli space by base change to a point

γV : Spec C→
∏
E→V

D◦E,

that is,
MγV := Spec C×∏

E→V D
◦
E

M ◦
V

is a proper Deligne-Mumford stack.

Lemma 4.6. For V ∈ VII(Γ̃) the virtual dimension of MV is zero. Otherwise
the virtual dimension of MV equals the codimension of γV .

Proof. For V ∈ VII(Γ̃) with adjacent edge E the moduli space MV is isomor-
phic to the moduli space of wE-fold multiple covers of P1 totally ramified at a
point. However, the two moduli spaces carry obstruction theories which differ by
H1(C, f ?OP1(−1)) at a moduli point [f : C → Lexc

V ] (c.f. [GPS], §5.3). The rank
of H1(C, f ?OP1(−1)) is wE − 1 and so is the virtual dimension of M (P1/∞, wE).
Hence, the virtual dimension of MV is zero.

Otherwise, the virtual dimension is easily seen to be the number of edges of Γ̃
pointing towards V , with orientation of Γ̃ as given above. By definition this is
the codimension of γV . �

Definition 4.7. For a vertex V of Γ̃ define

NV :=


∫
JM ◦

V K 1, V ∈ VII(Γ̃);∫
MγV

γ!
V JM

◦
V K, V ∈ VI(Γ̃) ∪ VIII(Γ̃).

This is a finite number by Lemma 4.6 and independent of γV by Lemma 4.5.

Proposition 4.8. We give NV for the different types of vertices (Definition 3.13).
(I) For V ∈ VI(Γ̃) let e1, . . . , en be the edges of Pd adjacent to h̃(V ) and let

m1, . . . ,mn be the corresponding primitive vectors. Let wi = (wi1, . . . , wili)
be the weights of edges of Γ̃ mapping to ei and write w = (w1, . . . ,wn).
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Then NV is the toric invariant from (4.1)

NV = Nm(w),

(II) If V ∈ VII(Γ̃), then

NV = (−1)wE−1

w2
E

,

where E is the unique edge adjacent to V .
(III) If V ∈ VIII(Γ̃), then

NV =
∑

wV,+

Nm(w)
|Aut(wV,+)|

l∏
i=1

(−1)wV,i−1

wV,i
.

The sum is over all weight vectors wV,+ = (wV,1, . . . , wV,lV ) such that
|wV,+| := ∑lV

i=1wV,i = k, with k as in Proposition 3.12, (III). Further,
Nm(w) is as in (4.1) with m = (mv,−,mv,+) and w = ((wE)E∈EV,−(Γ̃),wV,+),
where EV,− is the set of edges adjacent to V and mapped to direction mv,−.

Proof. (I) is by the definition of Nm(w) in (4.1). For (II) recall from the proof
of Lemma 4.6 that MV is isomorphic to M (P1/∞, wE) with obstruction theory
differing by H1(C, f ?OP1(−1)). Hence,

NV =
∫
JM (P1/∞,wE)K

e(H1(C, f ?OP1(−1))

which is equal to (−1)wE−1/w2
E by the genus zero part of [BP], Theorem 5.1, see

also [GPS], Propositions 5.2 and 6.1. For (III) we apply [GPS], Proposition 5.3.
We only blow up one point on the divisor Dv,+, so we have P = (P+) with P+ = k

in the notation of [GPS], Proposition 5.3, with k as in Proposition 3.12, (III).
Note that our i is called j in [GPS] and the i of [GPS] is equal to 1 here. Further,
RP+|w+ = ∏li

i=1
(−1)wi−1

w2
i

by [GPS], Proposition 5.2 and the discussion thereafter.
Then [GPS], Proposition 5.3, gives (III). �

4.4. Gluing. Define×V ∈V (Γ̃) MV to be the moduli space of stable log maps in∏
V MV matching over the divisors DE, E ∈ E(Γ̃), i.e., the fiber product

×
V

MV
//

��

∏
V

MV

ev

��∏
E∈E(Γ̃)

DE
δ

//
∏
V

∏
E∈E(Γ̃)
V ∈E

DE

Here ev is the product of evaluation maps to common divisors (labeled by compact
edges) and δ is the diagonal map. Similarly define×V

M ◦
V .
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Definition 4.9. Let cut : Mh̃ →×V
MV be the morphism defined by cutting a

curve along its gluing nodes. For a precise definition see [Bou1], §7.1. Here Mh̃

denotes the moduli space of stable log maps with tropicalization h̃ (Definition
4.2). Since every stable log map in Mh̃ is torically transverse this is in fact a
morphism

cut : Mh̃ →×
V

M ◦
V .

Lemma 4.10. The morphism cut is étale of degree

deg(cut) =
∏

E∈E(Γ̃)

wE.

Proof. This was computed e.g. in [NS], Proposition 7.1, [Gro2], Proposition
4.23, and [Bou1], Proposition 18. For each edge E we have a choice of wE-
th root of unity in the log structure of C at the corresponding node. This
contributes a factor of wE to deg(cut). In fact its is a bit more involved:
In the definition of tropicalization we removed some of the bivalent vertices
from the dual intersection graph ΓC . For each compact edge E in ΓC we
have a choice of wE-th root of unity as follows. Locally at a node q we have
C = Spec C[u, v]/(uv) and X̃d = Spec C[x, y, w±1, t]/(xy − t`) for some ` ∈ Z>0,
so Y := X̃d,0 = Spec C[x, y, w±1]/(xy). Locally at q a log structure on C is given
by a commutative diagram

f−1MY

f#
//

αY
��

MC

αC

��

f−1OY
f?

// OC

For any wE-th root of unity ζ there is a chart forMC locally at q given by

S` → OC , ((a, b, c)) 7→

(ζ−1u)avb c = 0,
0 c 6= 0.

Here S` = N2 ⊕N N with N → N2 the diagonal embedding and N → N, 1 7→ `

(see Construction 3.8, (2)). None of these choices are identified via a scheme
theoretically trivial isomorphism and all possible extensions are of the above
form (see [Gro2], Proposition 4.23, Step 2).

Now consider a chain of edges of ΓC connected by bivalent vertices not mapping
to vertices of Pd. Then these bivalent vertices get removed by producing the
tropicalization and the chain of edges is replaced by a single edge E. In this
case there are some isomorphisms between the above stable log maps that are
not scheme theoretically trivial. Up to such isomorphisms there are exactly wE
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stable log maps (see [Gro2], Proposition 4.23, Step 3). So we really only get one
factor of wE for each edge in the tropicalization. The log structure at general
points and marked points is uniquely determined (see [Gro2], Proposition 4.23,
Step 1). This gives the degree of cut as above. �

Proposition 4.11 (Gluing formula). We have

cut?JMh̃K =
∏

E∈E(Γ̃)

wE · δ! ∏
V ∈V (Γ̃)

JM ◦
V K.

Proof. By compatibility of obstruction theories (see [KLR], §9 and [Bou1], §7.3)
we have

JMh̃K = cut?δ! ∏
V ∈V (Γ̃)

JM ◦
V K.

By the projection formula, cut?cut? is multiplication with deg(cut) which is∏
E∈E(Γ̃)wE by Lemma 4.10. �

Proposition 4.12. We have∫
JMh̃K

1 =
∏

E∈E(Γ̃)

wE ·
∫
δ!
∏
V
JMV K

1.

Proof. By Proposition 4.11 the cycles cut?JMh̃K and
∏
E∈E(Γ̃)wE ·δ!∏

V JMV K have
the same restriction to the open substack×V

M ◦
V of×V

MV . Hence by [Ful],
Proposition 1.8m their difference is rationally equivalent to a cycle supported
on the closed substack Z := (×V

MV ) \ (×V
M ◦

V ). Suppose there exists an
element (fV : CV → Yh̃(V ))V ∈V (Γ̃) ∈ Z. Then by the loop construction in the
proof of Proposition 4.5 at least one of the source curves CV would contain a
nontrivial cycle of components, contradicting g = 0. So Z is empty, completing
the proof. �

Proposition 4.13 (Identifying the pieces). We have∫
δ!
∏
V
JMV K

1 =
∏

V ∈V (Γ̃)

NV .

Proof. This is similar to the proof of [Bou1], Proposition 22. By definition of δ
we have ∫

δ!
∏
V
JMV K

1 =
∫∏

V
JMV K

ev?[δ],

where [δ] is the class of the diagonal ∏E DE. Since each DE is a projective line,
we have

[δ] =
∏

E∈E(Γ̃)

(ptE × 1 + 1× ptE).
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As before we give Γ̃ the structure of a rooted tree by choosing the root vertex to
be the vertex Vout of the unique unbounded leg Eout. For a bounded edge E let
VE,+ and VE,− be the vertices of E such that VE,+ is the parent of VE,−.

We will show by dimensional arguments that the only term of

ev?[δ] =
∏

E∈E(Γ̃)

(
(evVE,−)?[ptE] + (evVE,+)?[ptE]

)
giving a nonzero contribution after integration over ∏V JMV K is ∏(evVE,+)?[ptE].
In other words:

Claim: For each compact edge E, a term of ev?[δ] giving a nonzero contribution
after integration over ∏V JMV K does not contain a factor (evVE,−)?[ptE].

Let E be a compact edge with VE,− a vertex of type (II) as in Definition
3.13. By Proposition 4.8, (II), the virtual dimension of MVE,− is zero. Hence,
(evVE,−)?[ptE] = 0, since its insertion over MVE,− defines an enumerative problem
of virtual dimension −1.

Now consider a compact edge E with VE,− of type (III). Let Ei, i ∈ I be the
edges adjacent to VE,− and different from E (possibly I = ∅). By Proposition
3.12, (III), the edges Ei connect VE,− with a vertex Vi of type (II). The terms in
ev?[δ] containing a factor (evVEi,−)?[ptEi ] give zero after integration over JMViK by
the dimensional argument above. Hence, to give a nonzero contribution, a term
of ev?[δ] must contain the factor ∏i∈I(evVEi,+)?[ptEi ]. By Proposition 4.8, (III),
the virtual dimension of MV is |I|, so the insertion of ∏i∈I(evVEi,+)?[ptEi ] in MV

defines an enumerative problem of virtual dimension 0. Any further insertion
would reduce the virtual dimension to −1, so a term of ev?[δ] giving a nonzero
contribution does not contain the factor (evVE,−)?[ptE].

We will show the claim for compact edges E with VE,− a vertex of type (I) by
induction on the height of VE,−, that is, the maximal length of chains connecting
VE,− with a leaf of Γ̃. By Proposition 3.12, (I), a vertex of type (I) fulfills the
ordinary balancing condition. In particular, it must have more than one adjacent
edge, hence cannot be a leaf. This shows the set of leaves of Γ̃ is contained in
VII(Γ̃)∪ VIII(Γ̃). Thus we have already shown that the claim is true for compact
edges E with VE,− of height 0. This is the base case. For the induction step assume
that the claim is true for compact edges E with VE,− of height ≤ k for some k ∈ N
and consider a compact edge E with VE,− of height k+ 1. Assume that VE,+ is of
type (I), since otherwise the claim is true by the above arguments. Let Ei, i ∈ I
be the edges connecting VE,− with its childs. By Proposition 4.8, (I), the virtual
dimension of MVE,− is |I|. By the induction hypothesis, a term of ev?[δ] giving a
nonzero contribution must contain the factor ∏i∈I(evVEi,+)?[ptEi ]. Inserting this
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factor over MVE,− gives an enumerative problem of virtual dimension 0. Again,
for dimensional reasons, a term of ev?[δ] giving a nonzero contribution cannot
contain the factor (evVE,−)?[ptE], hence it must contain the factor (evVE,+)?[ptE].
This proves the claim. Now∫∏

V ∈V (Γ̃)JMV K

∏
E∈E(Γ̃)

(evVE,+)?[ptE] =
∏

V ∈V (Γ̃)

∫
JMV K

(evE→V )?[pt] =
∏

V ∈V (Γ̃)

NV ,

completing the proof. �

4.5. The degeneration formula. Combining the decomposition formula and
the gluing formula, we obtain the degeneration formula, expressing Nβ in terms of
logarithmic Gromov-Witten invariants NV labeled by vertices of tropical curves.

Proposition 4.14 (Degeneration formula).

Nβ =
∑
h̃∈H̃β

1
|Aut(h̃)|

·
∏

E∈E(Γ̃)

wE ·
∏

V ∈V (Γ̃)

NV .

Proof. Since the virtual dimension of Mβ is zero, integration (i.e., proper push-
forward to a point) of the decomposition formula (Proposition 4.4) gives

Nβ =
∑
h̃∈H̃β

1
|Aut(h̃)|

∫
JMh̃K

1.

Using Propositions 4.12 and 4.13 we get the above formula. �

As mentioned earlier, summation over balanced tropical curves in Hβ will give
a more symmetric version of the above formula:

Definition 4.15. Let h : Γ→ B be a tropical curve in Hβ and let V be a vertex
of Γ. Then the image of V under the map from Construction 3.17 is a vertex of
Γ̃ of type (I) or (III). Let m and w be as in the respective case of Proposition
4.8 and define

N tor
V := Nm(w).

Note that N tor
V = NV for vertices of type (I).

Definition 4.16. For a tropical curve h : Γ→ B in Hd for some d define

Nh :=
 1
|Aut(h)| ·

∏
E∈E(Γ)

wE ·
∏

E∈L∆(Γ)

(−1)wE−1

wE
·
∏

V ∈V (Γ)
N tor
V

 ,
where L∆(Γ) is the set of bounded legs (see Definition 3.3).

Theorem 4.17 (Symmetric version of the degeneration formula).

Nβ =
∑
h∈Hβ

Nh.
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Proof. Using Propositions 4.14 and 4.8, we have

Nd =
∑
h̃∈H̃β

 1
|Aut(h̃)|

·
∏

E∈E(Γ̃)

wE ·
∏

V ∈VI(Γ̃)

N tor
V ·

∏
V ∈VII(Γ̃)

(−1)wEV −1

w2
EV

·
∏

V ∈VIII(Γ̃)

∑
wV,+

N tor
V

1
|Aut(wV,+)|

lV∏
i=1

(−1)wV,i−1

wV,i

 .
Canceling the wEV for vertices of type (II) in the first product against the ones
in the denominator of the third product and factoring out the second sum we get

Nd =
∑
h̃∈H̃β

∑
(wV,+)V ∈VIII (Γ̃)

 1
|Aut(h̃)||Aut(wV,+)|

·
∏

E∈E(Γ̃)\∪V ∈VII (Γ̃){EV }

wE

·
∏

V ∈VI(Γ̃)∪VIII(Γ̃)

N tor
V ·

∏
V ∈VII(Γ̃)

(−1)wEV −1

wEV
·

∏
V ∈VIII(Γ̃)

lV∏
i=1

(−1)wV,i−1

wV,i

 .
Now by the construction of the map Hd → H̃d in Construction 3.17, the two
summations can be replaced by a summation over Hd. Note that for h̃ ∈ H̃d we
have ∑

h7→h̃

1
|Aut(h)| = 1

|Aut(h̃)|
∑

(wV,+)V ∈VIII (Γ̃)

1
|Aut(wV,+)| ,

where the sum is over all h ∈ Hd giving h̃ via the map from Construction 3.17.
This can be seen by multiplying both sides with |Aut(h̃)|. Moreover, note that
V (Γ) = VI(Γ̃)∪ VIII(Γ̃) and E(Γ) = E(Γ̃) \∪V ∈VII(Γ̃){EV }, where, for a vertex V
of type (II), EV is the unique edge containing the vertex V . Then

Nd =
∑
h∈Hβ

 1
|Aut(h)| ·

∏
E∈E(Γ)

wE ·
∏

V ∈V (Γ)
N tor
V

·
∏

V ∈VII(Γ̃)

(−1)wEV −1

wEV
·

∏
V ∈VIII(Γ̃)

lV∏
i=1

(−1)wV,i−1

wV,i

 .
Using that

∏
E∈L∆(Γ)

(−1)wE−1

wE
=

∏
V ∈VII(Γ̃)

(−1)wEV −1

wEV
·

∏
V ∈VIII(Γ̃)

lV∏
i=1

(−1)wV,i−1

wV,i

completes the proof. �

Corollary 4.18.
Nd =

∑
h∈Hd

Nh.

Proof. This follows from Theorem 4.17 and Hd = ∐
β∈H+

2 (X,Z)
D·β=dwout

Hβ. �
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4.6. Invariants with prescribed limit under s→ 0.

Definition 4.19. For an element [i; d1, . . . , dk] ∈ Gd (Definition 3.24) define

N[i;d1,...,dk] =
∑

h7→[i;d1,...,dk]
Nh,

where the sum is over all h ∈ Hd mapping to [i; d1, . . . , dk] (Definition 3.25).

Remark 4.20. Barrott and Nabijou [BN] define invariants indexed by Gd by only
looking at the family Xt → A1 for t 6= 0. We conjecture that these coincide with
the invariants defined above. This question will be investigated in future work.

5. Scattering calculations

In this section we recall the notions of wall structures and scattering diagrams
from [GS3], restricting to the 2-dimensional case with trivial gluing data. We then
explain how the dual intersection complex (B,P, ϕ) of the toric degeneration
(X,D)→ A1 of (X,D) defines a consistent wall structure S∞. For toric varieties
the correspondence between scattering diagrams (wall structures with one vertex)
and logarithmic Gromov-Witten invariants was shown in [GPS]. We use the
relation between scattering diagrams and tropical curves from [GPS], Theorem
2.8, (see Lemma 5.7) to extend this correspondence to our non-toric case.

5.1. Scattering diagrams. Let M ' Z2 be a lattice and write MR = M ⊗Z R.
Let Σ be a fan in MR and let ϕ be an integral strictly convex piecewise affine
function on Σ with ϕ(0) = 0. Note that the rays of Σ form the corner locus of ϕ.
Let Pϕ be the monoid of integral points in the upper convex hull of ϕ,

Pϕ = {p = (p, h) ∈M ⊕ Z | h ≥ ϕ(p)}.

Write t := z(0,1) and let Rϕ be the CJtK-algebra obtained by completion of C[Pϕ]
with respect to (t),

Rϕ = lim←−C[Pϕ]/(tk).

Definition 5.1. A ray for ϕ is a half-line d = R≥0 · md ⊆ MR, with md ∈ M

primitive, together with an element fd ∈ Rϕ such that
(1) each exponent p = (p, h) in fd satisfies p ∈ d or −p ∈ d. In the first case the

ray is called incoming, in the latter it is called outgoing;
(2) if md, is a ray generator of Σ, then fd ≡ 1 mod (zmd);
(3) if md, is not a ray generator of Σ, then fd ≡ 1 mod (zmdt).
A scattering diagram for ϕ is a set D of rays for ϕ such that for every power
k > 0 there are only a finite number of rays (d, fd) ∈ D with fd 6≡ 1 mod (tk).
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Let D be a scattering diagram for ϕ. Let γ : [0, 1]→MR be a closed immersion
not meeting the origin and with endpoints not contained in any ray of D. Then,
for each power k > 0, we can find numbers 0 < r1 ≤ r2 ≤ . . . ≤ rs < 1 and rays
di = (R≥0mi, fi) ∈ D with fi 6≡ 1 mod (tk) such that (1) γ(ri) ∈ di, (2) di 6= dj if
ri = rj and i 6= j, and (3) s is taken as large as possible.

For each ray ρ ∈ Σ[1] write fρ = 1 + z(mρ,ϕ(mρ)) for mρ ∈ M the primitive
generator of ρ, and define

R̃k
ϕ =

(
Rϕ/(tk+1)

)∏
ρ
fρ
.

For each i, define a CJtK-algebra automorphism of R̃k
ϕ by θdi = exp(log(fi)∂ni) for

∂n(zp) := 〈n, p〉 zp, i.e.,
θkdi(z

p) = f
−〈ni,p〉
i zp,

where ni ∈ N = Hom(M,Z) is the unique primitive vector satisfying 〈ni,mi〉 = 0
and 〈ni, γ′(ri)〉 > 0. Define

θkγ,D = θkds ◦ . . . ◦ θ
k
d1 .

If ri = rj, then θdi and θdj commute. Hence, θkγ,D is well-defined. Moreover, define

θγ,D = lim
k→∞

θkγ,D.

Definition 5.2. A scattering diagram D is consistent to order k if, for all γ such
that θkγ,D is defined,

θkγ,D ≡ 1 mod (tk+1).

It is consistent to any order, or simply consistent, if θγ,D = 1.

Proposition 5.3 ([GPS], Theorem 1.4). For each scattering diagram D there
exists a consistent scattering diagram D∞ containing D such that D∞\D consists
only of outgoing rays.

Proof. The proof is constructive, so we will give it here.
Take D0 = D. We inductively show that there exists a Dk containing Dk−1

that is consistent to order k. Let D′k−1 consist of those rays d in Dk−1 with
fd 6≡ 1 mod (tk+1). Let γ be a closed simple loop around the origin. Then
θγ,Dk−1 ≡ θγ,D′

k−1
mod (tk+1). By the induction hypothesis this can be uniquely

written as
θγ,D′

k−1
= exp

(
s∑
i=1

ciz
mi∂ni

)
with mi ∈M \ {0}m ni ∈ m⊥i primitive and ci ∈ (tk). Define

Dk = Dk−1 ∪ {(R≥0mi, 1± cizmi) | i = 1, . . . , s} ,
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with sign chosen in each ray such that its contribution to θγ,Dk is exp(cizmi∂ni)
modulo (tk+1). These contributions exactly cancel the contributions to θγ,Dk
coming from Dk−1, so θγ,Dk ≡ 1 mod (tk+1).

Then take D∞ to be the non-disjoint union of the Dk for all k ∈ N. The
diagram D∞ will usually have infinitely many rays. �

Definition 5.4. Two scattering diagrams D, D′ are equivalent if θγ,D = θγ,D′ for
any closed immersion γ for which both sides are defined.

Definition 5.5. A scattering diagram D is called minimal if
(1) any two rays d, d′ in D have distinct support , i.e., md 6= md′ ;
(2) it contains no trivial ray, i.e., with fd = 1.

Remark 5.6. Every scattering diagram D is equivalent to a unique minimal scat-
tering diagram. In fact, if d, d′ have the same support, then we can replace these
two rays with a single ray with the same support and attached function fd · fd′ .
Moreover, we can remove any trivial ray without affecting θγ,D.

5.2. Scattering diagrams and toric invariants. In [GPS], Theorem 2.4, a bi-
jective correspondence between certain scattering diagrams and tropical curves is
established, leading to an enumerative correspondence ([GPS], Theorem 2.8).
Combining this result with the tropical correspondence theorem for torically
transverse stable log maps with point conditions on the toric boundary ([GPS],
Theorems 3.4, 4.4), we get the following.

Lemma 5.7. Let m = (m1, . . . ,mn) be an n-tuple of (not necessarily distinct)
primitive vectors of M . Let Σ be a fan in MR and let ϕ be an integral strictly
convex piecewise affine function on Σ such that ϕ(0) = 0. Let D be a scattering
diagram for ϕ consisting of a number of lines5, one in each direction mi and with
attached function fi ∈ C[z(−mi,0)] ⊆ Pϕ. Write the logarithm of fi as

log fi =
∞∑
w=1

aiwz
(−wmi,0), aiw ∈ C.

Let D∞ be the associated minimal consistent scattering diagram and let d ∈ D∞ \
D be a ray in direction md with attached function fd. Then

log fd =
∞∑
w=1

∑
w
w
Nm(w)
|Aut(w)|

 ∏
1≤i≤n
1≤j≤li

aiwij

 z(−wmd,0),

5This means that the rays in D come in pairs, one incoming and one outgoing, with the same
attached function
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where the sum is over all n-tuples of weight vectors w = (w1, . . . ,wn) satisfying
n∑
i=1
|wi|mi = wmd.

Here Nm(w) is the toric logarithmic Gromov-Witten invariant defined in §4.1
and Aut(w) is the subgroup of the permutation group Sn stabilizing (w1, . . . , wn).

Moreover, let m ∈ Q>0m1+. . .+Q>0mn be a primitive vector. If there is no ray
d ∈ D∞ in direction m, then Nm(w) = 0 for all w satisfying ∑n

i=1 |wi|mi = wmd.

Remark 5.8. Note that [GPS] deals with the case ϕ ≡ 0, where the t-order of an
element z(p,h) is simply given by h. In our case, the t-order is ϕ(−p) + h ≥ 0:

z(p,h) =
(
z(−p,ϕ(−p))

)−1
tϕ(−p)+h.

The formula in [GPS], Theorem 2.8, contains some explicit t-factors. These are
not visible in Lemma 5.7 due to this different notion of t-order.

5.3. Wall structures. Let (B,P, ϕ) be a 2-dimensional polarized polyhedral
affine manifold. Note that for each x ∈ B \∆ (where ∆ is the singular locus of
B), ϕ defines an integral strictly convex piecewise affine function

ϕx : ΛB,x 'M → R

on Σx, the fan describing (B,P) locally at x. If τx ∈ P is the smallest cell
containing x, then this is given by

Σx = {Kτxσ | τx ⊆ σ ∈P},

where Kτxσ is the cone generated by σ relative to τ , i.e.,

Kτxσ = R≥0(σ−τx) = {m ∈MR | ∃m0 ∈ τx,m1 ∈ σ, λ ∈ R≥0 : m = λ(m1−m0)}.

As in §5.1 this defines a monoid by the integral points in the upper convex hull
of ϕx,

(5.1) Px := Pϕx = {p = (p, h) ∈ ΛB,x ⊕ Z | h ≥ ϕx(p)}.

Note that Spec C[Px] gives a local toric model for the toric degeneration defined
by (B,P, ϕ) at a point on the interior of the toric stratum corresponding to τx.

Definition 5.9. Let (B,P, ϕ) be a 2-dimensional polarized polyhedral affine
manifold such that (B,P) is simple. For x, x′ ∈ B integral points, let mxx′ ∈ ΛB

denote the primitive vector pointing from x to x′. For a 1-cell ρ and x ∈ ρ \ ∆
let v[x] be the vertex of the irreducible component of ρ \ ∆ containing x. This
is unique by the construction of the discriminant locus ∆ for polyhedral affine
manifolds ([GHS], Construction 1.1).
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(1) A slab b on (B,P, ϕ) is a 1-dimensional rational polyhedral subset of a 1-
cell ρb ∈ P [1] together with elements fb,x ∈ C[Px], one for each x ∈ b \ ∆,
satisfying the following conditions.
(1) fb,x ≡ 1 mod (t) if ρb does not contain an affine singularity;
(2) fb,x ≡ 1 + z(mv[x]δ,ϕ(mv[x]δ)) mod (t) if ρb contains an affine singularity δ;
(3) fb,x = z(mv[x]v[x′],ϕ(mv[x]v[x′]))fb,x′ for all x, x′ ∈ b \∆.
Note that conditions (1) and (2) are compatible with (3).

(2) A wall p on (B,P, ϕ) is a 1-dimensional rational polyhedral subset of a
maximal cell σp ∈ P [2] with p ∩ Int(σp) 6= ∅ together with (i) a base
point Base(p) ∈ p \ ∂p, (ii) an exponent pp ∈ Γ(σp,Λ ⊕ Z) such that
pp,x = (pp,x, hp,x) ∈ Px for all p \ ∆ with hp,x > ϕ(pp,x) for x 6= Base(p),
and (iii) cp ∈ C, such that

p = (Base(p)− R≥0pp) ∩ σp.

For each x ∈ p \∆ this defines a function

fp,x = 1 + cpz
pp ∈ C[Px].

(3) A wall structure S on (B,P, ϕ) is a locally finite set of slabs and walls with
a polyhedral decomposition PS of its support |S | = ∪b∈S b such that
(1) The map sending a slab b ∈ S to its underlying 1-cell of P is injective;
(2) Each closure of a connected component of B \ |S | (chamber) is convex

and its interior is disjoint from any wall;
(3) Any wall in S is a union of elements of PS ;
(4) Any maximal cell of P contains only finitely many slabs or walls in S .

(4) A joint j of a wall structure S on (B,P, ϕ) is a vertex of PS . At each joint
j, the wall structure defines a scattering diagram Dj for ϕj.

Definition 5.10. A polarized polyhedral affine manifold (B,P, ϕ) induces an
initial wall structure S0 consisting only of slabs as follows. For each 1-cell ρ
containing an affine singularity δ there is a slab b with underlying polyhedral
subset ρ and with

fb,v = 1 + z(mvδ,ϕ(mvδ)),

where mvδ ∈ ΛB,v is the primitive vector pointing from v to δ.

Definition 5.11 ([GS3], Definition 2.28). A wall structure S is consistent (to
order k) at a joint j if the associated scattering diagram Dj is consistent (to order
k). It is consistent (to order k) if it is consistent (to order k) at any joint.

Definition 5.12 ([GS3], Definition 2.41). Two wall structures S , S ′ are com-
patible to order k if the following conditions hold.
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(1) If p ∈ S is a wall with cp 6= 0 and fp,x 6≡ 1 mod (tk+1) for some x ∈ p \ ∆,
then p ∈ S ′, and vice versa.

(2) If x ∈ Int(b) ∩ Int(b′) for slabs b ∈ S , b′ ∈ S ′, then fb,x ≡ fb′,x mod (tk+1).

Proposition 5.13. If (B,P, ϕ) is a polarized polyhedral affine manifold with
(B,P) simple, then there exists as sequence of wall structures (Sk)k∈N such that
(1) S0 is the initial wall structure defined by (B,P, ϕ);
(2) Sk is consistent to order k;
(3) Sk and Sk+1 are compatible to order k.

Proof. By [GS3], Remark 1.29, if (B,P) is simple, then the central fiber of the
corresponding toric degeneration is locally rigid for any choice of open gluing
data. In this case, the existence of a sequence of wall structures as claimed is
the main part (§3, §4) of [GS3]. Roughly speaking, the proof goes by induction
as follows. To obtain Sk from Sk−1, for each joint j of Sk−1 we calculate the
scattering diagram Dj,k consistent to order k from Dj,k−1 as in Proposition 5.3.
Then we add walls corresponding to these rays to the scattering diagram Sk−1.
This will probably produce some new joint or complicate the scattering diagrams
at other joints. However, it is shown in [GS3] that this procedure after finitely
many steps gibes a wall structure Sk consistent to order k. �

5.4. Proof of the main theorem. Let Q be a Fano polytope and let (B,P, ϕ)
be the dual intersection complex of the corresponding toric degeneration X→ A1

of (X,D). Let S∞ be the consistent wall structure defined by (B,P, ϕ), i.e., the
limit of the Sk in Proposition 5.13. Let σ0 be as in Definition 1.13.

Lemma 5.14. The support |S∞| is disjoint from the interior of σ0.

Proof. (B,P, ϕ) defines an initial wall structure S0 as in Definition 5.10. The
joints of S0 are the vertices of P. Let v be such a vertex. By [GS3] Proposition
3.9, the walls in S∞ with base point v lie in the cone v+R≤0mvδ +R≤0mvδ′ ⊆ B.
Here δ, δ′ are the affine singularities on edges adjacent to v andmδv is the primitive
integral tangent vector on B pointing from v to δ.

By inductively using [GS3], Proposition 3.9, all walls in S∞ lie in the union of
these cones, i.e.,

|S∞| ⊆
⋃

v∈P [0]

v + R≤0mvδ + R≤0mvδ′ .

In particular, there are no walls in S∞ supported on the interior of σ0. �

The unbounded walls in S∞ are all parallel in the direction mout ∈ ΛB. Let
fout be the product of all functions fp attached to unbounded walls p in S∞.
Then fout can be regarded as an element of CJxK for x := z(−mout,0) ∈ C[ΛB ⊕Z].
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Theorem 5.15 (Theorem 1).

log fout =
∞∑
d=1

(D · β) ·Nd · xD·β.

In fact, we will prove a more general statement, giving an enumerative meaning
for the function attached to any wall in S∞. For this we need the following.

Definition 5.16 ([Gro1], Definition 2.2). A tropical disk h : Γ→ B is a tropical
curve with the choice of univalent vertex V∞, adjacent to a unique edge E∞, such
that h is balanced for all vertices V 6= V∞.

Definition 5.17. Let p ∈ S∞ be a wall and choose x ∈ Int(p). Define Hp,w to be
the set of all tropical disks h : Γ→ B with h(V∞) = x and u(V∞,E∞) = −w ·mp.

Definition 5.18. For h ∈ Hp,w define, with N tor
V as in Definition 4.15,

1
|Aut(h)|

∏
E∈E(Γ)

wE ·
∏

V 6=Vout

N tor
V ·

∏
E∈L∆(Γ)

(−1)wE−1

wE
.

Remark 5.19. Note that the sets Hp,w are in bijection for different choices of x.
Moreover, for an unbounded wall p the set Hp,w is empty for wout - w, and for
each d there is an injective map ι : Hp,dwout ↪→ Hd by removing V∞ and extending
E∞ to infinity, giving Eout. Hence, Nι(h) = dwoutNh.

Proposition 5.20. For a wall p of S∞ we have

log fp =
∞∑
w=1

∑
h∈Hp,w

Nhz
(wmp,0).

Proof. We want to prove the claimed equality by induction, so we need a well-
ordered set. For a wall p of S∞, define a set

Parents(p) = {p′ ∈ S∞ | p ∩ p′ = Base(p) 6= Base(p′)}.

Here Base(p) is the base point of p (see Definition 5.9, (2)). Note that Base(p′) is
only defined for walls, so we define the condition Base(p) 6= Base(p′) to be always
satisfied when p′ is a slab. Then define inductively

Ancestors(p) = {p} ∪
⋃

p′∈Parents(p)
Ancestors(p′).

For each k, the set of walls in Sk is finite and totally ordered by

p1 ≤ p2 :⇔ p1 ∈ Ancestors(p2).

Hence, it is well-ordered and we can use induction. The set of smallest elements
with respect to this ordering is

{p ∈ S∞ wall | Base(p) ∈P [0]
S0

= P [0]}.
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For such p, the set Ancestors(p) consists of p and two slabs b1, b2. This defines
a scattering diagram at the joint Base(p) that is equivalent to the scattering
diagram obtained from two lines in the directions m1,m2 of the slabs b1, b2 with
attached functions f1 = 1 + z(−m1,0) and f2 = 1 + z(−m2,0), respectively. Note that

log fi =
∞∑
w=1

(−1)w−1

w
z(wmi,0).

Then Lemma 5.7 gives

log fp =
∞∑
w=1

∑
w
w
Nm(w)
|Aut(w)|

 ∏
1≤i≤n
1≤j≤li

(−1)wij−1

wij

 z(−wmp,0),

where the sum is over all n-tuples of weight vectors w = (w1, . . . ,wn) satisfying
n∑
i=1
|wi|mi = wmp.

Here Nm(w) is the toric logarithmic Gromov-Witten invariant defined in §4.1.
Tropical disks h in Hp,w have a 1-valent vertex V∞ mapping to the interior of p and
another vertex V with one compact edge of weight w and several bounded legs in
directions m1 or m2 with weights w1 = (w11, . . . , w1l1) and w2 = (w21, . . . , w2l2),
respectively, such that ∑n

i=1 |wi|mi = wmp. Hence, the set Hp,w is in bijection
with the set of pairs w as above, with wij being the weights of the bounded
legs of the corresponding tropical disk h. Moreover, |Aut(h)| = |Aut(w)| and
N tor
V = Nm(w) by definition. Hence, the summation over w can be replaced by a

summation over Hp,w, and we obtain

log fp =
∞∑
w=1

∑
h∈Hp,w

w
N tor
V

|Aut(h)|

 ∏
E∈L∆(Γ)

(−1)wE−1

wE

 z(−wmp,0).

This is precisely the claimed formula for such p, completing the base case.
For the induction step, let p be a wall of S∞ and assume the claimed formula

holds for all walls p′ ∈ Ancestors(p)\{p}. By Lemma 5.7 and using the induction
hypothesis,

log fp =
n∑

w=1

∑
w

w Nm(w)
|Aut(w)|

∏
p′∈Parents(p)

1≤j≤lp′

∑
h′∈Hp′,wp′j

Nh′

 z(−wmp,0),

where the second sum is over all tuples w = (wp′)p′∈Parents(p) of weight vectors
wp′ = (wp′1, . . . , wp′lp′

) with ∑
p′∈Parents(p)

|wp′ |mp′ = wmp.
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Factoring out, we can replace the product over Parents(p) and 1 ≤ j ≤ lp′ and
the sum over h′ ∈ Hp′,wp′j

by a sum over tuples (h′)p′,j := (h′ ∈ Hp′,wp′j
)p′∈Parents(p)

1≤j≤lp′
:

log fp =
n∑

w=1

∑
w

w Nm(w)
|Aut(w)|

∑
(h′)p′,j

∏
h′∈(h′)p′,j

Nh′

 z(−wmp,0).

Further, we can replace the summations over w and (h′)p′,j by a summation over
Hp,w, since this is precisely the data that determines a tropical disk in Hp,w. We
get the claimed formula by using that, for h ∈ Hp,w determined by w and (h′)p′,j,
we have

|Aut(h)| = |Aut(w)| ·
∏

(h′)p′,j

|Aut(h′)|,

so
Nh = w

Nm(w)
|Aut(w)| ·

∏
h′∈(h′)p′,j

Nh′ .

Now Theorem 5.15 follows by summation over all outgoing walls p in S∞. �

6. Torsion points

In this section we consider (P2, E). Choose a flex point O on the elliptic curve
E and consider the group law on E with O the identity. An m-torsion point on
E is a point P such that m · P = O. As a topological group, the elliptic curve is
a torus S1 × S1 = R2/Z2. The m-torsion points form a group Zm × Zm.

Lemma 6.1. If C is a rational degree d curve intersecting E in a single point
P , then P is a 3d-torsion point.

Proof. Let C be a rational degree d curve intersecting E in a single point P and
let L be the line tangent to O. Then the cycle C−dL has degree 0, so it is linearly
equivalent to zero, since Pic P2 ∼= Z by the degree map. Moreover, it intersects
E in the cycle 3d(P −O) which in turn is linearly equivalent to zero. �

Let Td ' Z3d×Z3d be the set of 3d-torsion points on E and let βd be the class
of degree d stable log maps (Definition 2.3). Then we have a decomposition

M (P2, βd) =
∐
P∈Td

M (P2, βd)P ,

where M (P2, βd)P is the subspace of M (P2, βd) of maps intersecting E in P . Let
JM (P2, βd)P K be the restriction of JM (P2, βd)K to M (P2, βd)P and define

Nd,P :=
∫
JM (P2,βd)P K

1.
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Definition 6.2. For P ∈ ∪d≥1Td denote by k(P ) the smallest integer k ≥ 1 such
that P is 3k-torsion.

Lemma 6.3. Nd,P only depends on P through k(P ).

Proof. This was shown in [Bou4], Lemma 1.2, using ideas from [CGKT2]. The
freedom of choice of O and the fact that the monodromy of the family of smooth
cubics in P2 maps surjectively to SL(2,Z) acting on Tk ' Z3k ×Z3k implies that
two points P, P ′ with k(P ) = k(P ′) are related to each other via a monodromy
transformation. Then the deformation invariance of logarithmic Gromov-Witten
invariants shows that Nd,P = Nd,P ′ for all d. �

Definition 6.4. Write Nd,k for Nd,P with P such that k(P ) = k.

Under the toric degeneration X → A1 different 3d-torsion points may map to
the same point on the central fiber X0, and even to a 0-dimensional stratum.
However, the limits of the 3-torsion points all lie on the 1-dimensional strata.
The intersection points with 3d-torsion correspond to the unbounded walls p in
S∞ with non-zero t3d-coefficient of log fp. Their number is exactly 3d and they
are distributed as the 3l-torsion points of a circle (see Figure 1 and Figure 7.2).

This can be explained as follows. The 2-dimensional torus is a S1-fibration over
S1. In the SYZ limit, the S1-fiber shrinks to a point and we only see the S1-basis,
which is the tropicalization. In this limit, the Z3k-fibers of Tk ' Z3k × Z3k are
identified and we only see the Zm in the basis. The toric degeneration of divisors
D→ A1 is an elliptic fibration. It contains a singular fiber that is a cycle of three
P1, i.e., an I3 fiber in Kodaira’s classification of singular elliptic fibers. Then the
monodromy acting on the first cohomology class of the general fiber is given by
M1 = ( 1 3

0 1 ) up to conjugation. Now the action of M1 on Z3 × Z3 is trivial. This
means that each 3-torsion point really defines a section of the family, which will
have a limit on the special fiber. Such limit is necessarily on the smooth part of
the special fiber, i.e., on a 1-dimensional toric stratum (see [SS], Theorem 6.3).
The action of M1 on Z6 × Z6 has some fixed points, corresponding to 6-torsion
points on E that define sections with limit on the smooth part of the special
fiber, i.e., on 1-dimensional strata. The other 6-torsion points are permuted by
the action ofM1, so they only define multisections with limit on the singular part
of the special fiber, i.e., on 0-dimensional strata.

Now consider the refined degeneration X̃d → A1. By construction of the refine-
ment, the limits of all 3d-torsion points lie on 1-dimensional strata of the central
fiber X := Y . Indeed, the central fiber of the elliptic fibration D̃→ A1 is a cycle
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of 3d lines, i.e., an I3d-fiber. Then the monodromy acting on Z3k × Z3k is given
by ( 1 3d

0 1 ) which is the identity for all k | d.

Definition 6.5. Let sk,l be the number of points P on E with k(P ) = k, fixed
by the action of Ml := ( 1 3l

0 1 ), but not fixed by the action of Ml′ for all l′ < l.
Note that sk := ∑

l|k sk,l is the number of points P on E with k(P ) = k and that∑
k|d sk = (3d)2 is the number of 3d-torsion points.

s1,1 = 9
s2,1 = 9 s2,2 = 18
s3,1 = 18 s3,3 = 54
s4,1 = 18 s4,2 = 18 s4,4 = 72
s5,1 = 36 s5,5 = 180
s6,1 = 18 s6,2 = 36 s6,3 = 54 s6,6 = 108

Table 6.1. The number sk,l of points P on E with k(P ) = k, fixed
by Ml, but not fixed by Ml′ for l′ < l.

Definition 6.6. For a wall p ∈ S∞ let l(p) be the smallest number such that
log fp has non-trivial t3l(p)-coefficient. Let rl be the number of walls with l(p) = l.

Lemma 6.7. The number rl can be defined recursively by

r1 = 3, rl = 3l −
∑
l′|l
rl′ .

Proof. For a wall p ∈ S∞, the condition l(p) = l means that the corresponding
toric stratum of X := Y contains the limits of the points on E that are fixed by
the action of Ml but not fixed by Ml′ for l′ < l. Since in the SYZ limit we only
see the basis of the fibration, rl equals the number of points on a circle S1 that
are 3l-torsion but not 3l′-torsion. This number can be defined as above. �

r1 = 3 r2 = 3 r3 = 6 r4 = 6 r5 = 12 r6 = 6

Table 6.2. The number rl of walls p with l(p) = l.

Note that sk,l/rl is the number of points P with k(P ) = k and with limit on the
stratum corresponding to a particular wall p with l(p) = l. A direct consequence
of Proposition 5.20 is the following.

Corollary 6.8 (Theorem 2). Let p be an unbounded wall of order l in S∞. Then

log fp =
∞∑
d=1

3d
 ∑
k:l|k|d

sk,l
rl
Nd,k

x3d.
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Definition 6.9. Similarly to §2.4 we can define integers nd,k recursively by

nd,d = Nd,d, nd,k = Nd,k −
∑

d′:k|d′|d
Md′ [d/d′] · nd′,k.

Some of the numbers nd,k have been calculated by Takahashi [Tak1]. Their
relation to local BPS numbers is studied in [CGKT1][CGKT2][CGKT3].

Remark 6.10. Unfortunately we are not able to apply the methods of this section
to the refined situation of §3.4 in order to calculate the contributions to N[i;d1,...,dm]

with prescribed torsion: Let N[i;d1,...,dm],k be the logarithmic Gromov-Witten in-
variant of stable log maps contributing to N[i;d1,...,dm] and meeting E in a fixed
point of order 3k, and let n[i;d1,...,dm],k be the corresponding log BPS number.
Define l([i; d1, . . . , dm]) := l(p) for p the unbounded wall for [i; d1, . . . , dm]. Then

d∑
k=1

sk,l
rl
n[i;d1,...,dm],k = n[i;d1,...,dm] for l = l([i; d1, . . . , dm])

∑
l([i;d1,...,dm])=l

n[i;d1,...,dm],k = nd,k for all l|k

This gives a system of linear equations for the indeterminates n[i;d1,...,dm],k. In gen-
eral the number of equations will be smaller than the number of indeterminates,
so there will be no unique solution. However, for d ≤ 3 we indeed have enough
equations to determine the numbers n[i;d1,...,dm],k as we will show in §7.1.3.

7. Explicit calculations

In this section we will calculate some logarithmic Gromov-Witten invariants
and log BPS numbers explicitly. To this end, I wrote a sage code for calculating
scattering diagrams and wall structures. It can be found on my webpage6.

7.1. (P2, E). We want to calculate the numbers Nd,k and nd,k for d ≤ 6 as well as
the numbers n[i;d1,...,dk] for d ≤ 4. Loading the code into a sage shell and typing
tex(scattering(diag(6,"P2"),6,"P2"),diagP2(6),(1,0)) one can produce
a TikZ code that under some small changes gives Figure 7.1. It shows the part of
the wall structure S̄6 on the discrete covering space B̄ (see §1.3) that is relevant
for computing the functions on the central maximal cell. The full S̄6 would be
symmetric, carrying much more walls on the outer area.

We have

log fout = 27x3 + 405
2 x6 + 2196x9 + 110997

4 x12

+ 2051892
5 x15 + 5527710x18 +O(x20)

6https://timgraefnitz.com

https://timgraefnitz.com
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This yields the following logarithmic Gromov-Witten invariants:

N1 = 9 N2 = 135
4 n3 = 244 n4 = 36999

16 n5 = 635634
25 n6 = 307095

Table 7.1. The invariants Nd of (P2, E) for d ≤ 6.

Subtracting multiple cover contributions we get the following log BPS numbers:

n1 = 9 n2 = 27 n3 = 234 n4 = 2232 n5 = 25380 n6 = 305829

Table 7.2. The log BPS numbers nd of (P2, E) for d ≤ 6.

They are related to the local BPS numbers nloc
d , shown in [CKYZ], Table 1, by

Remark 2.11 and [CKYZ], (2.1).

Figure 7.1. The output of the sage code, giving the relevant part
of S̄6 to compute Nd,k for d ≤ 6. The colors correspond to different
orders. The initial wall structure S̄0 is red.
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7.1.1. Torsion points. Write fl for the function fp attached to a wall p with
l(p) = l (see Figure 7.2).

f1f1 f2 f3f3 f5f5 f6f6 f4f4 f5f5

Figure 7.2. The wall structure S6 on one unbounded maximal
cell of P, showing the relevant attached functions fl.

The sage code gives the following:

log f1 = 9x3 + 63
2 x

6 + 246x9 + 9279
4 x12 + 175464

5 x15 + 307041x18 +O(x21)

log f2 = 36x6 + 2322x12 + 307164x18 +O(x21)

log f3 = 243x9 + 614061
2 x18 +O(x21)

log f4 = 2304x12 +O(x21)

log f5 = 25425x15 +O(x21)

log f6 = 307152x18 +O(x21)
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From this we calculate the numbers nd,k for d ≤ 6 below to be the following:

n1,1 = 1
n2,1 = 0 n2,2 = 1
n3,1 = 2 n3,3 = 3
n4,1 = 14 n4,2 = 14 n4,4 = 16
n5,1 = 108 n5,5 = 113
n6,1 = 927 n6,2 = 938 n6,3 = 936 n6,6 = 948

Table 7.3. The numbers nd,k calculated below.

The nd,d coincide with the md in [Tak2], Theorem 1.4. The numbers nd,k for
d ≤ 3 are calculated in [Tak1]. The sum ∑

k|d sknd,k is the log BPS number nd of
(P2, E). From n5 and n5,5 one also obtains n5,1. To the best of my knowledge the
numbers n4,1, n4,2, n6,1, n6,2 and n6,3 are new.

7.1.2. Degenerating the divisor. Since the irreducible components of the divisor
D0
t = D1 + D2 + D3 smoothing to Ds

t = E are isomorphic to each other, we
can fix any divisor Di and write [d1, . . . , dk] := [i; d1, . . . , dk]. The tropical curves
contributing to the invariants N[d1,...,dk] for d ≤ 4 are shown in Figure 7.3. The
only [d1, . . . , dk] with more than one associated tropical curve is [2, 2] which has
two tropical curves.

The attached functions are as follows:

f[1] = 1 + 9x3 +O(x6)

f[2] = (1 + 8x3)(1 + 72x6) +O(t9)

f[1,1] = 1 + 36x6 +O(x9)

f[3] = (1 + 9x3)(1 + 72x6)(1− 78x9) +O(x12)

f[2,1] = 1 + 243x9 +O(x12)

f[1,1,1] = 1 + 81x9 +O(x12)

f[4] = (1 + 9x3)(1 + 72x6)(1− 78x9)(1 + 5256x12) +O(x15)

f[3,1] = 1 + 1872x12 +O(x15)

f[2,2] = (1 + 36x6)(1 + 1296x12)(1 + 1530x12) +O(x15)

f[2,1,1] = 1 + 432x12 +O(x15)

f[1,2,1] = 1 + 1296x12 +O(x15)
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From this one easily calculates the log Gromov-Witten invariants N[d1,...,dk].
The invariant N[d] has a d-fold cover contribution from n[d] and N[2,2] has a 2-fold
cover contribution from n[1,1]. This gives the following log BPS numbers:

n[1] = 3
n[2] = 3 n[1,1] = 6
n[3] = 15 n[2,1] = 27 n[1,1,1] = 9
n[4] = 72 n[3,1] = 156 n[2,2] = 168 n[2,1,1] = 36 n[1,2,1] = 108 n[1,1,1,1] = 12

Table 7.4. The log BPS numbers of (P2, E) with fixed limit under
degeneration of E.

Figure 7.3. Tropical curves contributing to n[d1,...,dk] for (P2, E).
For all but the yellow curve we fixed the same divisor.

7.1.3. Combining the methods. As indicated in Remark 6.10 in general it is not
possible to combine the above methods and calculate invariants with prescribed
limit under degeneration of the divisor and meeting a points on E with prescribed
torsion. However, for d ≤ 3 this is indeed possible as we will show now.

For d = 1 we have G1 = {[1]}, so n[1],1 = n1,1 = 1. For d = 2 there are two types
of tropical curves. One of them contributes to N[1,1] and corresponds to stable
log maps meeting E in a point of order 6, so n[1,1],1 = 0 and n[1,1],2 = r2 ·n2,2 = 3.
The other one contributes to N[2], so n[2],1 = r1 · n1,1 = 0.

For d = 3 we have l([3]) = 1, l([2, 1]) = 3 and l([1, 1, 1]) = 1. So n[2,1],1 = 0 and
the equations in Remark 6.10 are the following:

3n[3],1 + 6n[3],3 = 15 n[3],1 + n[1,1,1],1 = 2

9n[2,1],3 = 27 n[3],3 + n[1,1,1],3 = 3

3n[1,1,1],1 + 6n[1,1,1],3 = 9 n[2,1],3 = 3
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This system of linear equations has the unique solution:

n[3],1 = 1 n[2,1],1 = 0 n[1,1,1],1 = 2
n[3],3 = 1 n[2,1],3 = 3 n[1,1,1],3 = 1

Table 7.5. The log BPS numbers of (P2, E) for d = 3 with fixed
limit under degeneration of E and prescribed torsion.

If we try the same method for d > 3, we have more indeterminates than indepen-
dent equations, so there is no unique solution.

7.2. P1×P1. Similarly, executing the code for P1×P1 gives the following functions:

log fout = 16x2 + 72x4 + 352x6 + 3108x8 + 120016
5 x10 + 198384x12 +O(x14)

This gives:

N1 = 8 N2 = 18 N3 = 1312
3 N4 = 777

2 N5 = 60008
25 N6 = 16532

Table 7.6. The invariants Nd of P1 × P1 for d ≤ 6.

n1 = 8 n2 = 16 n3 = 72 n4 = 368 n5 = 2400 n6 = 16320

Table 7.7. The log BPS numbers nd of P1 × P1 for d ≤ 6.

Moreover, the functions and invariants with prescribed limits under s→ 0 are:

f[1] = 1 + 4x2 +O(x4)

f[2] = (1 + 4x2)(1 + 10x4) +O(x6)

f[1,1] = 1 + 16x4 +O(x6)

f[3] = (1 + 4x2)(1 + 10x4)(1− 20x6) +O(x8)

f[2,1] = 1 + 36x6 +O(x8)

f[1,1,1] = 1 + 36x6 +O(x8)

f[4] = (1 + 4x2)(1 + 10x4)(1− 20x6)(1 + 115x8) +O(x10)

f[3,1] = 1 + 64x8 +O(x10)

f[2,2] = (1 + 16x4)(1 + 64x8)(1 + 264x8) +O(x10)

f[2,1,1] = 1 + 64x8 +O(x10)

f[1,2,1] = 1 + 256x8 +O(x10)

f[1,1,1,1] = 1 + 64x8 +O(x10)
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From this we compute the log BPS numbers with given curve class (bidegree)
as follows. The factors are the number of unbounded walls in the wall structure
contributing to n[i;d1,...,dm] for different choices of i.

n(1,0) = 2 · n[1] = 2

n(2,0) = 2 · n[2] = 0

n(1,1) = 4 · n[1,1] = 16

n(3,0) = 2 · n[3] = 0

n(2,1) = 4 · n[2,1] + 2 · n[1,1,1] = 36

n(4,0) = 2 · n[4] = 0

n(3,1) = 4 · n[3,1] + 4 · n[2,1,1] = 768

n(2,2) = 4 · n[2,2] + 4 · n[1,2,1] + 4 · n[1,1,1,1] = 1152

n[1] = 2
n[2] = 0 n[1,1] = 4
n[3] = 0 n[2,1] = 6 n[1,1,1] = 6
n[4] = 0 n[3,1] = 8 n[2,2] = 15 n[2,1,1] = 8 n[1,2,1] = 32 n[1,1,1,1] = 8

Table 7.8. The log BPS numbers of P1×P1 with fixed limit under
degeneration of the divisor.

7.2.1. Deforming F2. Consider the toric degeneration of P1 × P1 by deformation
of the Hirzebruch surface F2 (case (8’a) in Figure 1.5) from Example 1.17.

4

2 4

4

4

L1 + L2

L2

L1 − L2

L2

4

2
1

4
4

Figure 7.4. Tropical curves corresponding to β = L1 + L2.
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For d = 1 it is clear by the symmetry L1 ↔ L2 that n(1,0) = nL1 = nL2 = 4.
For d = 2 we have n(2,0) = n2L1 = n2L2 and n(1,1) = nL1+L2 . Figure 7.4 shows
the tropical curves corresponding to stable log maps of class β = L1 + L2. The
first one has multiplicity 4, the second one −4, the third one 8 and the last one
4. By symmetry there are two tropical curves similar to the red ones at the lower
vertex, again with multiplicities −4 and 8. This gives n(1,1) = nL1+L2 = 16 and
in turn n(2,0) = 0. One can proceed similarly for higher degrees.

7.3. Cubic surface. The dual intersection complex of the cubic surface (case
(3a) in Figure 1.5) is quite similar to the one of (P2, E). The only differences are
that for each vertex the determinant of primitive generators of adjacent bounded
edges is 1 instead of 3 and that there are three affine singularities on each bounded
edge. As a consequence, by the change of lattice trick ([GHK2], Proposition C.13),
the wall structure of (X,D) is in bijection with the wall structure of (P2, E), and
the functions attached to walls in direction mout, in particular the unbounded
walls, coincide. This immediately implies Nd(X,D) = 3 ·Nd(P2, E). Subtracting
multiple covers we get (note that wout = 1 and the multiple cover contributions
of of degree 1 curves are M1[k] = 1

k2

(
−1
k−1

)
= (−1)k−1

k2 ):

n1 = 27 n2 = 108 n3 = 729 n4 = 6912 n5 = 76275 n6 = 920727

Table 7.9. The log BPS numbers nd of the cubic surface for d ≤ 6.

7.3.1. Curve classes. A smooth cubic surface X can be given by blowing up six
general points on P2. Let e1, . . . , e1 be the classes of the exceptional divisors
and let ` be the pullback of the class of a line in P2. Then `, e1, . . . , e6 generate
Pic(X) ' H+

2 (X,Z) ' Z7.

C9 C1 C2 C3

C4

C5
C6

C7

C8

Figure 7.5. The dual intersection complex of a smooth nef toric
surface X0 deforming to a smooth cubic surface X.
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The dual intersection complex of a smooth nef toric surface X0 deforming to
X is shown in Figure 7.5. Its asymptotic fan is the fan of X0. Denote the curves
corresponding to the rays of this fan by C1, . . . , C9, labelled as in Figure 7.5.
Then (see [KM], §4) an isomorphism Pic(X0) ' Pic(X) is given as follows:

[C1] 7→ e2 − e5 [C2] 7→ `− e2 − e3 − e6 [C3] 7→ e6

[C4] 7→ e3 − e6 [C5] 7→ `− e1 − e3 − e4 [C6] 7→ e4

[C7] 7→ e1 − e4 [C8] 7→ `− e1 − e2 − e5 [C9] 7→ e5

Now we know the curve classes of the cubic surface X corresponding to the un-
bounded edges in the dual intersection complex (B,P, ϕ). In turn, we are able to
associate to each tropical curve in (B,P, ϕ) the curve class of the corresponding
stable log maps, by composition of the maps from Definitions 3.25 and 3.27.

As shown in [Hos], the Weyl groupWE6 of type E6 acts on Pic(X) as symmetries
of configurations of the 27 lines and this action preserves the local Gromov-Witten
invariants N loc

β of X. Hence, by the log-local correspondence [GGR], it preserves
the logarithmic Gromov-Witten invariants Nβ of X considered here. The curve
classes β of the cubic X giving a nonzero contribution N loc

β , up to action of WE6 ,
are given in [KM], Table 1, along with the corresponding local BPS number nloc

β .
For d = 1 and d = 2 there is, up to the action of WE6 , only one curve class

giving a nonzero contribution, so this is trivial. For d = 1 this is β = e6 and
the length of its orbit is 27, so nβ = 1. For d = 2 it is β = ` − e1, with orbit
length 27, so nβ = 4. For d = 3 there are two equivalence classes giving a nonzero
contribution, with representatives ` and 3`−∑6

i=1 ei, respectively.

e5

e2 − e5

`− e2 − e3 − e6

e6

e3 − e6

`− e1 − e3 − e4

e4

e1 − e4

`− e1 − e2 − e5

1
2

3
2
1

3 3

Figure 7.6. Tropical curves corresponding to β = 3`−∑6
i=1 ei.



66 TIM GRÄFNITZ

The red tropical curve in Figure 7.6 corresponds to the class

1·(e2−e5)+2·(`−e2−e3−e6)+3·e6 +2·(e3−e6)+1·(`−e1−e3−e4) = 3`−
6∑
i=1

ei

and similarly for the blue tropical curve. Changing the affine singularities in
which the bounded legs end may change the curve class. It turns out that for
the red tropical curve any change leads to the class β = ` or to a class giving
a nonzero contribution. Its multiplicity is 18, so together with the choice of
outgoing edge this gives a contribution of 54 to n3`−

∑6
i=1 ei

. For the blue tropical
curve there are two changes leading again to β = 3` −∑6

i=1 ei and six changes
leading to β = `. The multiplicity of any of these tropical curves is 3. Together
with the choice of outgoing edge this gives a contribution of 3 · 3 · 3 = 27 to
n3`−

∑6
i=1 ei

. The orbit length is 1, so n3`−
∑6

i=1 ei
= 81. The orbit length of ` is 72,

so n` = (729− 81)/72 = 9. So, in agreement with [KM], Table 1, we have:

nei = 1 n`−ei = 4 n` = 9 n3`−
∑6

i=1 ei
= 81

Table 7.10. The log BPS numbers nβ of the cubic surface for d ≤ 3.

e5

e2 − e5

`− e2 − e3 − e6

e6

e3 − e6

`− e1 − e3 − e4

e4

e1 − e4

`− e1 − e2 − e5

1
2

3
1

3 32

3

Figure 7.7. Tropical curves corresponding to β = `.

Figure 7.7 shows tropical curves corresponding to stable log maps of class β = `.
In particular, any change of bounded legs of the green tropical curves still leads
to class β = `. For instance, the red tropical curve has class

1 · (e2 − e5) + 2 · (`− e2 − e3 − e6) + 3 · e6 + 1 · (e3 − e6) = 2`− e2 − e3 − e5
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Under the action of WE6 this is equivalent to β = 2` − e1 − e2 − e3 and in turn
(via the map s6 from [KM], §3) to

2 · (2`− e1 − e2 − e3)− (`− e2 − e3)− (`− e1 − e3)− (`− e1 − e2) = `.

Similarly, one computes the classes of the other tropical curves.

Appendix A. Artin fans and logarithmic modifications

An Artin fan is a logarithmic algebraic stack that is logarithmically étale over a
point. Artin fans were introduced in [AW] to prove the invariance of logarithmic
Gromov-Witten invariants under logarithmic modifications, that is, proper bira-
tional logarithmically étale morphisms. We will briefly summarize this subject.

To any fine saturated log smooth scheme X one can define an associated Artin
fan AX . It has an étale cover by finitely many Artin cones – stacks of the
form [V/T ], where V is a toric variety and T its dense torus. In this way, AX
encodes the combinatorial structure of X. A subdivision of the Artin fan AX
induces a logarithmic modification of X via pull-back. Moreover, all logarithmic
modifications ofX arise this way. This ultimately leads to a proof of the birational
invariance in logarithmic Gromov-Witten theory [AW].

Olsson [Ols] showed that a logarithmic structure on a given underlying scheme
X is equivalent to a morphism X → Log, where Log is a zero-dimensional
algebraic stack – the moduli stack of logarithmic structures. It carries a universal
logarithmic structure whose associated logarithmic algebraic stack we denote by
Log – providing a universal family of logarithmic structures Log → Log. As
shown in [AW], if X is a fine saturated log smooth scheme, then the morphism
X → Log factors through an initial morphism X → AX , where AX is an Artin
fan and AX → Log is étale and representable. While this serves as a definition of
the associated Artin fan AX , there is a more explicit description of AX in terms
of the tropicalization of X, given below.

Let S be a fine saturated log scheme.

Definition A.1. The moduli stack of log structures over S is the category LogS
fibered over the category of S-schemes defined as follows. The objects over a
scheme morphism X → S are the log morphisms X → S over X → S. The
morphisms from X → S to X ′ → S are the log morphisms h : X → X ′ over S
for which h?MX′ →MX is an isomorphism.

Proposition A.2 ([Ols] Theorem 1.1). LogS is an algebraic stack locally of finite
presentation over S.
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Definition A.3. An Artin fan is a logarithmic algebraic stack that is logarithmi-
cally étale over a point. An Artin cone is a logarithmic algebraic stack isomorphic
to [V/T ], where V is a toric variety and T its dense torus.

Remark A.4. If a logarithmic algebraic stack has a strict representable étale cover
by Artin cones, then it is an Artin fan. In fact, in [AW] Artin fans were defined
this way. Later the definition was generalized to the one above.

Lemma A.5 ([AW], Lemma 2.3.1). An algebraic stack that is representable and
étale over Log has a strict étale cover by Artin cones.

Proposition A.6 ([ACMW], Proposition 3.1.1). Let X be a logarithmic algebraic
stack that is locally connected in the smooth topology. Then there is an initial
factorization of X → Log through a strict étale morphism AX → Log which is
representable by algebraic spaces.

Definition A.7. Let X be a fine saturated log smooth scheme. The Artin fan of
X is the stack AX from Proposition A.6. Indeed, this is an Artin fan by Lemma
A.5 and Remark A.4.

We now give a more explicit description of the Artin fan AX of a fine saturated
log smooth scheme X. By Lemma A.5 and Proposition A.6, AX has a strict étale
cover by Artin cones. In fact, AX is a colimit of Artin cones Aσ corresponding
to the cones σ in the tropicalization Σ(X) of X.

Definition A.8. For a cone σ ⊆ NR, let P = σ∨ ∩ M be the corresponding
monoid. The Artin cone defined by σ is the logarithmic algebraic stack

Aσ =
[
Spec C[P ]�Spec C[P gp]

]
with the toric log structure coming from the global chart P → C[P ].

Definition A.9. Let Σ be a generalized cone complex (Definition 3.1) that is a
colimit of a diagram of cones s : I → Cones. Then define AΣ to be the colimit as
sheaves over Log of the corresponding diagram of sheaves given by I 3 i 7→ As(i).

Proposition A.10 ([ACGS1], Proposition 2.2.2). Let X be a fine saturated log
smooth scheme with tropicalization (Definition 3.2) a generalized cone complex
Σ(X). Then

AX ∼= AΣ(X).

Definition A.11. A subdivision of an Artin fan X is a morphism of Artin fans
Y → X whose base change via any map Aσ → X is isomorphic to AΣ for some
subdivision Σ of σ.
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Definition A.12. A logarithmic modification of fine saturated log smooth
schemes is a proper surjective logarithmically étale morphism.

Let X be a fine saturated log smooth scheme with tropicalization Σ(X). Then
a subdivision Σ̃(X) of Σ(X) gives a subdivision AΣ̃(X) → AX of the Artin fan
of X. The pull back X̃ := AΣ̃(X) ×AX X → X is a logarithmic modification.
Moreover, all logarithmic modifications of X arise this way:

Proposition A.13 ([AW], Corollary 2.6.7). If Y → X is a logarithmic modifi-
cation of fine saturated log smooth schemes, then Y → AY ×AX X is an isomor-
phism.

Theorem A.14 ([AW], Theorem 1.1). Let h : Y → X be a logarithmic modi-
fication of log smooth schemes. This induces a projection π : M̄ (Y ) → M̄ (X)
with

π?JM̄ (Y )K = JM̄ (X)K,

where M̄ (X) is the stack of stable log maps to X.

Corollary A.15. Logarithmic Gromov-Witten invariants are invariant under
logarithmic modifications.
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