
REPRESENTATIONS OF INFINITE TREE-SETS

J. PASCAL GOLLIN AND JAKOB KNEIP

Abstract. Tree sets are abstract structures that can be used to model various tree-shaped
objects in combinatorics. Finite tree sets can be represented by finite graph-theoretical
trees. We extend this representation theory to infinite tree sets.

First we characterise those tree sets that can be represented by tree sets arising from
infinite trees; these are precisely those tree sets without a chain of order type ω ` 1. Then
we introduce and study a topological generalisation of infinite trees which can have limit
edges, and show that every infinite tree set can be represented by the tree set admitted
by a suitable such tree-like space.

§1. Introduction

Separations of graphs have been studied in the context of structural graph theory for a
long time. For instance every edge of the decomposition tree of a tree-decomposition of a
graph defines a separation in a natural way∗. The separations obtained in this way have
an additional important property: they are nested† with each other. Looking at nested
sets of separations of a graph has since been a useful way to study tree-decompositions,
and especially in infinite graphs they offer an analogue when a tree-decomposition with a
certain desired property may not exist (see [8] for example).

While any tree-decomposition of a graph into small parts witnesses that the graph
has low tree-width, there are various dense objects that force high tree-width in a graph.
Among these are large cliques and clique minors, large grids and grid minors as well as
high-order brambles. All these dense objects in a graph have the property that they orient
its low-order separations by lying mostly on one side of any given low-order separation.
For such a dense structure in a graph these orientations of separations are consistent with
each other: no two of them ‘disagree’ about where the dense object lies by pointing away
from each other.

In [7] Robertson and Seymour proposed the notion of tangles, which are such families
of consistently oriented separations up to a certain order. These tangles can be studied
in their own right, instead of any dense objects that may induce them. By varying the
∗As the sides of the separation, consider the union of the parts corresponding to the components of the

tree after deleting the edge.
†Two separations are nested if a side of one separation is a subset of a side of the other, and vice versa.
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strength of the consistency conditions one can model different kinds of dense objects, and
the resulting consistent orientations give rise to different types of tangles.

To talk about these separations systems one does not even need an underlying graph
structure or ground set: they can be formulated in a purely axiomatic way, see Diestel [2].
Such a separation system is simply a partially ordered set with an order-reversing involution.
The notions of consistency of separations that come from dense substructures in graphs
can be translated into this setting as well. The tangles of graphs then become abstract
tangles, and the tree-like structures become nested systems of separations, so-called tree
sets [3]. This abstract framework turns out to be no less powerful, even for graphs alone,
than ordinary graph separations. In [4] Diestel and Oum established an abstract duality
theorem for separation systems which easily implies (see [5]) all the classical duality results
from graph- and matroid theory, such as the tree-width duality theorem by Seymour and
Thomas [9]. The unified duality theorem asserts that for any sensible notion of consistency
a separation system contains either an abstract tangle or a tree set witnessing that no such
tangle exists. Furthermore this abstract notion of separation systems can be applied in
fields outside of graph theory, for instance in image analysis [6].

Tree sets are also interesting objects in their own right: they are flexible enough to model
a whole range of other ‘tree-like’ structures in discrete mathematics, such as ordinary graph
trees, order trees and nested systems of bipartitions of sets [3].

In fact, tree sets and graph-theoretic trees are related even more closely than that: for
any tree T the set

Ñ

E of oriented edges of T admits a natural partial order, which in fact
turns

Ñ

E into a tree set, the edge tree set of T . As was shown in [3], these edge tree sets of
graph-theoretical trees are rich enough to represent all finite tree sets: every finite tree set
is isomorphic to the edge tree set of a suitable tree.

In this paper we extend the analysis of representations of tree sets to infinite tree sets.
The definition of an edge tree set of a graph-theoretical tree straightforwardly extends
to infinite trees. From the structure of these it is clear that the edge tree set of a tree T
cannot contain a chain of order type ω ` 1. We will show that this is the only obstruction
for a tree set to being representable by the edge tree set of a (possibly infinite) tree:

Theorem 1. Every tree set without a chain of order type ω ` 1 is isomorphic to the edge
tree set of a suitable tree.

Secondly, we would like to represent infinite tree sets that do contain a chain of order
type ω ` 1 by edge tree sets of an adequate tree structure as well. To achieve this we turn
to the notion of graph-like spaces introduced by Thomassen and Vella [10] and further
studied by Bowler, Carmesin and Christian [1]: these are topological spaces with a clearly
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defined structure of vertices and edges, which can be seen as a limit object of finite graphs.
In particular, for a chain of any order type, there exists a graph-like space containing a
‘path’ whose edges form a chain of that order type. Therefore the tree-like spaces, those
graph-like spaces which have a tree-like structure, overcome the obstacle of chains of order
type ω ` 1 which prevented the edge tree sets of infinite trees from representing all infinite
tree sets: unlike graph-theoretic trees, tree-like spaces can have limit edges. And indeed we
will prove in this paper that the edge tree sets of tree-like spaces can be used to represent
all tree sets.

Theorem 2. Every tree set is isomorphic to the edge tree set of a suitable tree-like space.

This paper is organised as follows. In Section 2 we recall the basic definitions of abstract
separation systems and tree sets and establish a couple of elementary lemmas we will use
throughout the paper. Following that, in Section 3, we formally define the edge tree set
of a tree and prove Theorem 1. In Section 4, we introduce the concept of tree-like spaces
which generalise infinite graph-theoretical trees. We define edge tree sets of tree-like spaces
analogously to edge tree sets of graph-theoretical trees and then prove Theorem 2. In order
to do this we need a result linking the two concepts of connectivity in graph-like spaces:
topological connectivity and ‘pseudo-arc connectivity’, the analogue of graph-theoretical
connectivity for graph-like spaces. In Section 4 we make use of the fact that for compact
graph-like spaces these two notion of connectivity are equivalent, and give a proof of this
fact in Section 5.

§2. Separation systems

An abstract separation system
Ñ

S “ p
Ñ

S,ď, ˚q is a partially ordered set with an order-
reversing involution ˚. An element Ñs P

Ñ

S is called an oriented separation, and its in-
verse pÑs q˚ is denoted as Ðs , and vice versa. The pair s “ tÑs , Ðsu is an unoriented separation‡,
with orientations Ñs and Ðs , and the set of all such pairs is denoted as S. The assumption
that ˚ is order-reversing means that for all Ñs , Ñr P

Ñ

S we have Ñs ď Ñr if and only if Ðs ě Ðr .
If S 1 is a set of unoriented separations, we write

Ñ

S 1 for the set
Ť

S 1 of all orientations of
separations in S 1.

A separation Ñs is small and its inverse Ðs co-small if Ñs ď Ðs . If neither Ñs nor Ðs is small
then s is regular, and we call both Ñs and Ðs regular as well.

A separation Ñs P
Ñ

S is trivial in
Ñ

S and its inverse Ðs is co-trivial in
Ñ

S if there is some Ñr P
Ñ

S

with Ñs ď Ñr ,Ðr and s ‰ r. In this case r is the witness of the triviality of Ñs . If neither Ñs

‡To improve readability ‘oriented’ and ‘unoriented’ will often be omitted if the type of separation follows
from the context.
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nor Ðs is trivial in
Ñ

S we call s nontrivial. If Ñs is a trivial separation with witness r then Ñs

is small as Ñs ď Ñr ď Ðs . Conversely every separation that lies below a small separation is
trivial: if Ñs is small and r ‰ s has an orientation Ñr ď Ñs , then Ñr is trivial as Ñr ă Ñs ď Ðs .

Two unoriented separations s and r are nested if they have comparable orientations.
Otherwise r and s cross. A set S 1 of separations is nested if all of its elements are pairwise
nested.

A tree set is a nested separation system with no trivial elements. It is regular if all of its
elements are regular, i.e. if no Ñs P τ is small.

An orientation of a set
Ñ

S 1 or S 1 of separations is a set O Ď
Ñ

S 1 with |O X s| “ 1 for
every s P S 1. An orientation is consistent if Ðs ď Ñr implies r “ s for all Ñr , Ñs P O. A partial
orientation of

Ñ

S is an orientation of a subset of
Ñ

S. A partial orientation P extends another
partial orientation Q if Q Ď P .

For a tree set τ an orientation O of τ is splitting if it is consistent and has the property
that for every Ñr P O there is some maximal element Ñs of O with Ñr ď Ñs .

Consistent orientations of a tree set τ can be thought of as the ‘vertices’ of a tree set, an
idea that we will make more precise in the next sections. In the context of infinite tree sets,
the non-splitting orientations can be thought of as ‘limit vertices’ or ‘ends’ of the tree set.

A subset σ Ď τ is a star if Ñr ď Ðs for all Ñr , Ñs P σ with Ñr ‰ Ñs . For example, the set of
maximal elements of a consistent orientation of a tree set is always a star:

Lemma 2.1. Let O be a consistent orientation of a tree set τ . Then the set σ of the
maximal elements of O is a star.

Proof. Let Ñr , Ñs P σ with Ñr ‰ Ñs be given. Then neither Ñr ď Ñs nor Ñr ě Ñs as both are
maximal elements of O. The consistency of O implies that Ñr ě

Ðs , so Ñr ď Ðs is the only
possible relation and hence σ is a star. �

A star σ Ď τ splits τ , or is a splitting star of τ , if it is the set of maximal elements of a
splitting orientation of τ . Note that every element of a finite tree set lies in a splitting star,
but infinite tree sets can have elements that lie in no splitting star; see Example 2.3 and
Lemma 2.4 below.

More generally, given a partial orientation P of τ , is it possible to extend it to a consistent
orientation of τ? Of course P needs to be consistent itself for this to be possible. The
next Lemma shows that under this necessary assumption it is always possible to extend a
partial orientation to all of τ . In particular, every element of a tree set induces a consistent
orientation in which it is a maximal element. This orientation is in fact unique:
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Lemma 2.2 (Extension Lemma). [3] Let S be a set of separations, and let P be a consistent
partial orientation of S.

(i) P extends to a consistent orientation O of S if and only if no element of P is
co-trivial in S.

(ii) If Ñp is maximal in P , then O in (i) can be chosen with Ñp maximal in O if and only
if Ñp is nontrivial in

Ñ

S.
(iii) If S is nested, then the orientation O in (ii) is unique.

The last part of the Extension Lemma implies that every element Ñs of a tree set τ is
maximal in exactly one consistent orientation O of τ . Hence Ñs lies in a splitting star if
and only if this O is splitting.

In an infinite tree set there might be elements that do not lie in a splitting star:

Example 2.3. Let τ be the tree set with ground set

t
Ñs n |n P Nu Y tÐs n |n P Nu Y t

Ñ

t ,
Ð

t u,

where Ñs i ď
Ñs j and Ðs i ě

Ðs j whenever i ď j, as well as Ñs n ď
Ñ

t and Ðs n ě
Ð

t for all n P N.
The separation Ð

t is maximal in the orientation

O “ tÑs n |n P Nu Y t
Ð

t u,

which is not splitting as no Ñs n lies below a maximal element of O. Hence Ð

t does not lie in
a splitting star of τ .

In the above example the chain C “ tÑs n |n P Nu Y t
Ñ

t u has order-type ω ` 1. But these
ω ` 1 chains turn out to be the only obstruction for separations not being elements of
splitting starts, as the following lemma shows. Let us call a tree set that does not contain
a chain of order type ω ` 1 tame.

Lemma 2.4. Every element of a tame tree set τ lies in some splitting star of τ .

Proof. For every Ñ

t P τ we can apply the Extension Lemma 2.2 to P :“ tÑ

t u to find that
there is a unique consistent orientation O of τ in which Ñ

t is a maximal element. Thus Ñ

t

lies in a splitting star if and only if this orientation O is splitting. Let us show that for
every Ñ

t P τ this orientation O splits τ unless O contains a chain of order type ω for which Ð

t

is an upper bound; this directly implies the claim since every such chain in O together
with Ð

t is a chain of order type ω ` 1 in τ .
So let Ñ

t P τ be given and consider the unique consistent orientation O of τ in which Ñ

t

is maximal. Suppose that O does not split τ , i.e. that there is some Ñs P O which does
not lie below any maximal element of O. Consider the set C Ď O of all elements Ñr of O
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with Ñr ě Ñs . Since Ñs and hence no element of C an lie below Ñ

t we must have Ñr ď
Ð

t for
all Ñr P C since τ is nested. Thus Ð

t is an upper bound for C. Now if C has a maximal
element then this separation is also a maximal element of O, contrary to our assumption
about Ñs ; therefore C cannot have a maximal element and hence contains a chain of order
type ω, as claimed. �

A direct consequence of Lemma 2.4 is that every element of a finite tree set lies in a
splitting star.

Given two separation systems R and S, a map f : RÑ S is a homomorphism of separation
systems if it commutes with the involution, i.e. pfpÑr qq˚ “ fpÐrq for all Ñr P R, and is order-
preserving, i.e. fpÑr 1q ď fpÑr 2q whenever Ñr 1 ď

Ñr 2 for all Ñr 1,
Ñr 2 P R. Please note that the

condition for f to be order-preserving is not ‘if and only if’: it is allowed that fpÑr 1q ď fpÑr 2q

for incomparable Ñr 1,
Ñr 2 P R. Furthermore f need not be injective.

As all trivial separations are small every regular nested separation system is a tree set.
These two properties, regular and nested, are preserved by homomorphisms of separations
systems, albeit in different directions: the image of nested separations is nested, and the
preimage of regular separations is regular.

Lemma 2.5. Let f : RÑ S be a homomorphism of separation systems. If S is regular
then so is R; and if R is nested then so is its image in S.

Proof. First suppose that some Ñr P R is small, that is, that Ñr ď Ðr . Then

fpÑr q ď fpÐrq “ pfpÑr qq˚,

so S contains a small element. Therefore if S is regular then R must be regular as well.
Now suppose that R is nested consider two unoriented separations s, s1 P S and for which

there are r, r1 P R with s “ fprq and s1 “ fpr1q. Since R is nested r and r1 have comparable
orientations, say Ñr ď Ñr1. Then Ñs :“ fpÑr q ď fpÑr1q “: Ñs1, showing that s and s1 are nested.
Hence if R is nested its image in S is nested too. �

A bijection f : RÑ S is an isomorphism of separation systems if both f and its inverse
map are homomorphisms of separation systems. Two separation systems R and S are
isomorphic, denoted as R – S, if there is an isomorphism f : RÑ S of separation systems.
If one of R and S (and thus both) is a tree set we call f an isomorphism of tree sets.

Lemma 2.5 makes it possible to show that a homomorphism f : RÑ S of separation
systems is an isomorphism of tree sets without knowing beforehand that either R or S is a
tree set:
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Lemma 2.6. Let f : RÑ S be a bijective homomorphism of separation systems. If R is
nested and S regular then f is an isomorphism of tree sets.

Proof. From Lemma 2.5 it follows that both R and S are regular and nested, which
means they are regular tree sets. Therefore all we need to show is that the inverse
of f is order-preserving, i.e. that Ñr 1 ď

Ñr 2 whenever fpÑr 1q ď fpÑr 2q. Let Ñr 1,
Ñr 2 P R

with fpÑr 1q ď fpÑr 2q be given. As R is nested, r1 and r2 have comparable orientations.
If Ñr 1 ě

Ñr 2, then fpÑr 1q “ fpÑr 2q, implying Ñr 1 “
Ñr 2 and hence the claim. If Ñr 1 ď

Ðr2,
then fpÑr 1q ď fpÑr 2q, fp

Ðr2q, contradicting the fact that S is a regular tree set. Finally,
if Ñr 1 ě

Ðr2, then fpÐr2q ď fpÑr 2q, contradicting the fact that S is regular. Hence Ñr 1 ď
Ñr 2,

as desired. �

§3. Regular tame tree sets and graph-theoretical trees

Every graph-theoretical tree T naturally gives rise to a tree set, its edge tree set τpT q
of T (see below for a formal definition). However, while every tree gives rise to a tree set,
not every tree set ‘comes from’ a tree. In this section we characterise those infinite tree
sets that arise from graph-theoretical trees as the tree sets which are both regular and
tame, i.e. contain no chain of order-type ω ` 1. More precisely, given a regular tame tree
set τ we will define a corresponding tree T pτq. These definitions in turn should be able to
capture the essence of what it means to be ‘tree-like’. More precisely we want the following
properties:

‚ the tree constructed from the edge tree set of T is isomorphic to T ;
‚ the edge tree set of the tree constructed from τ is isomorphic to τ .

3.1. The edge tree set of a tree. Let T “ pV,Eq be a graph-theoretical tree, finite or
infinite. Let

Ñ

EpT q be the set of oriented edges of T , that is

Ñ

EpT q “
 

px, yq
ˇ

ˇ tx, yu P EpT q
(

.

We define an involution ˚ by setting px, yq˚ :“ py, xq for all edges xy P EpT q, and a
partial order ď on

Ñ

EpT q by setting px, yq ă pv, wq for edges xy, vw P EpT q if and only
if tx, yu ‰ tv, wu and the unique tx, yu–tv, wu-path in T joins y to v. Then the edge tree
set τpT q is the separation system p

Ñ

EpT q,ď, ˚q. It is straightforward to check that τpT q is
indeed a regular tree set.

Note that every maximal chain in τpT q corresponds to the edge set of a path, ray or
double ray in T . Hence τpT q does not contain any chain of length ω ` 1 and hence is tame.
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If T is the decomposition tree of a tree-decomposition of a graph G, then the tree set τpT q
is isomorphic to the tree set formed by the separations of G that correspond§ to the edges
of T (with some pathological exceptions). This relationship between tree-decompositions
and tree sets was further explored in [3].

3.2. The tree of a regular tame tree set. Let τ be a regular tame tree set. Our
aim is to construct a corresponding graph-theoretical tree T pτq. Recall that a consistent
orientation O of τ is called splitting if every element of O lies below some maximal element
of O. By the uniqueness part of the Extension Lemma 2.2, every splitting star extends
to exactly one splitting orientation. Write O for the set of all splitting orientations of τ .
We will use O as the vertex set of T pτq. Moreover note that it will turn out that the
non-splitting orientations will precisely correspond to the ends of T pτq.

Let us show first that, for any two splitting stars, each of them contains exactly one
element that is inconsistent with the other star. We will later use this little fact when we
define the edges of our tree.

Lemma 3.1. Let σ1, σ2 be two distinct splitting stars of τ and O2 P O the orientation
inducing σ2. Then there is exactly one Ñs P σ1 with Ðs P O2.

Proof. There is at least one such Ñs as O2 does not induce σ1. For any two Ñr , Ñs P σ the
set tÐr, Ðsu is inconsistent, so there is at most one Ñs P σ1 with Ðs P O2. �

Note that this lemma holds for every tree set as the proof did not use any assumptions
on τ .

Our assumption that τ is tame implies the following sufficient condition for a consistent
orientation to be splitting:

Lemma 3.2. Let O be a consistent orientation of τ with at least one maximal element.
Then O splits τ .

Proof. Let Ñ

t be a maximal element of O. By Lemma 2.4 Ñ

t lies in a splitting star of τ , i.e. is
a maximal element of a consistent orientation that splits τ . By the Extension Lemma 2.2, O
is the only consistent orientation of τ of which Ñ

t is a maximal element; hence O must be
splitting. �

Together with the Extension Lemma 2.2 this immediately implies the following:

Corollary 3.3. Every Ñs P τ lies in exactly one splitting star of τ . Equivalently every Ñs P τ

is maximal in exactly one consistent orientation O and O P O.
§An edge e of the decomposition tree T of a tree-decomposition naturally defines a graph separation by

considering the union of the parts in the respective components of T ´ e as the sides of that separation.
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Proof. For Ñs P τ apply the Extension Lemma 2.2 to tÑsu to obtain a unique consistent
orientation O of τ in which Ñs is a maximal element. It then follows from Lemma 3.2
that O is splitting. �

For Ñs P τ write OpÑs q for the unique consistent orientation of τ in which Ñs is maximal.
Then Lemma 3.1 together with Corollary 3.3 says that for distinct O,O1 P O there is at
most one Ñs P O1 with OpÐs q “ O.

Now we define the graph T pτq. Let V pT pτqq “ O and

EpT pτqq “
 

tOpÑs q, OpÐs qu
ˇ

ˇ

Ñs P τ
(

.

We call T pτq the tree corresponding to τ , where τ is a regular tame tree set.
First note that T pτq does not contain any loops and hence is indeed a simple graph

since OpÑs q and OpÐs q are different for any Ñs P τ .
We need to check that T pτq is a tree.

Lemma 3.4. T pτq does not contain any cycles.

Proof. For O P O the set of incoming edges is precisely the splitting star induced by O.
If Ñs 1, . . . ,

Ñs k are the edges of an oriented cycle in
Ñ

T , then each of these and the inverse of
its cyclic successor lie in a common splitting star. Hence Ñs 1 ď

Ñs 2 ď ¨ ¨ ¨ ď
Ñs k ď

Ñs 1 by the
star property, a contradiction. �

To prove that T pτq is connected, our strategy is as follows. To find a path from O P O
to O1 P O we use Lemma 3.1 to find Ñs P O which is maximal in O with Ðs P O1. Then
we consider O˚ :“ pO Y tÐsuqr tÑsu. This orientation is again in O and a neighbour of O
in T pτq. If O˚ “ O1 we are done; otherwise we can iterate the process with O˚ and O1.
Either this process terminates after finitely many steps, in which case we found a path
from O to O1, or it continues indefinitely. In the latter case the infinitely many separations
we inverted form a chain with an upper bound in O1, which would yield a chain of order
type ω ` 1.

The next short Lemma forms the basis of this iterative flipping process.

Lemma 3.5. Let Ñs 1, . . . ,
Ñs n,

Ñs1 P τ be distinct separations with OpÐs k`1q “ OpÑs kq for all
k P N with 1 ď k ă n and Ñs n ă

Ñs1. Then there is a Ñs n`1 P τ with OpÐs n`1q “ OpÑs nq

and Ñs n`1 ď
Ñs1.

Proof. Let Ñs n`1 be the unique separation in OpÑs1q with OpÐs n`1q “ OpÑs nq. Then Ñs n ď
Ñs n`1

by the star property. Hence if Ñs n`1 ď
Ðs1, then Ñs n would be trivial, therefore Ñs n`1 ď

Ñs1 as
desired. �
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For Ñs 1, . . . ,
Ñs n,

Ñs1 and Ñs n`1 as in Lemma 3.5 there is an edge between OpÑs kq and OpÐs k`1q

for every 1 ď k ď n. Additionally if Ñs n`1 ‰
Ñs1 then Ñs 1, . . . ,

Ñs n`1,
Ñs1 again fulfill the as-

sumptions of the lemma, so it can be used iteratively.
Furthermore note that Ñs 1 ď

Ñs 2 ď ¨ ¨ ¨ ď
Ñs n ď

Ñs n`1, so if this iteration does not terminate
the Ñs k form an infinite chain. From this we now prove that T pτq is connected.

Lemma 3.6. T pτq is connected.

Proof. Let O,O1 P O be distinct orientations. Let Ñs 1 be the unique separation in O1

with O “ OpÐs 1q, and Ðs1 the unique separation in O with O1 “ OpÑs1q. Then Ñs 1 ď
Ñs1, and

if Ñs 1 “
Ñs1 then O and O1 are joined by an edge in T pτq. Otherwise the assumptions of

Lemma 3.5 are met for n “ 1. Applying Lemma 3.5 iteratively either yields Ñs n`1 “
Ñs1

for some n P N, in which case we found a path in T pτq joining O and O1, or we obtain a
strictly increasing sequence pÑs nqnPN with Ñs n ď

Ñs1 for all n P N, that is, a chain of order
type ω ` 1. �

3.3. Regular tame tree sets and trees – A characterisation. Finally we will prove
that the given constructions of the previous subsections agree with each other.

Lemma 3.7. Any regular tame tree set τ 1 us isomorphic to τpT pτ 1qq.

Proof. Let ϕ : τ 1 Ñ τpT pτ 1qq be the map defined by ϕpÑs q “ pOpÐs q, OpÑs qq. This is a bijec-
tion by Corollary 3.3. Note that for Ñs P τ 1 the orientations OpÐs q and OpÑs q differ only in s
by consistency and are thus adjacent in T .

As τ 1 and τpT pτ 1qq are regular tree sets all we need to show is that ϕ is a homomorphism
of separation systems. Then ϕ will be an isomorphism of tree sets by Lemma 2.6.

It is clear from the definition that ϕ commutes with the involution. Therefore it suffices
to show that ϕ is order-preserving.

Let Ñs , Ñs1 P τ 1 be two separations with Ñs ă Ñs1. We need to show that the unique
tOpÐs q, OpÑs qu–tOpÐs1q, OpÑs1qu-path in T pτq joins OpÑs q and OpÐs1q. Redoing the proof of
Lemma 3.6 with O “ OpÑs q and O1 “ OpÐs1q constructs a OpÑs q–OpÐs1q-path every one of
whose nodes contains Ñs and Ðs1 by consistency. Hence ϕpÑs q ă ϕpÑs1q as desired. �

Lemma 3.8. Any graph-theoretic tree T 1 is isomorphic to T pτpT 1qq.

Proof. If |V pT 1q| “ 1, then τpT 1q is empty and hence |V pT pτpT 1qqq| “ 1.
Otherwise, for each node v P V pT 1q there is at some oriented edge pw, vq P ~EpT 1q pointing

towards that node. Let ϕ : T 1 Ñ T pτpT 1qq be the map defined by ϕpvq :“ Oppw, vqq. This
map is well-defined since the edges directed towards a node v P V pT 1q form a splitting star
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with the same maximal elements yielding the unique consistent orientation containing all
these oriented edges (cf. Corollary 3.3).

Similarly, given some O “ Oppw, vqq P V pT pτpT 1qqq, we obtain ϕpvq “ O and hence
that ϕ is surjective. By construction there is an edge between Oppv, wqq and Oppw, vqq

for any edge vw P EpT q and similarly no edge between Oppv, wqq and O if pw, vq is not
maximal in O. �

Hence we have proven our main theorem of this section:

Theorem 3.9. (1) A tree set is isomorphic to the edge tree set of a tree if and only if
it is regular and tame.

(2) Any regular and tame tree set τ 1 is isomorphic to τpT pτ 1qq.
(3) Any graph-theoretic tree T 1 is isomorphic to T pτpT 1qq. �

Additionally, for distinct but comparable tree sets, we can say precisely in which way
the corresponding trees from Theorem 3.9 above are comparable: one will be a minor of
the other.

Theorem 3.10. Let T1, T2 be trees and τ1, τ2 be regular tame tree-sets.

(1) If τ1 Ď τ2, then T pτ1q is a minor of T pτ2q.
(2) If T1 is a minor of T2, then τpT1q is isomorphic to a subset of τpT2q.

Theorem 3.10 is a special case of Theorems 4.14 and 4.15 from the next section and
hence we will omit its proof here.

§4. Regular tree sets and tree-like spaces

4.1. Graph-like spaces. As we have seen in Section 3, not every tree set, even regular,
can be represented as the edge tree set of a tree. In this section we find a (topological)
relaxation of the notion of a (graph-theoretical) tree, to be called tree-like spaces. Like
trees, these tree-like spaces give rise to a regular edge tree set in a natural way, but which
are just general enough that, conversely, every regular tree set can be represented as the
edge tree set of a tree-like space.

The concept of graph-like spaces was first introduced in [10] by Thomassen and Vella,
and further studied in [1] by Bowler, Carmesin and Christian. In [1] the authors discuss
the connections between graph-like spaces and graphic matroids, which are of no interest
to us here. Instead we determine when a graph-like space is tree-like, and then show that
every regular tree set can be represented as the edge tree set of a tree-like space.
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Graph-like spaces are limit objects of graphs that are not themselves graphs. In short
they consist of the usual vertices and edges, together with a topology that allows the
vertices and edges to be limits of each other. The formal definition is as follows.

Definition 4.1. [1] A graph-like space G is a topological space (also denoted by G)
together with a vertex set V pGq, an edge set EpGq and for each e P EpGq a continuous
map ιGe : r0, 1s Ñ G (the superscript may be omitted if G is clear from the context) such
that:

‚ The underlying set of G is V pGq 9Yrp0, 1q ˆ EpGqs.
‚ For any x P p0, 1q and e P EpGq we have ιepxq “ px, eq.
‚ ιep0q and ιep1q are vertices (called the end-vertices of e).
‚ ιe æp0,1q is an open map.
‚ For any two distinct v, v1 P V pGq, there are disjoint open subsets U,U 1 of G parti-
tioning V pGq and with v P U and v1 P U 1.

The inner points of the edge e are the elements of p0, 1q ˆ teu.

Note that G is always Hausdorff. For an edge e P EpGq the definition of graph-like space
allows ιep0q “ ιep1q. We call such an edge a loop. In our discussions of graph-like spaces
loops are irrelevant, so the reader may imagine all graph-like spaces to be loop-free.

If U and U 1 are disjoint open subsets of G partitioning V pGq we call the set of edges
with end-vertices in both U and U 1 a topological cut of G and say that the pair pU,U 1q
induces that cut. The last property of graph-like spaces then says that any two vertices
can be separated by a topological cut.

A graph-like space G1 is a sub-graph-like space of a graph-like space G if V pG1q Ď V pGq,
EpG1q Ď EpGq and G1 is a subspace of G (as topological spaces). By slight abuse of
notation we will write G1 Ď G to say that G1 is a sub-graph-like space of G.

Let G be a graph-like space and F Ď EpGq a set of edges of G. We write G´ F for the
sub-graph-like space Gr tpx, eq |x P p0, 1q, e P F u with the same vertex set as G, with edge
set EpGqr F and ιG´F

e “ ιGe for all e P EpGqr F . We abbreviate G´ teu as G´ e. Given
a set W Ď V pGq of non-end-vertices we write G´W for the sub-graph-like space GrW

with V pG´W q :“ V pGqrW , EpG´W q :“ EpGq and ιG´F
e “ ιGe for all e P EpGq.

For reasons of cardinality arc-connectedness is not a very useful notion in graph-like
spaces. Instead we work with an adapted concept of arcs. A graph-like space P is a
pseudo-arc if P is a compact connected graph-like space with a start-vertex a and an
end-vertex b satisfying the following:

‚ for each e P EpP q the vertices a and b are separated in P ´ e;
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‚ for any two x, y P V pP q there is an edge e P E such that x and y are separated
in P ´ e.

If P contains an edge then a ‰ b; otherwise we call P trivial. A graph-like space G
is pseudo-arc-connected if for all vertices a, b P V pGq there is a pseudo-arc P Ď G with
start-vertex a and end-vertex b.

The adapted notion of circles is analogous. A graph-like space is a pseudo-circle if it is
a compact connected graph-like space with at least one edge satisfying the following:

‚ removing any edge from C does not disconnect C but removing any pair does;
‚ any two vertices of C can be separated in C by removing a pair of edges.

Pseudo-arcs and pseudo-circles are related as follows:

Lemma 4.2. [1] Let G be a graph-like space, C a pseudo-circle in G and e P EpCq. Then
C ´ e is a pseudo-arc in G joining the end-vertices of e.

Conversely, let P and Q be nontrivial non-loop pseudo-arcs in G that meet precisely in
their end-vertices. Then P YQ is a pseudo-circle in G.

Given two graph-like spaces G1, G2, a map ϕ : G1 Ñ G2 is an isomorphim of graph-like
spaces if it is a homeomorphism (for the topological spaces) and it induces a bijection
between V pG1q and V pG2q.

Let G be a graph-like space and F Ď EpGq a set of edges of G. We define an relation „1F
on G via

ιepxq „F ιepyq for all e P F and x, y P r0, 1s.

Let „F denote the minimal equivalence relation that extends the transitive and reflexive
closure of „1F such that the resulting quotient space G{F :“ G{ „F is Hausdorff.

Remark 4.3. The contraction G{F of F in G is a graph-like space with vertex set
V pG{F q :“ trvs P G{ „F | v P V pGqu, edge set¶ EpG{F q :“ EpGqr F and for each edge
e P EpGqr F the map ιG{Fe :“ ιGe .

One can also easily show that each equivalence class with respect to „F is connected
in G. Moreover, we write G.F for G{pEpGqr F q for the contraction to F in G.

We say that a graph-like space G1 is a minor of graph-like space G if there are disjoint
edge sets F1, F2 Ď EpGq and a set W Ď V pG{F1q ´ F2q of non-end-vertices such that G1 is
isomorphic to ppG{F1q ´ F2q ´W .

We will also need the following fact about graph-like spaces:
¶This is a slight abuse of notation since technically the inner points of an edge e in the quotient space

are of the form tpx, equ and not px, eq.
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Theorem 4.4. A compact graph-like space is connected if and only if it is pseudo-arc
connected.

As the proof of Theorem 4.4 is relatively long and does not involve any tree-like spaces
or other tree structures, we shall use Theorem 4.4 in this section without proof. Section 5
will then be devoted entirely to proving Theorem 4.4.

4.2. Tree-like spaces. There are many different equivalent ways of defining the graph-
theoretical trees, which is an easy exercise to prove.

Proposition 4.5. For a graph T “ pV,Eq the following are equivalent.

(i) For any two vertices a, b P V pT q there is a unique path in T from a to b;
(ii) T is connected but T ´ e is not for any edge e P EpT q;
(iii) T is connected and contains no cycle.
(iv) T contains no cycle but every graph T 1 with V pT 1q “ V pT q and T 1 ´ F “ T for

some non-empty F Ď EpT 1qr EpT q does.

A graph T is a tree if it has one (and thus all) of the above properties. In some situations
one of these properties is easier to work with than the others, and their equivalence is used
implicitly in many places in graph theory.

The above properties can be translated into the setting of graph-like spaces to say when
a graph-like space is tree-like as follows:

Definition 4.6. A compact loop-free graph-like space G is a tree-like space if one of the
following conditions holds:

(i) For any two vertices a, b P V pGq there is a unique pseudo-arc in T from a to b;
(ii) G is connected but G´ e is not for any edge e P EpGq;
(iii) G is connected and contains no pseudo-circle;
(iv) G contains no pseudo-circle but every graph-like space G1 with V pG1q “ V pGq

and G1 ´ F “ G for some non-empty F Ď EpG1qr EpGq does.

Analogous to Proposition 4.5, we prove the following proposition.

Proposition 4.7. For compact loop-free graph-like spaces the conditions in Definition 4.6
are equivalent.

The argument is very similar to the proof of Proposition 4.5, but one additional technical
lemma is needed: if two vertices a and b of a graph G are joined by two different paths
it is obvious that some edge e P EpGq lies on exactly one of the two paths. However for
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graph-like spaces and pseudo-arcs this intuitive fact requires a surprising amount of set-up
to prove (see [1]).

We forego this technical set-up and simply use the following lemma:

Lemma 4.8. [1, Remark 4.4] Any nontrivial pseudo-arc in a graph-like space is the closure
of the inner points of its edges.

Lemma 4.8 immediately implies that if two vertices a and b of a graph-like space G are
joined by two distinct pseudo-arcs P and Q then there is an edge e P EpGq which lies on
exactly one of the two pseudo-arcs. In fact slightly more is true: both P and Q contain an
edge that does not lie on the other pseudo-arc. For if the edge set of Q was a proper subset
of the edge set of P then Q would be disconnected as the removal of any edge from P

separates a and b in P .

Proof of Proposition 4.7 (based on Theorem 4.4).
(i) ñ (iv): Let G be a compact loop-free graph-like space with property (i). Suppose C

is a pseudo-circle in G; then for any e P EpCq both e and C ´ e define pseudo-arcs in G
joining the end-vertices of e, contradicting (i). Now let G1 be a graph-like space with
V pG1q “ V pGq and G1 ´ F “ G for some non-empty F Ď EpG1qr EpGq. Let e P F be an
edge with end-vertices a and b. Then e defines a pseudo-arc P between a and b in G1. Let
Q be the unique pseudo-arc in G joining a and b. Then P and Q intersect only in a and b,
and hence their union is a pseudo-circle in G1 by Lemma 4.2.

(iv)ñ (iii): Let G be a compact loop-free graph-like space with property (iv). Suppose G
is not connected. Then G is not pseudo-arc connected by Theorem 4.4. Let a and b be a
pair of vertices that are not connected by any pseudo-arc in G. In particular there is no edge
between a and b. Let G1 be a graph-like space with V pG1q “ V pGq such that G “ G1´ teu,
where e is an edge in G1 joining a and b. Then G1 contains a pseudo-circle C, which
has to contain e as otherwise C would be a pseudo-circle in G. But then by Lemma 4.2
C ´ e Ď G is a pseudo-arc between the end-vertices of e, showing that a and b are joined
by a pseudo-arc in G.

(iii) ñ (ii): Let G be a compact loop-free graph-like space with property (iii). Sup-
pose G´ e is still connected for some e P EpGq with end-vertices a and b. Then G´ e

contains a pseudo-arc P between a and b by Theorem 4.4, which together with e forms a
pseudo-circle by Lemma 4.2.

(ii)ñ (i): Let G be a compact loop-free graph-like space with property (ii). Theorem 4.4
implies that G is pseudo-arc connected. For the uniqueness suppose G contains two different
pseudo-arcs P and Q between two vertices a and b. Lemma 4.8 implies that there is an
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edge e P EpGq which lies on exactly one of the two pseudo-arcs. But then G´ e is still
pseudo-arc connected‖ and therefore connected, a contradiction. �

Similarly to graph-theoretical trees every tree-like space gives rise to a regular tree set,
see Subsection 4.3. We will show that the tree-like spaces are rich enough that one can
obtain every regular tree set from them. This is in contrast to Section 3 where we showed
that the regular tree sets coming from trees are precisely those with no chain of order
type ω ` 1. This restriction was owed to the fact that graph-theoretical trees cannot have
edges that are the limit of other edges. But tree-like spaces can have limit edges, so this is
no longer a restriction.

In Subsection 4.4 we construct a corresponding regular tree set for a given tree-like space,
and in Subsection 4.5 we will prove the characterisation analogously to the one in Section 3
by showing:

‚ the tree-like space constructed from the edge tree set of a tree like space T is
isomorphic to T ;

‚ the edge tree set of the tree-like space constructed from a regular tree set τ is
isomorphic to τ .

4.3. The edge tree set of a tree-like space. For a tree-like space T we can define the
edge tree set τpT q in a way that is very similar to the definition of τpT q in Section 3. Let

Ñ

EpT q :“
 

pιep0q, ιep1qq
ˇ

ˇ e P EpT q
(

Y
 

pιep1q, ιep0qq
ˇ

ˇ e P EpT q
(

be the set of oriented edges of T . As tree-like spaces cannot contain loops every element
of

Ñ

EpT q is a pair of two distinct vertices of T . For vertices u, v P V pT q let P pu, vq be the
unique pseudo-arc in T with end-vertices u and v. Then τpT q :“ p

Ñ

EpT q,ď, ˚q becomes a
separation system by setting px, yq˚ :“ py, xq and px, yq ă pv, wq for px, yq, pv, wq P

Ñ

EpT q

with tx, yu ‰ tv, wu whenever

P py, vq Ď P px, vq Ď P px,wq.

It is straightforward to check that τpT q is a regular tree set.

4.4. The tree-like space of a tree set. Let τ “ p ~E,ď, ˚q be a regular tree set; we define
the tree-like space corresponding to τ , denoted T pτq. Let V :“ Opτq be the set of consistent
orientations and E the set of unoriented separations of τ . As in Section 3 let OpÑs q be the
unique O P Opτq in which Ñs is maximal. We define the tree-like space T pτq with vertex
set V and edge set E, that is with ground set V Y

`

p0, 1q ˆ E
˘

. For this we need to define
the maps ιe : r0, 1s Ñ T pτq.
‖See Lemma 4.16 in [1].
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Fix any orientation O1 of τ . For each Ñe P O1 let ιe : r0, 1s Ñ T be the map

ιepxq “

$

’

&

’

%

OpÐeq, x “ 0
px, eq, 0 ă x ă 1
OpÑeq, x “ 1

.

So far the definition of V and the adjacencies in T pτq have been analogous to the construction
from Section 3. But to make T pτq into a graph-like space we also need to define a topology.

For Ñe P O1 let E`pÑeq be the set of all Ñs P O1 with Ñe ă Ñs or Ñe ă Ðs , and E´pÑeq the set of
all Ñs P O1 with Ñs ă Ñe. For Ñe P O1 and r P p0, 1q set

SpÑe, rq :“ OpÑeq Y
`

p0, 1q ˆ E`pÑeq
˘

Y
`

pr, 1q ˆ e
˘

and
SpÐe, rq :“ OpÐeq Y

`

p0, 1q ˆ E´pÑeq
˘

Y
`

p0, rq ˆ e
˘

.

We define the sub-base of the topology on T pτq as S :“
 

SpÑe, rq
ˇ

ˇ

Ñe P τ, r P p0, 1q
(

. Note
that only the notation depends on the choice of O1 but the topology on T pτq does not.
It is clear that T pτq is a graph-like space: for any two vertices a, b P V pick any Ñe in the
symmetric difference of a and b, viewed as orientations of τ . Then SpÑe, 1

2q and Sp
Ðe, 1

2q are
disjoint open sets partitioning V and ta, bu.

Lemma 4.9. T pτq is compact.

Proof. By the Alexander sub-base theorem from general topology it suffices to show that
any open covering of sets in S has a finite sub-cover. Suppose that C is a sub-basic open
cover of T pτq with no finite sub-cover. Let EpCq be the set of all Ñe P τ such that SpÑe, xq P C
for some x P p0, 1q. If Ñr ď Ðs for any Ñr , Ñs P EpCq then their corresponding sets in C already
cover all of T pτq, except possibly for p0, 1q ˆ r if Ñr “ Ðs , which can be finitely covered.
Thus we may assume that Ñr ď

Ðs for all Ñr , Ñs P EpCq. Then the set

E˚pCq :“ tÐe | Ñe P EpCqu

is a consistent partial orientation of τ , so by the Extension Lemma 2.2 there is an O P Opτq
with E˚pCq Ď O. But O R SpÑe, rq for every Ñe P EpCq and r P p0, 1q, so C was not a cover
of T . Therefore T is a compact graph-like space. �

Lemma 4.10. T pτq is connected, but T pτq ´ e is not for every e P E.

Proof. The latter follows immediately from the definition of S: for any edge e P E the
sets SpÑe, 1

2q and Sp
Ðe, 1

2q define a partition of T pτq ´ e into non-empty disjoint open sets.
To show that T is connected first note that any non-empty open set in T contains an inner

point of an edge. Suppose that A,B are non-empty disjoint open sets partitioning T . For
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any edge e P E the image of ιe in T is connected, hence every edge whose inner points meet A
is completely contained in A, and similarly for B. Write τA for the set of Ñe P τ with e̊ Ď A,
and τB for the set of Ñe P τ with e̊ Ď B. Then τA and τB partition τ and are closed under
involution. Fix any Ña P τA and

Ñ

b P τB with Ña ď
Ð

b and write C :“ tÑr P τ | Ña ď Ñr ď
Ð

b u

for the chain of elements between Ña and
Ð

b . Let CA be a maximal initial segment of C
with CA Ă τA and CB a maximal initial segment of C˚ with CB Ď τB, where C˚ is the
image of C under the involution. The set CA Y CB is a consistent partial orientation of τ ,
so by the Extension Lemma 2.2 there is an O P V with CA Y CB Ď O. Suppose that O P A,
say. Let X Ď τ be minimal in size with the property that

O P X :“
č

Ñx PX

SpÑx, rpÑxqq Ď A

for suitable rpÑxq P p0, 1q. From our assumptions it follows that such an X exists and is a
finite subset of O, and the minimality implies that X is a star. Observe that b̊ Ď SpÑx, rpÑxqq

for all Ñx P X with Ñx ă
Ð

b . As X does not meet B there must be a (unique) Ñx P X

with Ñx ě
Ñ

b and thus Ðx P C. If Ñx P τB then X again meets B, hence Ñx P τA. As Ñx P O

and thus Ðx R CA, there is a Ñ

t P τB XO with Ñx ď
Ñ

t . But then t̊ Ă X , a contradiction.
Therefore T pτq is connected. �

Hence we have shown that T pτq is indeed a tree-like space.

4.5. Regular tree sets and tree-like spaces – A characterisation.

Lemma 4.11. Any regular tree set τ 1 is isomorphic to τpT pτ 1qq.

Proof. For two vertices u, v P Opτ 1q the set C “ v r u is a chain in τ 1. Set

P pu, vq :“
ď

t̊e | Ñe P Cu Ď T pτ 1q.

Then P pu, vq “ P pv, uq and P pu, vq is the unique pseudo-arc in T with u and v as end-
vertices∗∗. Define the map ϕ : τ 1 Ñ

Ñ

EpT pτ 1qq as

ϕpÑeq :“
#

pιep0q, ιep1qq, Ñe P ιep1q
pιep1q, ιep0qq, Ñe P ιep0q

.

This is a bijection between τ 1 and
Ñ

EpT pτ 1qq that commutes with the involution. The claim
follows from Lemma 2.6 if we can show that ϕ is order-preserving. For this let Ñr , Ñs P τ 1

∗∗This follows immediately if one uses the machinery established in [1], which we do not introduce here.
Alternatively one can show the connectedness of P pu, vq by repeating the proof that T pτ 1q is connected,
and verifying the other properties of a pseudo-arc directly.
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with Ñr ă Ñs . Let px, yq be the end-vertices of r P EpT pτ 1qq with Ñr P y and pv, wq the
end-vertices of s P EpT pτ 1qq with Ñs P w. Then

v r y “ pv r xqr tÑr u

and
v r x “ pw r xqr tÑsu,

so P py, vq Ď P px, vq Ď P px,wq and hence ϕpÑr q “ px, yq ď pv, wq “ ϕpÑs q. �

Lemma 4.12. Any tree-like space T 1 is isomorphic to T pτpT 1qq.

Proof. For ease of notation, we may assume that without loss of generality that the arbitrary
orientation of τpT 1q we fixed for the construction of T pτpT 1qq is tpιT 1

e p0q, ιT
1

e p1qq | e P EpT 1qu.
For every edge e P EpT 1q there is a unique jpv, eq P t0, 1u such that v is in the same compo-

nent of T 1 ´ e as ιT 1

e pjpv, eqq by Proposition 4.7. We define a map ϕ : V pT 1q Ñ V pT pτpT 1qqq

by setting ϕpvq to be the orientation

tpιT
1

e p1´ jpv, eqq, ιT
1

e pjpv, eqqq | e P EpT qu

of τpT 1q, which is easily verified to be consistent.
We extend ϕ to a map T 1 Ñ T pτpT 1qq by setting ϕpr, eq :“ pr, tιT 1

e p0q, ιT
1

e p1quq for r P p0, 1q
and e P EpT 1q. It is easy to check that ϕ is a bijection and induces a bijection between V pT 1q
and V pT pτpT 1qqq. Since T 1 is compact and T pτpT 1qq is Hausdorff, we only need to check
that ϕ is continuous. For each e P EpT 1q and each r P p0, 1q note that T 1 r tru contains
two connected components Cpe, r, 0q and Cpe, r, 1q, where Cpe, r, jq denotes the component
containing ιT 1

e pjq. By construction, ϕpCpe, r, jqq “ SppιT
1

e p1´ jq, ιT
1

e pjqq, rq and hence the
preimage of any subbasis element is open. �

Altogether we have proven the main theorem of this section.

Theorem 4.13. (1) A tree set is isomorphic to the edge tree set of a tree-like space if
and only if it is regular.

(2) Any regular tree set τ 1 is isomorphic to τpT pτ 1qq.
(3) Any tree-like space T 1 is isomorphic to T pτpT 1qq. �

Additionally, for distinct but comparable tree sets, we can say precisely in which way
the corresponding trees from Theorem 3.9 above are comparable: one will be a minor of
the other.

Let us finish this section with two further results on how these constructions relate to
substructures.

Theorem 4.14. Let τ1, τ2 be regular tree-sets with τ1 Ď τ2. Then T pτ1q is a minor of T pτ2q.
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Proof. We show that T1 :“ T pτ1q is isomorphic to T2 :“ T pτ2q.EpT pτ1qq.
First we note that Opτ1q “ tO X τ1 |O P Opτ2qu. Moreover it immediately follows from

the definitions that O,O1 P Opτ2q are representatives of the same vertex of T2 if and only
if O X τ1 “ O1 X τ1.

For ease of notation we may assume without loss of generality that the orientation
of τ1 that we chose in the construction of T pτ1q is induced by the orientation we chose
for τ2 in the construction of T pτ2q. Let ϕ denote the concatenation of the identity from T1

to T pτ2q and the quotient map from T pτ2q to T2. By the previous observations, this map is
a bijection and induces a bijection between V pT1q and V pT2q. By definition ϕ is continuous
and hence shows that T1 is isomorphic to T2. �

Theorem 4.15. Let T1, T2 be tree-like spaces where T1 is a minor of T2. Then τpT1q is
isomorphic to a subset of τpT2q.

Proof. For ease of notation we may assume without loss of generality that T1 “ T2.EpT1q and
that ιT2

e pjq P ι
T1
e pjq for all e P EpT1q and j P t0, 1u. We show that τ1 :“ τpT1q is isomorphic

to τ2 :“ τpT2qr tpv, wq | v P rwsu.
Let ϕ : τ2 Ñ τ1 be defined as ϕpv, wq “ prvs, rwsq. It is easy to see that this map

is well-defined, surjective and commutes with the involution. For the injectivity con-
sider pv1, w1q, pv2, w2q P τ2 with v1 P rv2s and w1 P rw2s and let ei P EpT2q be such that
tvi, wiu “ tι

T2
ei
p0q, ιT2

ei
p1qu for i P t1, 2u. Since rv2s and rw2s are both connected (as sub-

spaces of T2) but in different components of T2 ´ ei, we obtain that e1 “ e2 and hence
pv1, w1q “ pv2, w2q.

Consider a pseudo-arc P pv, wq in T2 between any vertices v and w. It is not hard
to verify that the unique pseudo-arc in T1 between rvs and rws has as its point set
trxs P T1 |x P P pv, wqu. This observation implies that ϕ is order-preserving and hence an
isomorphism by Lemma 2.6. �

§5. Proof of Theorem 4.4

Now we turn to the proof of Theorem 4.4. The backwards implication is clear as
pseudo-arcs are connected.

For the remainder of this section let G be a compact connected graph-like space and a
and b two vertices of G.

The strategy of the proof of the forward implication is as follows. Given vertices a and b
which we want to connect with a pseudo-arc, first we find a minimal set L of edges which
meets every a–b-cut (that is, every cut of G that separates a and b). We then want to show
that the closure of these edges in G is the desired pseudo-arc. By minimality for every
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edge e P L there is a signature cut, that is, an a–b-cut for which e is the only cross-edge
of L. This allows us to define a linear order on L: to compare two edges e, f P L we check
on which side of e’s signature cut f lies. By extending this order to the points in the
closure of L in G we can perform finite-intersection-arguments for suitable initial segments
in order to prove connectedness.

We start off with a technical lemma that allows us to work with ‘tidy’ versions of our
a–b-cuts. It also establishes that all topological cuts are finite if G is a compact graph-like
space, which is important for the application of Zorn’s Lemma.

Lemma 5.1. Let C be a topological cut in G. Then there are disjoint open sets X and Y
partitioning the vertices of G such that the edges in C are precisely those edges that are
not completely in X or completely in Y . Furthermore, C is finite.

Proof. Let X 1, Y 1 be two disjoint open sets inducing the topological cut C. Without loss
of generality we may assume that every edge that meets exactly one of X 1, Y 1 is completely
contained in that set. An edge that meets both X 1 and Y 1 cannot be partitioned by those
two sets as it is connected. Consider the open covering F of G consisting of X 1, Y 1 and for
each edge e P EpGq that meets both X 1 and Y 1 the set of inner points of e. No subsystem
of F covers G, so by compactness F is a finite covering. Thus there are only finitely many
edges meeting both X 1 and Y 1, which also implies that C is finite. For every such edge e
with both end-vertices in X 1 we can add the inner points of e to X 1 and delete the entire
edge from Y 1, and we can do the same thing for all such edges with both end-vertices in Y 1.
The resulting sets X and Y are still open and are as desired. �

This lemma justifies the following formal definition of an a–b-cut.
A pair pA,Bq of disjoint open sets in G is an a–b-cut if:

(i) a P A and b P B;
(ii) V pGq Ď AYB;
(iii) for every edge e P EpGq with both end-vertices in A we have e̊ P A;
(iv) for every edge e P EpGq with both end-vertices in B we have e̊ P B.

That is, pA,Bq is a cut separating a and b which is ‘clean’ in the sense of Lemma 5.1. In
this case the set C of edges with end-vertices in both A and B is also called an a–b-cut,
and we say that C is induced by pA,Bq. The set of all a–b-cuts is denoted by Ca,b. This
set is non-empty: by the axioms of graph-like spaces there are open disjoint sets X, Y
partitioning V pGq and separating a and b, so the existence of an a–b-cut follows from
Lemma 5.1.
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Now we set up the application of Zorn’s Lemma to obtain a minimal set of edges that
meets every a–b-cut. Let

X :“ te P EpGq | e P C for some C P Ca,bu.

This is non-empty as there is a C P Ca,b which is non-empty by the connectedness of G.
Now let

L :“ tL Ď X |LX C ‰ ∅ for all C P Ca,bu.

Since X P L, this set is non-empty as well. We order the elements of L by inclusion. For
any descending chain pMi P L | i P Iq the set M :“

Ş

iPI Mi is a lower bound in L: for each
C P Ca,b every Mi contains at least one edge of C, but as C is finite, so does M . Therefore
Zorn’s Lemma implies the existence of a minimal element L P L. We show that L is the
set of edges of a pseudo-arc joining a and b.

For an edge e P L a C P Ca,b is a signature cut of e if LX C “ teu. In that case we
also call open disjoint sets pA,Bq inducing C a signature cut of e. Such a cut exists for
every e P L by the minimality of L.

Note that if pA,Bq is a signature cut of an edge e P L, then for any other f P L either
f̊ Ď A or f̊ Ď B.

For an edge e P L with end-vertices x ‰ y and a signature cut pA,Bq of e we say that e
runs from x to y if x P A and y P B.

For two edges e, f P L we set e ă f if there is a signature cut pA,Bq of e with f̊ Ď B.
Furthermore, we set e ď e for all edges e P L.

Before proceeding we need to check that neither the orientation of an edge e P L nor
the definition of e ă f depends on the signature cut at hand, and that ď is a linear order
on L. The general strategy in the following proofs is this: assume a counterexample to the
claim exists. Consider the signature cuts of all edges involved, then for a contradiction
find a suitable corner or union of corners of these cuts that is still an a–b-cut but contains
no edge of L.

Lemma 5.2. If e P L runs from x to y, then x P A and y P B for all signature cuts pA,Bq
of e. Furthermore if e ă f for e, f P L, then f̊ Ď B for all signature cuts pA,Bq of e.

Proof. Suppose there is an edge e P L with end-vertices x, y and signature cuts pA1, B1q

and pA2, B2q, for which x P A1 XB2 and y P A2 XB1. But then pA1 X A2, B1 YB2q would
induce an a–b-cut containing no edge of L: all edges of L apart from e have both their
end-vertices either in B1 YB2 or in A1 X A2, and e has no end-vertex in A1 X A2. This
contradicts the definition of L. Hence x P A and y P B for all signature cuts pA,Bq of e.
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Now suppose there are edges e, f P L and signature cuts pA1, B1q, pA2, B2q of e such
that f P B1 X A2. Let pA3, B3q be a signature cut of f . If e̊ Ď A3, then the biparti-
tion pA1 Y A2 Y A3, B1 XB2 XB3q induces an a–b-cut containing no edge of L. But if
e̊ Ď B3 then pA1 X A2 X A3, B1 YB2 YB3q induces an a–b-cut containing no edge of L, a
contradiction. Hence if e ă f , then f̊ Ď B for all signature cuts pA,Bq of e. �

Lemma 5.3. The relation ď on L is a linear order.

Proof. It is reflexive: this is true by definition.
Every two edges of L are comparable: suppose there are two distinct edges e, f P L

with respective signature cuts pA1, B1q and pA2, B2q, for which e̊ Ď A2 and f̊ Ď A1. Then
pA1 X A2, B1 YB2q induces an a–b-cut containing no edge of L, a contradiction.

It is antisymmetric: suppose there are two distinct edges e, f P L with respective signature
cuts pA1, B1q and pA2, B2q, for which e̊ Ď B2 and f̊ Ď B1. Then pA1 Y A2, B1 XB2q induces
an a–b-cut containing no edge of L, a contradiction.

It is transitive: suppose there are three distinct edges e, f, g P L, e ă f and f ă g, with
signature cuts pA1, B1q of e and pA2, B2q of f for which f̊ Ď B1 and g̊ Ď B2 but g̊ Ď A1.
Then pA1 Y A2, B1 XB2q is a signature cut of f (as e̊ Ď A2) with g̊ Ď A1 Y A2, which
contradicts f ă g. �

Finally we define the pseudo-arc that shall join a and b. Write L for

L :“
ď

t̊e | e P Lu.

As G is compact L is a compact subspace of G. Furthermore the removal of any edge e P L
from L (that is, removal of e̊) separates a and b in L as any signature cut of e witnesses.

To prove that L is connected we perform finite-intersection arguments on suitable initial
segments of L. In order for this to be possible we first need to extend the order ď on L to
an order ă on L.

Let pA,Bq be a signature cut of some e P L and x P Lr e̊. Then we write x ă e if x P A,
and x ą e if x P B. For x, y P L we write x ĺ y if any of the following holds:

(i) there are edges e, f P L with x P e̊, y P f̊ and e ă f ;
(ii) there is an edge e P L with x ă e ă y;
(iii) there is an edge e P L with end-vertices v, w, running from v to w, such that x, y P e̊

and ι´1pxq ă ι´1pyq in the parametrization ι of e with ιp0q “ v and ιp1q “ w.

In addition we set x ĺ x for all x P L.
As for ď we prove in the following lemma that ă is well-defined in the sense that x ă e

implies x P A for all signature cuts pA,Bq of e.
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Lemma 5.4. If x ă e for x P Lr e̊ and e P L then x P A for all signature cuts pA,Bq
of e.

Proof. Suppose there are two signature cuts pA1, B1q, pA2, B2q of e with x P A1, B2. If x is
an end-vertex of e this is an immediate contradiction to Lemma 5.2. If x is not an end-vertex
of e consider D :“ pA1 XB2qr e̊. This is an open set containing x, so since x P L, there is
an edge f ‰ e with f P L and D X f̊ ‰ ∅. But then f̊ Ď D, contradicting Lemma 5.2 as
well. �

As one readily checks ĺ is a partial order on L. If x, y P L are incomparable then x

and y are both vertices that are not the end-vertex of any edge in L. To show that L is
a pseudo-arc from a to b we need to show that any two vertices x, y P L are separated in
L ´ e̊ for some e P L. That is, we need to show that ĺ is a linear order on L. We shall
achieve this with a finite intersection property argument for initial segments of L.

Let C P Ca,b be some a–b-cut and LpCq :“ LX C “ te1, . . . , enu with e1 ă ¨ ¨ ¨ ă en. For
k P rn` 1s the k-th segment of L with regard to C is the set

SCpkq :“ tx P L | ek´1 ă x ă eku

for 1 ă k ă n` 1, and SCp1q :“ tx P L |x ă e1u as well as SCpn` 1q :“ tx P L |x ą enu.

As in the analogous scenario with paths and cuts in graphs one would expect the segments
of L with regard to an a–b-cut pA,Bq to alternate between being contained in A or in B.
The next lemma shows that this is the case, and helps locate an edge which separates two
given vertices in L.

Lemma 5.5. Let C P Ca,b be induced by pA,Bq with LpCq “ te1, . . . , enu and e1 ă ¨ ¨ ¨ ă en.
For k P rn` 1s the following statements hold.

(i) If k is odd then SCpkq Ď A;
(ii) If k is even then SCpkq Ď B.

In particular, if an edge ek P LpCq has end-vertices x, y with x ĺ y, then ek runs from x

to y if k is odd and from y to x if k is even.

Proof. For clarity we only consider the case where k is odd; the other case follows analo-
gously.

First assume that k “ 1. Suppose for a contradiction that there is an x P SCp1q
with x P B. Let pA1, B1q be a signature cut of e1. Then x P B X A1 as x ă e1. Due to x P L
there has to be an edge f P L with f̊ X pB X A1q ‰ ∅. This implies f̊ Ď B X A1 and in
particular e1 ‰ f . Let pAf , Bf q be a signature cut of f . Then pAX A1 X Af , B YB1 YBf q

is an a–b-cut not containing any edge of L: suppose g P L is an edge with end-vertices v, w
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such that v P AX A1 X Af and w P B YB1 YBf . Then w P A1 X Af implying w P B and
thus g P LpCq, but also g ă e1, a contradiction.

If k ą 1, then suppose for a contradiction that there is an x P SCpkq with x P B.
Let pAk´1, Bk´1q and pAk, Bkq be signature cuts of ek´1 and ek respectively. Then
x P B XBk´1 X Ak as ek´1 ă x ă ek. Due to x P L there has to be an edge f P L with
f̊ X pB XBk´1 X Akq ‰ ∅. This implies f̊ Ď B XBk´1 X Ak and in particular f ‰ ek´1, ek.
Let pAf , Bf q be a signature cut of f . Then

`

pBk´1 XBf q X pAY pB XBkqq, Ak´1 Y Af Y pB X Akq
˘

is an a–b-cut not containing any edge of L: suppose g P L is an edge with end-vertices v
and w such that v P pBk´1 XBf q X pAY pB XBkqq and w P Ak´1 Y Af Y pB X Akq. Then
w P Bk´1 XBf and therefore w P B X Ak, implying v P Ak and thus v P A. Hence g P LpCq
but ek´1 ă g ă ek, a contradiction. �

Lemma 5.5 indeed implies that any two vertices of L can be separated by some e P L.

Lemma 5.6. Let v ‰ w be two vertices in L. Then there is an edge e P L which separates v
and w in L.

Proof. If C is an a–b-cut with v and w on different sides, then by Lemma 5.5 v and w are
in different segments, SCpkvq and SCpkwq, say. For k :“ mintkv, kwu the edge ek P LpCq

separates v and w in L: as x ă e ă y for any signature cut pA,Bq of e we have x P A
and y P B, which gives a partition of Lr e̊ into two relatively open sets.

It is thus left to show that an a–b-cut with v and w on different sides exists. Let pA,Bq
be any a–b-cut and pV,W q be a v-w-cut. If v and w are on different sides of pA,Bq or
if pV,W q is an a–b-cut we are done. If not, then v, w P A and a, b P V , say. But then
pAX V,B YW q is the desired cut. �

From this it follows that ĺ is in fact a linear order on L. Next we prove that a P L
(which, surprisingly, is not obvious) by finding a minimum of L and showing that this
minimum has to be a.

Note that for any vertex c ‰ a there is an a–b-cut with c on the b-side: let pA,Bq be an
a–b-cut and pA1, Cq be an a–c-cut. Then pAX A1, B Y Cq is the desired cut.

Lemma 5.7. The minimum of L with regard to ĺ is a and the maximum is b. In
particular a, b P L.

Proof. We only show this for a.
If L has a minimum m P L, let a1 be the smaller one of its end-vertices (that is, m

runs from a1 to its other end-vertex). Then a1 is the minimum of L by Lemma 5.6.
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Suppose a ‰ a1. Let C be an a–b-cut induced by pA,Bq with a1 P B. Then a1 R SCp1q, so
e1 ă a1 implying e1 ă m a contradiction to the minimality of m.

If L does not have a minimum then for e P L set

Xe :“
ď

tf̊ | f P L, f ă eu.

Then Xe Ď L for all e P L. Since G is compact, L has the finite intersection property.
Therefore

X :“
č

ePL

Xe ‰ ∅.

For any edge e P L no inner point x P e̊ of e is in X, as x R Xe. Thus X contains a vertex a1.
If there were another vertex a2 P X, then a1 and a2 could be separated by an edge e P L by
Lemma 5.6 and one of them would not be in Xe. So X “ ta1u. Suppose a ‰ a1. Let C be
an a–b-cut induced by pA,Bq with a1 P B and let LpCq “ te1, . . . , enu with e1 ă ¨ ¨ ¨ ă en.
Then a1 R SCp1q as a1 P B, so e1 ă a1. But this means a1 R Xe1 , a contradiction. �

The final property needed of L to be a pseudo-arc joining a and b is that it is connected.
The proof of this is similar to the proof of Lemma 5.7.

Lemma 5.8. The subspace L of G is connected.

Proof. Suppose X, Y Ď L are two non-empty disjoint sets partitioning L which are open
in the subspace topology of L with a P X. As edges are connected, e̊ Ď X or e̊ Ď Y for
all e P L. Let S :“ te P L | e̊ Ď Y u and S :“ t̊e | e P Su. Then S is non-empty as Y contains
a point of L and thus an inner point of an edge of L.

We aim to find a minimum of Y “ S with regard to ĺ.
If S has a minimum m P S with regard to ď then let y be the smaller one of its

end-vertices. Then y P Y and y ĺ z for all z P S.
If S does not have a minimum then for e P S set

Re :“
ď

tf̊ | f P S, f ă eu.

Every Re is a non-empty closed subset of L. By the finite intersection property R :“
Ş

ePS Re

is non-empty. For any edge e P S no inner point x P e̊ of e is in R, as y R Re. Thus R
contains a vertex y. If there were another vertex y1 P R, then y and y1 could be separated
by an edge e P L by Lemma 5.6, with y ă e ă y1, say. This edge e cannot be in S as in
that case y would not be in Re. Thus e̊ Ď X. Let pA,Bq be a signature cut of e. As e ă f

for all f P S due to e ă y1 ă f we have y P A and
ď

tf̊ | f P Su Ď B.

But then AX L witnesses that y R S, a contradiction.
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Therefore R “ tyu and y is the minimum of S.
Now set

X 1 :“ tx P X |x ă e for all e P Su

and let U :“ te P L | e̊ Ď X 1u. By a similar argument as above X 1 has a maximum x.
Let y be the minimum of Y “ S and e P L an edge separating x and y. If y ă e ă x then
either e P S and x R X 1 or e P U and y R Y . So x ă e ă y, which implies e P U . But this
contradicts the fact that x is the maximum of X 1. �

We have succeeded in proving that L is a pseudo-arc containing a and b. This concludes
our proof of Theorem 4.4. l
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