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Abstract. A dicut in a directed graph is cut for which all of its edges a directed to a
common side of the cut. A famous theorem of Lucchesi and Younger states that in every
finite digraph the least size of an edge set meeting every dicut is equal to the maximum
number of disjoint dicuts in that digraph.

In this paper, we conjecture an version of this theorem using a more structural
description of this min-max property for finite dicuts in infinite digraphs. We show that
this conjecture can be reduced to countable digraphs where the underlying undirected
graph is 2-connected, and we prove several special cases of the conjecture.

§1. Introduction

In finite graph theory there exist a lot of theorems which relate the maximum number
of disjoint substructures of a certain type in a graph with the minimal size of another
substructure in that graph, which bounds the number of disjoint objects of the first type
that can exist. Often there is no gap between such numbers. Some results of this type
even have a reformulation in the language of linear programming.

Probably the most well-known example of such a result is the theorem of Menger for
finite graphs. In order to state the theorem more easily let us make the following definition.
For two vertex sets A,B Ď V pGq in a graph G we call a path P an A–B path in G if one
endvertex of P lies in A, the other in B and except from these two vertices P is disjoint
from the set AYB. Note that a vertex in AXB is also an A–B path.

Theorem 1.1. [3, Thm. 3.3.1] Let G be a finite graph and A,B Ď V pGq. Then the
maximum number of disjoint A–B paths in G equals the minimum size of a vertex set
separating A from B in G.

This theorem has the following immediate corollary.

Corollary 1.2. Let G be a finite graph and A,B Ď V pGq. Then there exists a tuple pS,Pq
such that the following statements hold.

(i) P is a set of disjoint A–B paths in G.
(ii) S Ď V pGq separates A from B in G.
(iii) S Ď

Ť

P.
1
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(iv) |S X P | “ 1 for every P P P.

However, this corollary is not weaker than Theorem 1.1 because Theorem 1.1 is conversely
implied by Corollary 1.2. The crucial point of Corollary 1.2 is that the elements of the
tuple pS,Pq make certain optimality assertions about each other: The set P and the way
it interacts with S proves that the separator S has minimum size. Conversely, the size
of S bounds the size of any set of disjoint A–B paths. Hence, S and its interaction with P
shows that P is of maximum size.

The benefit of the formulation of Corollary 1.2 is that it avoids talking about maximality
and minimality in terms of sizes or cardinalities. In infinite graphs this now becomes much
more meaningful. An extension of Theorem 1.1 which only asks for the existence of κ many
disjoint A–B paths and a set of size κ separating A from B for some cardinality κ is quite
easy to prove. In contrast to this, the extension of Corollary 1.2 which asks for the same
tuple but in a graph of arbitrary cardinality, is probably one of the deepest theorems in
infinite graph theory and due to Aharoni and Berger [1]. While the proof of this theorem
is already challenging for countable graphs, it becomes much more complicated in graphs
of higher cardinality.

We want to consider a theorem about finite digraphs which has similar formulations as
Theorem 1.1. To state the theorem we have do give some definitions first. In a weakly
connected directed graph D we call a cut of D directed, or a dicut of D, if all of its edges
have their head in a common side of the cut. Now we call a set of edges a dijoin of D if it
meets every non-empty dicut of D. Now we can state the mentioned theorem, which is
due to Lucchesi and Younger.

Theorem 1.3. [8, Thm.] In every weakly connected finite digraph, the maximum number
of disjoint dicuts equals the minimum size of a dijoin.

Beside the proof Theorem 1.3 of Lucchesi and Younger [8, Thm.], further ones appeared by
Lovász [7, Thm. 2] and Frank [4, Thm. 9.7.2]. As for Theorem 1.1 we state a reformulation
of Theorem 1.3 which avoids talking about maximality and minimality in terms of sizes or
cardinalities.

Corollary 1.4. Let D be a finite weakly connected digraph. Then there exists a tuple
pF,Bq such that the following statements hold.

(i) B is a set of disjoint dicuts of D.
(ii) F Ď EpDq is a dijoin of D.
(iii) F Ď

Ť

B.
(iv) |F XB| “ 1 for every B P B.
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Now we consider the question whether Corollary 1.4 extends to infinite digraphs as
Corollary 1.2 did for infinite graphs. Let us first show that a direct extension of this
formulation to arbitrary infinite digraphs fails. To do this we define a double ray to be an
undirected two-way infinite path. Now consider the digraph depicted in Figure 1.1. Its
underlying graph is the Cartesian product of a double ray with an edge. Then we orient
all edges corresponding to one copy of the double ray in one direction and all edges of the
other copy in the different direction. Finally, we direct all remaining edges such that they
have their tail in the same copy of the double ray.

This digraph does not have any finite dicut, but infinite ones. Note that every dicut of
this digraph contains at most one horizontal edge, which corresponds to a oriented one
of some copy of the double ray, and all vertical edges left to some vertical edge. So we
cannot even find two disjoint dicuts. Next let us look at dijoins of the digraph depicted
in Figure 1.1. In order to hit every dicut which contains a horizontal edge, a dijoin must
contain infinitely many vertical edges left to some vertical edge. So we obtain that each
dijoin hits every dicut infinitely often in this digraph. Therefore, neither the statement
of Corollary 1.4 nor the statement of Theorem 1.3 using cardinalities remains true if we
consider arbitrary dicuts in infinite digraphs.

Figure 1.1. A counterexample to an extension of Corollary 1.4 to infinite
digraphs where infinite dicuts are considered too.

In order to overcome the problem of this example let us again consider the situation
in Corollary 1.2. There, all elements of the set P are just finite paths. So we might need
to restrict our attention to finite dicuts when extending Corollary 1.4 to infinite digraphs.
Hence, we make the following definitions. In a weakly connected digraph D we call an
edge set F Ď EpDq a finitary dijoin of D if it intersects every non-empty finite dicut of D.
Building up on this definition we call a tuple pF,Bq as in Corollary 1.4 but where F is
now only a finitary dijoin and B a set of disjoint finite dicuts of D, an optimal pair for D.
Furthermore, we call an optimal pair nested if the elements of B are pairwise nested, i.e.,
any two finite dicuts EpX1, X2q, EpY1, Y2q P B either satisfy X1 Ď Y1 or Y1 Ď X1.

Not in contradiction to the example given above we make following conjecture, which
we call the Infinite Lucchesi-Younger Conjecture.

Conjecture 1.5. There exists an optimal pair for every weakly connected digraph.



4 J. PASCAL GOLLIN AND KARL HEUER

Apparently, an extension of Theorem 1.3 as in Conjecture 1.5 has independently been
conjectured by Aharoni [6].

The three mentioned proofs [8, Thm.] [7, Thm. 2] [4, Thm. 9.7.2] of Theorem 1.3 even
show a slightly stronger result.

Theorem 1.6. [8, Thm.] There exists a nested optimal pair for every weakly connected
finite digraph.

Hence, we also make the following conjecture.

Conjecture 1.7. There exists a nested optimal pair for every weakly connected digraph.

An indication why Conjecture 1.7 might be properly stronger than Conjecture 1.5 is
the following. Different from finite digraphs, not every finitary dijoin that is part of an
optimal for a given weakly connected infinite digraph can also feature as part of some
nested optimal pair for that digraph. As an example for this consider the infinite digraph
depicted twice in Figure 1.2. Its underlying graph consists of a ray R together with an
additional vertex v R V pRq which is precisely adjacent to every second vertex along R,
beginning with the unique vertex on R with degree 1. Then we orient all edges incident
with v towards v. Each remaining edge is oriented towards the unique neighbour of v to
which it is incident with.

Figure 1.2. All edges are meant to be directed from left to right. The grey
edges in the left picture feature in a finitary dijoin of a nested optimal pair.
The grey edges in the right picture feature in a finitary dijoin of an optimal
pair, but not in any finitary dijoin of a nested optimal pair.

Considering Figure 1.2 it is easy to check that the grey edges FL in the left instance of
the digraph are a finitary dijoin. Furthermore, we can easily find a nested optimal pair
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in which FL features. In the right instance of the digraph the grey edges FR also form a
finitary dijoin and we can also easily find an optimal pair in which FR features. However,
no matter which finite dicut we choose on which the rightmost grey edge lies, it cannot be
nested with all the finite dicuts we choose for all the other edges of FR.

One of the main results here is that we verify Conjecture 1.7 for several classes of
digraphs. We gather all these results in the following theorem. Before we can state the
theorem we have to give some further definitions. We call a minimal non-empty dicut of
a digraph a dibond. Furthermore, we call an undirected one-way infinite path a ray. An
undirected multigraph which does not contain a ray, is called rayless.

Theorem 1.8. Conjecture 1.7 holds for a weakly connected digraph D if it has any of the
following properties:

(i) There exists a finitary dijoin of D of finite size.
(ii) There is a finite maximal number of disjoint finite dicuts of D.
(iii) There is a finite maximal number of disjoint and pairwise nested finite dicuts of D.
(iv) Every edge of D lies in only finitely many finite dibonds of D.
(v) D has no infinite dibond.
(vi) The underlying multigraph of D is rayless.

The other main result of this paper is that we can reduce Conjecture 1.5 and Conjec-
ture 1.7 to countable digraphs with a certain separability property and whose underlying
multigraph is 2-connected. In order to state the theorem, we have to make a further
definition. We call a digraph D finitely diseparable if for any two vertices v, w P V pDq
there is a finite dicut of D such that v and w lie in different sides of that finite dicut.

Theorem 1.9. (i) If Conjecture 1.5 holds for all countable finitely diseparable digraphs
whose underlying multigraph is 2-connected, then Conjecture 1.5 holds for all weakly
connected digraphs.

(ii) If Conjecture 1.7 holds for all countable finitely diseparable digraphs whose underly-
ing multigraph is 2-connected, then Conjecture 1.7, respectively, holds for all weakly
connected digraphs.

The structure of this paper is as follows. In Section 2 we introduce our needed notation.
Furthermore, we state and prove several lemmas we shall need to prove the main theorems.
Section 3 is dedicated to the proof of Theorem 1.9. In the last part, Section 4, shall prove
Theorem 1.8 via several lemmas.
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§2. Preliminaries

For basic facts about finite and infinite graphs we refer the reader to [3]. Several proofs,
especially in Section 4, base on certain compactness arguments using the compactness
principle in combinatorics. We omit stating it here but refer to [3, Appendix A]. Especially
for facts about directed graphs we refer to [2].

In general, we allow our digraphs to have parallel edges, but no loops if we do not
explicitly mention them. Similarly, all undirected multigraphs we consider do not have
loops if nothing else is explicitly stated.

Throughout this section let D “ pV,Eq denote a digraph. Similarly as in undirected
graphs we shall call the elements of E just edges. We view the edges of D as ordered
pairs pu, vq of vertices u, v P V and shall write uv instead of pu, vq, although this might not
uniquely determine an edge. In parts where a finer distinction becomes important we shall
clarify the situation. For an edge uv P E we furthermore denote the vertex u as the tail
of uv and v as the head of uv. We denote the underlying multigraph of D by UnpDq.

In an undirected non-trivial path we call the vertices incident with just one edge the
endvertices of that path. For the trivial path consisting just of one vertex, we call that
vertex also an endvertex of that path. If P is an undirected path with endvertices v and w,
we call P a v–w path. For a path P containing two vertices x, y P V pP q we write xPu for
the x–u subpath contained in P . Should P additionally be a directed path where v has
out-degree 1, then we call P a directed v–w path. We also allow to call the trivial path
with endvertex v a directed v–v path. For two vertex sets A,B Ď V we call an undirected
path P Ď D an A–B path if P is an a–b path for some a P A and b P B but is disjoint
from AYB except from its endvertices. Similarly, we call an directed path that is an A–B
path a directed A–B path.

We call an undirected graph a star if it is isomorphic to the complete bipartite graph K1,κ

for some cardinal κ, where the vertices of degree 1 are its leaves and the vertex of degree κ
is its centre.

We define a ray to be an undirected one-way infinite path. Any subgraph of a ray R
that is itself a ray is called a tail of R. An undirected multigraph that does not contain a
ray is called rayless.

A comb C is an undirected graph that is the union of a ray R together with infinitely
many disjoint undirected finite paths each of which has precisely one vertex in common
with R, which has to be an endvertex of that path. The endvertices of the finite paths
that are not on R together with the endvertices of the trivial paths are the teeth of C.
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For two vertex sets X, Y Ď V we define EpX, Y q Ď E as the set of those edges that have
their head in X r Y and their tail in Y rX, or their head in Y rX and their tail in X r Y .
Further we define ÝÑE pX, Y q :“ tuv P EpX, Y q ; u P X and v P Y u. If X Y Y “ V and
X X Y “ ∅, we call EpX, Y q a cut of D and refer to X and Y as the sides of the
cut. Moreover, by writing EpM,Nq and calling it a cut of D we implicitly assume M
and N to be the sided of that cut. We call two cuts EpX1, Y1q and EpX2, Y2q of D nested
if either X1 Ď X2 and Y1 Ě Y2 holds or X2 Ď X1 and Y2 Ě Y1 is true. Moreover, we call a
set or sequence of cuts of D nested if its elements are pairwise nested. If two cuts of D are
not nested, we call them crossing (or say that they cross). A cut is said to separate two
vertices v, w P V if v and w lie on different sides of that cut. We call a cut EpX, Y q directed,
or briefly a dicut, if all edges of EpX, Y q have their head in one common side of the cut.
We call D finitely separable if for any two different vertices v, w P V there exists a finite
cut of D such that v and w are separated by that cut. If furthermore any two different
vertices v, w P V can even be separated by a finite dicut of D, we call D finitely diseparable.
A minimal non-empty cut is called a bond. Note that the induced subdigraphs DrXs
and DrY s are weakly connected digraphs for a bond EpX, Y q. A bond that is also a dicut
is called a dibond. For a vertex set Y Ď V we define δ´pY q “ ÝÑE pV r Y, Y q. Analogously,
we set δ`pY q “ ÝÑE pY, V r Y q. Given a dicut B “ ÝÑE pX, Y q with sides X, Y P V , we call Y
the in-shore of B and X the out-shore of B. We shall writ inpBq for the in-shore of the
dicut B and outpBq for the out-shore of B.

For undirected multigraphs cuts, bonds, sides, the notion of being nested and the notion
of separating two vertices are analogously defined. Hence, we call an undirected multigraph
finitely separable if any two vertices can be separated by a finite cut of the multigraph.
Furthermore, in an undirected multigraph G with X, Y Ď V pGq we write EpX, Y q for the
set of those edges of G that have one endvertex in X r Y and the other in Y rX.

Let us mention two very basic but important observations with respect to dicuts.

Remark 2.1. Let D be a digraph and let Xn be an in-shore of a dicut of D for each n P N
such that

Ş

nPNXn ‰ ∅. Then
Ş

nPNXn and
Ť

nPNXn are in-shores of dicuts of D as
well. �

Note that
Ş

nPNXn and
Ť

nPNXn might be infinite dicuts of D, even if each Xn is finite.
Furthermore, note that if X1 and X2 are in-shores of dibonds, X1 XX2 does not need to
be an in-shore of a dibond, even if X1 XX2 ‰ ∅.

Remark 2.2. Let D be a digraph and let X1 and X2 be in-shores of dicuts of D such that
X1 XX2 ‰ ∅. Then δ´pX1q Y δ

´pX2q “ δ´pX1 YX2q Y δ
´pX1 XX2q.
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Moreover, if δ´pX1q and δ´pX2q are disjoint, then δ´pX1 YX2q and δ´pX1 XX2q are
disjoint as well. �

For a set N Ď E let D{N denote the contraction minor of D which is obtained by
contracting inside D all edges of N and deleting all loops that might occur. Similar, we
defineD.N :“ D{pE rNq. For a vertex v P V and any contraction minorD{N withN Ď E

let 9v denote the vertex in D{N which corresponds to the contracted (possibly trivial) weak
component of DrN s containing v.

We state the following basic remark without proof.

Remark 2.3. Let D be a digraph and v, w P V pDq. Then the following statements hold.

(i) If B is a cut or dicut in D, then it is also a cut or dicut, respectively, in D.N for
every N Ě B.

(ii) If B is a cut or dicut in D.N for some N Ě B, then it is also a cut or dicut,
respectively, in D.

(iii) If B is a cut or dicut in D.M for some M,N Ď EpDq with N ĚM Ě B, then it is
also a cut or dicut, respectively, in D.N .

(iv) If B is a cut in D and separates v and w in D, then B separates 9v and 9w in D.N
for every N Ě B.

(v) If B is a cut in D.N and separates 9v and 9w in D.N for some N Ě B, then B

separates v and w in D.
(vi) If B is a cut in D.M and separates 9v and 9w in D.M for some M,N Ď EpDq

with N ĚM Ě B, then B separates 9v and 9w in D.N . �

For a multigraph G we call a subgraph X Ď G a 2-block of G if X either consists of a set
of pairwise parallel edges in G or is a maximal 2-connected subgraph of G. In a digraph D
we call a subdigraph X a 2-block of D if UnpXq is a 2-block of UnpDq.

We call an edge set F Ď E a dijoin of D if F XB ‰ ∅ holds for every non-empty dicut B
of D. Similarly, we call an edge set F Ď E a finitary dijoin of D if F XB ‰ ∅ holds for
every non-empty finite dicut B of D. Note that an edge set F Ď E is already a (finitary)
dijoin if F XB ‰ ∅ holds for every (finite) dibond of D since every (finite) dicut is a
disjoint union of (finite) dibonds. We call a pair pF,Bq consisting of a finitary dijoin F
and a set of disjoint finite dicuts B an optimal pair for D if F Ď

Ť

B and |F XB| “ 1 for
every B P B. Furthermore, we call an optimal pair pF,Bq for D nested, if B is nested.

We state a basic remark about optimal pairs.

Remark 2.4. If pF,Bq is an optimal pair for a weakly connected digraph D, then
each B P B is a finite dibond of D.
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Proof. Suppose for a contradiction that there is some B P B such that B is not a finite
dibond of D. Since B is the disjoint union of finite dibonds of D, we find two finite
dibonds B1 and B2 of D such that B1, B2 Ď B. By the property of pF,Bq is an optimal
pair for D, we know that |F XB| “ 1. This, however, implies that F XBj “ ∅ for
some j P t1, 2u. Now we have a contradiction to F being a finitary dijoin of D. �

The following lemma is a basic tool in infinite graph theory. We shall only apply it for
vertex sets of cardinality ℵ0 and ℵ1 in this section.

Lemma 2.5. [5, Lemma 2.5] Let G be an infinite connected undirected multigraph and
let U Ď V pGq be such that |U | “ κ for some regular cardinal κ. Then there exists a
set U 1 Ď U with |U 1| “ |U | such that G either contains a comb whose set of teeth is U 1 or
a subdivided star whose set of leaves is U 1.

Using Lemma 2.5 let us now prove the following lemma.

Lemma 2.6. In a finitely separable rayless multigraph all 2-blocks are finite.

Proof. Let G be a finitely separable rayless multigraph and suppose for a contradiction
that there exists a 2-block X of G such that V pXq is infinite. Let U Ď V pXq be such
that |U | “ ℵ0. Applying Lemma 2.5 to U in X, we obtain a subdivided star S1 in X

whose set of leaves L1 satisfies |L1| “ |U | since G is rayless. Let c1 be the centre of S1.
Using that X is 2-connected, we now apply Lemma 2.5 to L1 in G´ c1, which is still a
connected rayless multigraph. Hence, we obtain a subdivided star S2 in G´ c1 whose set
of leaves L2 satisfies |L2| “ |L1| “ ℵ0 and L2 Ď L1. Let c2 denote the centre of S2. Now
we get a contradiction to G being finitely separable because S1 and S2 have infinitely many
common leaves in L2. So GrV pS1q Y V pS2qs contains infinitely many disjoint c1–c2 paths,
witnessing that c1 and c2 cannot be separated by a finite cut of G.

To complete the proof we still need to consider for a contradiction a 2-block X of G
whose vertex set is finite but whose edge set is infinite. Since there are only finitely many
two-element subsets of V pXq, we find by the pigeonhole principle two vertices x, y P V pXq
such that infinitely many edges of X have x and y as their endvertices. Now these infinitely
many edges witness that x and y cannot be separated by a finite cut in G, contradicting
again that G in finitely separable. �

We obtain the following immediate corollary.

Corollary 2.7. A finitely separable rayless multigraph has no infinite bond.
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Proof. By considering the 2-block-cutvertex tree (cf. [3, Lemma 3.1.4]) of a given multigraph
we can easily deduce that each bond of that multigraph is contained in precisely one of its
2-blocks. Hence, the statement follows from Lemma 2.6. �

The following lemma makes a similar assertion as Lemma 2.6 but without the assumption
of being rayless. The proof strategy is the same as in Lemma 2.6: We apply Lemma 2.5
twice and use our assumption to ensure that we do not get a comb by the application of
Lemma 2.5. We state the proof for the sake of completeness here.

Lemma 2.8. Every 2-block of a finitely separable multigraph is countable.

Proof. Let G be a finitely separable multigraph. Suppose for a contradiction that X is a
2-block of some finitely separable multigraph such that V pXq is uncountable. We obtain
that X is also finitely separable, and by definition that X is 2-connected. Let U Ď V pXq be
a set of cardinality ℵ1. By applying Lemma 2.5 with U in X we have to find a subdivided
star S1 whose set of leaves is some U 1 Ď U with |U 1| “ ℵ1. Let c1 denote the centre of S1.
Using the 2-connectedness of X we know that X ´ c1 is still connected. So we can again
apply Lemma 2.5, this time with U 1 in X ´ c1. We obtain a subdivided star S2 whose set
of leaves is some U2 Ď U 1 with |U2| “ ℵ1. Let c2 be the centre of S2. Since X is finitely
separable, there exists a finite dicut B of X which separates c1 from c2. However, the
subdivided stars S1 and S2, which have uncountably many common leaves in U2, witness
that B cannot be finite. This is a contradiction.

It remains to consider for a contradiction a 2-blockX of some finitely separable multigraph
such that V pXq is countable but EpXq in uncountable. As before we know that X is
finitely separable. Since there exist only countably many two-element subsets of V pXq, we
have to find uncountably many edges in X that have pairwise the same endvertices, say x
and y. Now we have again a contradiction to X being finitely separable since any dicut
separating x and y would need to contain uncountably many edges. �

2.1. Quotients. ForG being a digraph or a multigraph with v, w P V pGq let us write v ” w

if and only if we cannot separate v from w by a finite cut in G. It is easy to check that ”
defines an equivalence relation. For v P V pGq we shall write rvs” for the equivalence class
with respect to ” containing v.

Let G{” denote the di- or multigraph which is formed from G by identifying for each
equivalence class of ” all vertices contained in it while keeping all edges that did not
become loops. For any vertex v P V pGq let pvq denote the vertex of V pG{”q corresponding
to rvs”. Furthermore, let X̂ :“ tpxq ; x P Xu for every set X Ď V pDq.
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The proofs for the statements (i)–(iv) in the following proposition work analogously
to those for the statements in Proposition 2.12. Hence we only carry out the proof of
Proposition 2.12. The proof of statement (v) in the following proposition works via a proof
by contradiction and using a straightforward inductive construction. Therefore, we omit to
state it as well.

Proposition 2.9. Let G be a digraph or a multigraph. Then the following statements hold.

(i) G{” is (weakly) connected if G is (weakly) connected.
(ii) For every finite cut EpX, Y q of G we get that EpX̂, Ŷ q is a finite cut of G{”

with EpX, Y q “ EpX̂, Ŷ q.
(iii) For every finite cut EpM,Nq of G{” we get that M “ X̂ and N “ Ŷ for some

finite cut EpX, Y q of G with EpX̂, Ŷ q “ EpX, Y q.
(iv) G{” is finitely separable.
(v) G{” is rayless if UnpGq or G, respectively, is rayless. �

Let D be any digraph. We define a relation „ on V pDq by saying that v „ w for
v, w P V pDq if and only if there is no finite dicut separating v and w. It is easy to check
that „ defines an equivalence relation and so we omit a proof for this statement. Let rvs„
denote the equivalence class of „ containing v.

We define the digraph D{„ in the same way as we defined the quotient D{” but now
with respect to the relation „. For any vertex v P V pDq let rvs denote the vertex of V pD{„q
which corresponds to rvs„. Further, set X̃ “ trxs ; x P Xu for every set X Ď V pDq.

Next we prove some basic lemmas about the relation „ that we shall need later. The
first lemma will help us to work with the relation „ more easily. More precisely, the lemma
characterises the relation v „ w for any two vertices v, w of the digraph by the existence
of a certain edge set working as a witness. For any finite cut separating v and w it will be
enough to consider this edge set to see that this cut is not a dicut.

Lemma 2.10. Let D be a digraph and v, w P V pDq. Then v „ w if and only if there is an
edge set C Ď EpDq such that |C XÝÑE pX, Y q| “ |C XÝÑE pY,Xq| holds, with C XÝÑE pX, Y q ‰ ∅
if EpX, Y q separates v and w, for every finite cut EpX, Y q of D.

Moreover, C “ ∅ is satisfies the properties for v „ w precisely when v ” w.

Proof. If an edge set C as in the statement of the lemma exists, then obviously v „ w

holds.
For the converse we assume v „ w. We prove the existence of the desired set C via a

compactness argument. Let B be a finite set of finite cuts of D. Now we consider the finite
contraction minorD.p

Ť

Bq. Since v „ w and using Remark 2.3, there is no dicut inD.p
Ť

Bq
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separating 9v and 9w. This, however, implies the existence of a directed 9v– 9w path and a
directed 9w– 9v path inD.p

Ť

Bq. So the union of these paths yields an edge set CB Ď
Ť

B such
that for each cut EpXB, YBq of D.p

Ť

Bq we have |CB X
ÝÑ
E pXB, YBq| “ |CB X

ÝÑ
E pYB, XBq|

with CB X
ÝÑ
E pXB, YBq ‰ ∅ if EpXB, YBq separates 9v and 9w.

Now let B1 Ď B and let CB be any subset of
Ť

B with the properties mentioned above.
Then we get that CB1 :“ CB X

Ť

B1 satisfies the properties mentioned above as well but
with respect to D.p

Ť

B1q by Remark 2.3.
By the compactness principle there exists an edge set C Ď EpDq such that the equa-

tion |C XÝÑE pX, Y q| “ |C XÝÑE pY,Xq| holds for every finite cut EpX, Y q of D as EpX, Y q
is also a cut of the finite contraction minor D.pEpX, Y qq by Remark 2.3. Similarly,
C X

ÝÑ
E pX, Y q ‰ ∅ if EpX, Y q separates v and w, because EpX, Y q separates 9v and 9w in

the finite contraction minor D.pEpX, Y qq again by Remark 2.3. Hence, C is as desired in
the statement of the lemma.

For the last assertion of the lemma let us first assume v ” w. Then there is no finite
dicut of D separating v and w by definition of ”. Therefore, C “ ∅ satisfies all desired
conditions and v „ w.

For the converse we assume that C “ ∅ satisfies all desired conditions and v „ w. This
implies that there is no finite cut of D separating v and w. Hence, we know v ” w. �

For two vertices v, w P V pDq such that v „ w let us call any edge set C Ď EpDq with
the properties as in Lemma 2.10 a witness for v „ w. Note that there exists always an
inclusion-minimal witness for v „ w by Zorn’s Lemma.

The following lemmas tells us that given a minimal witness C for v „ w, all vertices
incident with an edge of C are also equivalent to v with respect to „.

Lemma 2.11. Let D be a digraph and v „ w for two vertices v, w P V pDq. Then a minimal
edge set C of D witnessing v „ w does also witness v „ y for any y P V pDrCsq.

Proof. Let C be as in the statement of the lemma. Now suppose for a contradiction that
there is a y P V pDrCsq which is separated from v by a finite dicut B “ EpX, Y q of D and
C XB “ ∅. Without loss of generality let y P Y . Since C witnesses v „ w, both vertices
v and w have to lie on the same side of B, namely X. We claim that C 1 :“ C X EpDrXsq

does also witness v „ w. This would be a contradiction to the minimality of C as y is
incident with an edge of C both of which endvertices lie in Y because C XB “ ∅.

Let us first consider any finite cut EpM,Nq of D. Since EpXXM,Y YNq is also a finite
cut, but CXEpXXM,Y q “ ∅, we obtain the desired equation |C 1 XÝÑE pM,Nq| “ |C 1 XÝÑE pN,Mq|.

Especially, if EpM,Nq separates v and w, then EpXXM,Y YNq does so as well. Hence,
the same argument yields C 1 XÝÑE pM,Nq ‰ ∅. �
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We continue by collecting some properties of D{„ in the following proposition. The
proof of statement (v) needs a bit more preparation. Therefore, we shall postpone it until
we have proved two further lemmas.

Proposition 2.12. Let D be a digraph. Then the following statements hold.

(i) D{„ is weakly connected if D is weakly connected.
(ii) For every finite dicut EpX, Y q of D we get that EpX̃, Ỹ q is a finite dicut of D{„

with EpX, Y q “ EpX̃, Ỹ q.
(iii) For every finite dicut EpM,Nq of D{„ we get that M “ X̃ and N “ Ỹ for some

finite dicut EpX, Y q of D with EpX̃, Ỹ q “ EpX, Y q.
(iv) D{„ is finitely diseparable.
(v) UnpD{„q is rayless if UnpDq is rayless.

Proof of statements (i)–(iv). Statement (i) is immediate.
If EpX, Y q is a finite dicut of D, then for every x P X all vertices of rxs„ are contained

in X by definition of „. Analogously, all vertices of rys„ lie in Y for each y P Y . Hence,
EpX̃, Ỹ q is a finite dicut of D{„ proving statement (ii).

Next let us verify statement (iii). Let EpM,Nq be a finite dicut of D{„. Then set
X “

Ť

tm P V pDq ; rms PMu and Y “
Ť

tn P V pDq ; rns P Nu. By definition of „ we
obtain that EpX, Y q is a finite dicut of D as well as M “ X̃ and N “ Ỹ yielding
EpX, Y q “ EpX̃, Ỹ q.

In order to show statement (iv), let rvs and rws be two different vertices of V pD{„q.
Since v and w are not contained in the same equivalence class, there must exist a finite
dicut EpX, Y q of D separating them. By statement (ii) we get that EpX̃, Ỹ q is a finite
dicut of D{„ and it separates rvs from rws by definition of „. �

Before we can complete the proof of Proposition 2.12, we have to prepare some lemmas.
The first is about inclusion-minimal edge sets witnessing the equivalence of two vertices
with respect to „ in digraphs whose underlying multigraph is rayless.

Lemma 2.13. Let D be a digraph such that UnpDq is rayless and let v „ w for two
vertices v, w P V pDq. Then any inclusion-minimal edge set of D witnessing v „ w is finite.

Proof. Let C Ď EpDq be an inclusion-minimal edge set witnessing that v „ w. Due to the
minimality of C we know that each element of C lies on a finite cut of D separating v and
w. As each cut is a disjoint union of bonds, each edge in C is contained in a finite bond of
D separating v and w. Using Proposition 2.9 we get that C Ď EpD{”q where each edge in
C lies on a finite bond of D{” separating pvq and pwq.
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Next we consider the 2-block-cutvertex tree T of D{” (cf. [3, Lemma 3.1.4]). Let P
denote the finite path in T whose endvertices are the 2-blocks of D{” containing pvq and
pwq, respectively. Now we use the basic fact that each bond of a di- or multigraph is also a
bond of a unique 2-block of that di- or multigraph, respectively, and therefore completely
contained in that 2-block. Hence, each bond of D{” separating pvq and pwq is a bond
of the finitely many 2-blocks corresponding to the vertices of P . This implies that all
edges in C are contained in the finitely many 2-blocks which correspond to vertices of P .
However, each 2-block of D{” is finite because UnpD{”q is finitely separable and rayless
by Proposition 2.9 and such multigraphs do not have infinite 2-blocks by Lemma 2.6. So
C is contained in a finite set and thus itself finite. �

The next lemma builds up on Lemma 2.13 and is the last one we shall need to complete
the proof of Proposition 2.12.

Lemma 2.14. Let D be a digraph such that UnpDq is rayless and let v „ w for two
vertices v, w P V pDq. Then any minimal edge set of D witnessing v „ w is in D{” a
strongly connected finite edge-disjoint union of directed cycles.

Proof. Let C be a minimal edge set of D witnessing v „ w. Since UnpDq is rayless, we
know by Lemma 2.13 that C is finite. Let v1, v2, . . . , vn be the endvertices of all edges in
C where n P N. By Lemma 2.11 we know that vi „ v holds for all i with 1 ď i ď n. Next
consider the set M “ tpviq ; 1 ď i ď nu Ď V pD{”q, whose size is at most n. Because
of Remark 2.3 we get that C is also an inclusion-minimal witness for pvq „ pwq and a
witness for pvq „ pviq for every pviq P M . We fix for each pair of vertices in M a cut of
D{” that separates these two vertices, which is possible since D{” is finitely separable
by Proposition 2.9. Let B denote the set of all these cuts. As C witnesses pviq „ pvjq for
all pviq, pvjq PM , we obtain that C intersects each cut in B. Especially, C Ď

Ť

B as each
edge in C has two vertices of M as its endvertices.

Next we consider the finite contraction minor K :“ pD{”q.p
Ť

Bq. We observe, similarly
as in the proof of Lemma 2.10, that KrCs is a finite edge-disjoint union of directed cycles.
Furthermore, it contains a directed 9pvq– 9pviq path and a directed 9pviq– 9pvq path for every
pviq P M . Therefore, KrCs is also strongly connected. Due to our choice of B we know
that C is still a strongly connected finite edge-disjoint union of directed cycles in D{”. �

We are now able to prove the last statement of Proposition 2.12.

Proof of statement (v) of Proposition 2.12. Suppose for a contradiction that UnpDq is ray-
less but UnpD{„q contains a ray R “ rv0srv1s . . . with vertices rvis P V pD{„q for all i P N.
For each i P N let v1i P rvis„ and v2i`1 P rvi`1s„ be the endvertices of the edge rvisrvi`1s seen
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in D. Furthermore, let Ci be an inclusion-minimal edge set witnessing v2i „ v1i`1 for every
i P N with i ě 1. We know by Lemma 2.11 that each Ci is completely contained in rvis„.

Next we consider the graph D{”. Since UnpDq is rayless, we obtain that UnpD{”q is
rayless as well by statement (v) of Proposition 2.9. Therefore, we know by Lemma 2.14 that
each Ci is a strongly connected finite edge-disjoint union of directed cycles in D{”. Since
each Ci is completely contained in rvis„, we get that pD{”rCisq X pD{”rCjsq “ ∅ holds
for all i, j P N with i ‰ j. Similarly, v1i and v2i`1 lie in different equivalence classes with
respect to ” for every i P N because they do so as well with respect to „. Let Pi Ď D{”

be a directed pv2i q–pv1i`1q path that is contained in Ci for every i P N with i ě 1. We define
the edge set M :“

Ť

iě1 EpPiq Y
Ť

iě0pv
1
iqpv

2
i`1q Ď EpD{”q. Now we derive a contradiction

because the graph D{”rM s is a ray in UnpD{”q. �

Let us close this subsection with the following observation.

Lemma 2.15. For every digraph D each 2-block of D{„ is countable.

Proof. We know by Proposition 2.12 that each 2-block of D{„ is finitely diseparable.
Hence, UnpXq is a 2-connected finitely separable multigraph. So Lemma 2.8 implies the
statement of this lemma. �

§3. Reductions for the Infinite Lucchesi-Younger Conjecture

In this section we prove some reductions for Conjecture 1.5 and Conjecture 1.7 in the
sense that it suffices to solve these conjectures on a smaller class of digraphs. We begin by
reducing these conjectures to finitely diseparable digraphs via the following lemma.

Lemma 3.1. Let D be a weakly connected digraph. Then the following statements are
true:

(i) If pF,Bq is a (nested) optimal pair for D, then pF, B̃q is a (nested) optimal pair,
respectively, for D{„, where B̃ :“ tEpX̃, Ỹ q ; EpX, Y q P Bu.

(ii) If pF,B1q is a (nested) optimal pair for D{„, then there is a (nested) optimal pair
pF,Bq, respectively, for D such that B1 “ B̃ :“ tEpX̃, Ỹ q ; EpX, Y q P Bu.

Proof. Note first that by Proposition 2.12 D{„ is weakly connected because D is so. We
now start with the proof of statement (i). Since B is a set of disjoint finite dicuts of D we
obtain by Proposition 2.12 that B̃ is a set of disjoint finite dicuts of D{„. Furthermore, if
B is nested, then so is B̃ since the definition of D{„ ensures that we never identify two
vertices of D that lie on different sides of a finite dicut of D. We also obtain F Ď

Ť

B̃ and
|F XB1| “ 1 for every B1 P B̃ because pF,Bq is a optimal pair for D and because of the
definition of B̃. In order to see that F is a finitary dijoin of D{„, consider any finite dicut



16 J. PASCAL GOLLIN AND KARL HEUER

EpM,Nq of D{„. We know by Proposition 2.12 that M “ X̃ and N “ Ỹ holds for some
finite dicut EpX, Y q of D. Since F is a finitary dijoin of D, we know that F intersects
with EpX, Y q. So F intersects with EpM,Nq as well.

Now we prove statement (ii). By Proposition 2.12 we know that for each finite dicut
EpM,Nq of D{„ we have M “ X̃ and N “ Ỹ for some finite dicut EpX, Y q of D. Hence,
B1 “ B̃ for some set B of finite dicuts of D. Since the elements of B̃ are pairwise disjoint,
we know that the elements of B are also pairwise disjoint. Furthermore, if B̃ is nested, then
B is nested as well. We directly obtain that F Ď

Ť

B and |F XB| “ 1 holds for every
B P B since pF, B̃q is an optimal pair for D{„. It remains to verify that F is a finitary
dijoin of D. Using Proposition 2.12 again we know that for any finite dicut EpX, Y q of
D the set EpX̃, Ỹ q is a finite dicut of D{„. Since F intersects EpX̃, Ỹ q as F is a finitary
dijoin of D{„, we get that F intersects EpX, Y q as well. So F is a finitary dijoin of D. �

The next reduction of Conjecture 1.5 and Conjecture 1.7 tells us that we can restrict
our attention also to digraphs whose underlying multigraphs is 2-connected.

Lemma 3.2. Let D be a weakly connected digraph. Then the following statements are
true.

(i) If pF,Bq is a (nested) optimal pair for D, then pF X EpXq,BæXq defines a (nested)
optimal pair, respectively, for every 2-block X of D, where we set BæX :“ tB P B ; B Ď EpXqu.

(ii) If pFX ,BXq is a (nested) optimal pair for every X P X of D, then p
Ť

XPX FX ,
Ť

XPX BXq

is a (nested) optimal pair, respectively, for D, where X denotes the set of all 2-blocks
of D.

Proof. We first prove statement (i). Let X be a 2-block of D. We assume that pF,Bq is
an optimal pair for D. This implies that each element of B is a finite dibond of D by
Remark 2.4. By considering the 2-block-cutvertex tree of D (cf. [3, Lemma 3.1.4]) we
can easily deduce that for any dibond B “ EpM,Nq of D we have either B X EpXq “ ∅
or B Ď EpXq. In the later case B is also a dibond of X, but with sides M X V pXq and
N XV pXq. Hence, if B is a set of disjoint dibonds of D, we get that BæX is a set of disjoint
dibonds of X. Furthermore, BæX is nested if B is nested. We also directly obtain from our
observation that F XEpXq Ď

Ť

BæX and |pF X EpXqq XB| “ 1 for every B P BæX since
pF,Bq is an optimal pair for D. What remains is to check that pF X EpXq is a finitary
dijoin of X. It is easy to see using the 2-block-cutvertex tree of D (cf. [3, Lemma 3.1.4])
that any dibond of X is also a dibond of D, although with adapted sides. Hence, F
intersects every finite dibond of X as F is a finitary dijoin of D. So F is also a finitary
dijoin of X.
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Now we show that statement (ii) is true. So let us assume that pFX ,BXq is a optimal
pair for every X P X . We know by Remark 2.4 that all elements of some BX are finite
dibonds of the 2-block X of D. As noted in the proof of statement (i) all these dibonds are
also finite dibonds of D. Hence,

Ť

XPX BX is a set of disjoint dibonds of D. Furthermore,
if each BX is nested, then it is easy to deduce that

Ť

XPX BX is a set of nested dibonds of
D using the 2-block-cutvertex tree of D (cf. [3, Lemma 3.1.4]). Using that for each X P X
the pair pFX ,BXq is an optimal one, we immediately get

Ť

XPX FX Ď
Ť Ť

XPX BX and
|B X

Ť

XPX FX | “ 1 for every B P
Ť

XPX BX . To see that
Ť

XPX FX is a finitary dijoin of
D let B be any finite dicut of D. Then B contains a finite dibond B1 of D, which needs to
intersect with some 2-block of D, say with X P X . As noted in the proof of statement (i),
we know that B1 is also a finite dibond of X. Since pFX ,BXq is an optimal pair for X, we
get that

Ť

XPX FX intersects B1 and, therefore, also B. �

We can now close this section by proving Theorem 1.9. In order to do this we basically
only need to combine Lemma 3.1 and Lemma 3.2. Let us restate the theorem.

Theorem 1.9. (i) If Conjecture 1.5 holds for all countable finitely diseparable digraphs
whose underlying multigraph is 2-connected, then Conjecture 1.5 holds for all weakly
connected digraphs.

(ii) If Conjecture 1.7 holds for all countable finitely diseparable digraphs whose underly-
ing multigraph is 2-connected, then Conjecture 1.7, respectively, holds for all weakly
connected digraphs.

Proof. Let us prove statement (i) and assume that Conjecture 1.5 holds for all countable
finitely diseparable digraphs whose underlying multigraph is 2-connected. Now let D be any
weakly connected digraph. We know by Proposition 2.12 that D{„ is a weakly connected
finitely diseparable digraph, and so is every 2-block of it. Furthermore, Lemma 2.15 yields
that each 2-block of D{„ is countable. By our assumption we know that Conjecture 1.5
holds for every countable 2-block of D{„. So using Lemma 3.2 we obtain an optimal pair
for D{„. Then we also obtain an optimal pair for D by Lemma 3.1.

The proof for statement (ii) works completely analogously to the one for statement (i). �

§4. Special cases

In this section we prove some special cases of Conjecture 1.7. Before we come to the
first special case, we state a basic observation.

Lemma 4.1. In a weakly connected digraph D the following are equivalent:

(i) There is finitary dijoin of D of finite size.
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(ii) There is a finite maximal number of disjoint finite dicuts of D.
(iii) There is a finite maximal number of disjoint and pairwise nested finite dicuts of D.

Proof. We start by proving the implication from (i) to (ii). Let F be a finitary dijoin of D
of finite size. Then, by definition, we can find at most |F | many disjoint finite dicuts of D.

The implication from (ii) to (iii) is immediate.
Finally, we assume statement (iii) and prove statement (i). Let B be a finite set

of maximal size containing disjoint and pairwise nested finite dicuts of D. We claim
that F :“

Ť

B is a finite finitary dijoin of D.
Suppose this is not the case. Then there exists a finite dicut B0 of D which is disjoint

to F . By our choice of B we know that B0 is not nested with each element of B. Let
B10 “ tB10, . . . , B1ku with k P N be the set of those elements of B which are crossing with
B0. Further, let B1i with i P t0, . . . , ku be such that either inpB1iq or outpB1iq is inclusion-
minimal among all sides of the dicuts B1j P B10. If inpB1iq is inclusion-minimal among all
sides of the elements B1j P B10, set B2i :“ δ´pinpB1iq X inpB0qq and B1 :“ δ´pinpB1iq Y inpB0qq.
Otherwise, define B2i :“ δ´pinpB1iq Y inpB0qq as well as B1 :“ δ´pinpB1iq X inpB0qq. We also
define B11 “ B10 r tB1iu. By Remark 2.1 and Remark 2.2 we know that B1 and B2i are
nested finite dicuts of D and the elements of the set tB1, B

2
i u Y B11 are pairwise disjoint.

Furthermore, B2i is nested with each element of B and B1 is nested with each element of
B r B11.

We can repeat the argument with B1 instead of B0 and with B11 instead of B10. Iterating
this procedure we obtain after k ` 1 steps the set B2 “ tB20 , . . . , B2ku and the finite dicut
Bk of D such that pB r B10q Y B2 Y tBku is a nested set of disjoint finite dicuts of D. This,
however, is a contradiction to the maximality of the set B. Hence, F is a finite finitary
dijoin of D. �

Now we prove a first special case for Conjecture 1.7 about digraphs that admit a finitary
dijoin of finite size.

Lemma 4.2. Let D be a weakly connected digraph with one of the following properties:

(i) D has a finitary dijoin of finite size.
(ii) There is a finite maximal number of disjoint finite dicuts of D.
(iii) There is a finite maximal number of disjoint and pairwise nested finite dicuts of D.

Then Conjecture 1.7 holds for D.

Proof. We know by Lemma 4.1 that properties (i), (ii) and (iii) are equivalent. So let us
fix a set B of maximum size which consists of pairwise nested and disjoint finite dicuts
of D. By assumption |B| is finite.
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Let N Ď EpDq be a finite set of edges such that
Ť

B Ď N holds and D.N is weakly
connected. Since D.N is a finite weakly connected digraph, there exists a nested optimal
pair pFN ,BNq for D.N by Theorem 1.6. By the choice of N we know that each element of
B is also a finite dicut of D.N . Furthermore, each finite dicut in D.N is also one in D and,
thus, BN is a set of disjoint finite dicuts in D. Hence, |B| “ |BN | “ |FN |. Using that the
elements in B are pairwise nested and disjoint finite dicuts, we get that pFN ,Bq is a nested
optimal pair for D.N as well. Given a finite edge set M Ě N with a nested optimal pair
pFM ,BMq in D.M we obtain that pFM ,Bq is also a nested optimal pair for D.N .

Note that for any finite edge set N Ď EpDq satisfying
Ť

B Ď N there are only finitely
many possible edge sets FN Ď

Ť

B such that pFN ,Bq is a nested optimal pair for D.N .
Hence, we get via the compactness principle an edge set F Ď

Ť

B with |F XB| “ 1 for
every B P B such that pF,Bq is a nested optimal pair for D.M for every finite edge set
M Ď EpDq satisfying

Ť

B ĎM .
We claim that pF,Bq is a nested optimal pair for D. We already know by definition that

B is a nested set of disjoint finite dicuts of D and that F Ď
Ť

B with |F XB| “ 1 for
every B P B. It remains to check that F is a finitary dijoin of D. So let B1 be any finite
dicut of D. Then the set N 1 :“ B1 Y

Ť

B is also finite and B1 is a finite dicut of D.N 1.
Since pF,Bq is also a nested optimal pair for D.N 1, we know that F XB1 ‰ ∅ holds, which
proves that F is a finitary dijoin of D. �

We continue with another special case. Its proof is also based on a compactness argument.
However, we need to choose the set up for the argument more carefully.

Lemma 4.3. Conjecture 1.7 holds for weakly connected digraphs in which every edge lies
in only finitely many finite dibonds.

Proof. Let D be a weakly connected digraph where every edge lies in only finitely many
finite dibonds. For an edge e P EpDq let Be denote the set of finite dibonds of D that
contain e. Our assumption on D implies that Be is a finite set. For a finite set B of finite
dibonds of D we define B̂ “

Ť

tBe ; e P
Ť

Bu. Again our assumption on D implies that B̂
is finite. Note that B Ď B̂ holds.

Given a finite set B of finite dibonds of D, we call pFB,B1q a nested pre-optimal pair for
D.p

Ť

Bq if the following hold:
(1) FB intersects every element of B,
(2) B1 Ď B̂,
(3) the elements of B1 are pairwise nested,
(4) FB Ď

Ť

B1, and
(5) |FB XB

1| “ 1 for every B1 P B1.



20 J. PASCAL GOLLIN AND KARL HEUER

We know that for every finite set B of finite dibonds of D there exists a nested pre-optimal
pair forD.p

Ť

Bq, since a nested optimal pair forD.p
Ť

B̂q is one and it exists by Theorem 1.6.
However, there can only be finitely many nested pre-optimal pairs for D.p

Ť

Bq as
Ť

B̂ is
finite.

Now let B1 and B2 be two finite sets of finite dibonds of D with B1 Ď B2, and let
pFB2 ,B12q be a nested pre-optimal pair for D.p

Ť

B2q. Then pFB2 X
Ť

B1,B12 X B̂∞q is a
nested pre-optimal pair for D.p

Ť

B1q. Now we get by the compactness principle an
edge set F 1D Ď EpDq and a set BD of finite dibonds of D such that pF 1D X

Ť

B,BD X B̂q
is a nested pre-optimal pair for D.p

Ť

Bq for every finite set B of finite dibonds of D.
Further let FD Ď F 1D be such that each element of FD lies on a finite dibond of D and
pFD X

Ť

B,BD X B̂q is still a nested pre-optimal pair for D.p
Ť

Bq for every finite set B of
finite dibonds of D.

We claim that pFD,BDq is a nested optimal pair for D. First we verify that FD is a
finitary dijoin of D. Let B be any finite dibond of D. Then FD intersects B, because
pFD XB,BD X

ytBuq is a nested pre-optimal pair for D.B. So FD is a finitary dijoin of D.
Next consider any element e P FD. By definition of FD we know that e P Be holds for

some finite dibond Be of D. Using again that pFD XBe,BD X
ztBeuq is a nested pre-optimal

pair for D.Be, we get that e P
Ť

BD. So the inclusion FD Ď
Ť

BD is valid.
Given any BD P BD we know that pFD XBD,BD X

ztBDuq is a nested pre-optimal pair
for D.BD. Hence, |FD XB| “ 1 holds for every B P BDX

ztBDu. Especially, |FD XBD| “ 1
is true because BD P BD X

ztBDu.
Finally, let us consider two arbitrary but different elements B1 and B2 of BD. We

know that pFD X pB1 YB2q,BD X
{tB1, B2uq is a nested pre-optimal pair for D.pB1 YB2q.

Therefore, B1 and B2 are disjoint and nested. This shows that pFD,BDq is a nested optimal
pair for D and completes the proof of this lemma. �

Before we can continue proving further special cases of Conjecture 1.7, we have to state
the following lemma, which is due to Thomassen and Woess. This lemma is a helpful tool
in infinite graph theory. For us it will be especially useful in connection with Lemma 4.3.

Lemma 4.4. [9, Prop. 4.1] Let G be a connected graph, e P EpGq and k P N. Then there
are only finitely many bonds of G of size k that contain e.

The next lemma can be used together with Lemma 4.3 to deduce that Conjecture 1.7
holds for weakly connected digraphs without infinite dibonds.

Lemma 4.5. In a weakly connected digraph without infinite dibonds each edge lies in only
finitely many finite dibonds.
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Proof. Let D be a weakly connected digraph and e P EpDq such that it lies on infinitely
many finite dibonds. We shall prove that e lies on some infinite dibond of D. Since e lies
on only finitely many dibonds of D with size k for every k P N by Lemma 4.4, we can pick
a sequence pB2nqnPN of finite dibonds of D all containing e such that |B2n| ă |B2n`1| holds
for every n P N. Iteratively using Remark 2.1 we can obtain a nested sequence pB1nqnPN of
finite dibonds of D all containing e such that |B1n| ă |B1n`1| holds for every n P N, where
the inequality can again be achieved due to Lemma 4.4. Now we can find an infinite set
I Ď N such that either inpB1iq Ě inpB1jq holds for all i, j P I with i ď j or inpB1iq Ď inpB1jq
is true for all i, j P I with i ď j. Since the following argument is symmetric with respect
to in- or out-shores, we assume without loss of generality that the first case holds for the
sequence pB1iqiPI .

We inductively find an edge set E˚ “ tei P EpDq ; i P Nu together with a subsequence
pBnqnPN of pB1iqiPI in the sense that there is an order preserving bijection σ : I ÝÑ N such
that B1i “ Bσpiq holds for every i P I, such that the following properties are fulfilled:

(1) e0 “ e holds.
(2) E˚n :“ te0, . . . , enu Ď Bn holds for every n P N.
(3) inpBnq contains an undirected tree Tn that covers all heads of edges in E˚n and

satisfies EpTnq XBm “ ∅ for all n,m P N with m ě n.

We start by setting B0 :“ B1k0 for some k0 P I such that B0 contains an edge e11 R E˚0 .
This is possible since |B1i| ă |B1j| holds for all i, j P I. Further, set T0 as the head of e0. Let
v11 be the head of e11. Now let P 11 be an undirected tv11u–V pT0q path in DrinpB0qs. Such a
path exists since B0 is a dibond of D and so DrinpB0qs is weakly connected. We now define
e1 to be the last edge on P 11 in the direction from v11 to T0 which lies in infinitely many
dibonds in pB1iqiPI if it exists, and e1 :“ e11 otherwise. Note that there needs to be an edge
in EpP 11q Y te11u which lies in infinitely many dibonds in pB1iqiPI because inpB1iq Ď inpB1k0q

holds for all i P I with i ě k0 and so B1i X pEpP 11q Y te11uq ‰ ∅ holds for all i ě k0. Let v1

be the head of e1. Now we set I1 Ď I r tk0u to be an infinite index set such that e1 P B
1
i

for all i P I1 and EpP1q XB
1
i “ ∅ for all i P I1 where P1 is the tv1u–V pT0q path contained

in P 11. Also we set T1 :“ T0 Y P1 and B1 :“ B1k1 for some k1 P I1 such that B1 contains an
edge e12 R E˚1 . Note that T1 Ď DrB1is for each i P I1 by construction. Now we repeat the
argument with k1 instead of k0 and with T1 instead of T0, etc. Iterating this construction
infinitely often yields our desired sequence pBnqnPN of finite dibonds of D.

Let B1 be the dicut of D whose in-shore is defined via inpB1q :“
Ş

nPN inpBnq. Remark 2.1
ensures that B1 is in fact a dicut of D. Note that the equality outpB1q “

Ť

nPN outpBnq

holds and each outpBnq induces a weakly connected subdigraph of D as Bn is a dibond of
D. So we know that DroutpB1qs is weakly connected as well. Now we set T :“

Ť

nPN Tn.
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Property 3 ensures that V pT q Ď inpB1q holds. Let K be the vertex set of the weak
component of DrinpB1qs that contains V pT q. Then B :“ EpV pDq rK,Kq is a dicut of
D whose in-shore is K. By definition DrKs is a weakly connected subdigraph of D and
B Ď B1 holds. Let C be the set of weak components of DrinpB1qs. Since each element of C
is adjacent with outpB1q, we obtain that DroutpBqs is also a weakly connected digraph.
Hence, B is a dibond of D. Finally, property 2 together with property 3 ensure that
E˚ Ď B holds. Especially, e “ e0 P B by property 1. So B is an infinite dibond of D
containing e. �

As noted before, we obtain the following corollary.

Corollary 4.6. Conjecture 1.7 holds for weakly connected digraphs without infinite dibonds.
�

We close this section with a last special case where we can show that Conjecture 1.7
holds.

Lemma 4.7. Conjecture 1.7 holds for weakly connected digraphs whose underlying multi-
graph is rayless.

Proof. Let D be a weakly connected digraph such that UnpDq is rayless. We know by
Proposition 2.12 that UnpD{„q is rayless as well, and that D{ „ is weakly connected and
finitely diseparable. So we obtain from Corollary 2.7 that D{ „ has no infinite dibond.
Now Corollary 4.6 implies that Conjecture 1.7 is true in the digraph D{ „. Using again
that D{ „ is finitely diseparable, any nested optimal pair for D{ „ directly translates to
one for D by Lemma 3.1. Hence, Conjecture 1.7 is true for D as well. �
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