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Abstract. Given a family F of pairwise almost disjoint (ad) sets on a countable

set S, we study families F̃ of maximal almost disjoint (mad) sets extending F .

We define a+(F) to be the minimal possible cardinality of F̃ \ F for such F̃
and a+(κ) = max{a+(F) : | F | ≤ κ}. We show that all infinite cardinal less
than or equal to the continuum c can be represented as a+(F) for some ad F
(Theorem 10) and that the inequalities ℵ1 = a < a+(ℵ1) = c (Corollary 1) and
a = a+(ℵ1) < c (Theorem 9) are both consistent.

We also give several constructions of mad families with some additional prop-
erties.

1. Introduction

Given a family F of pairwise almost disjoint countable sets, we can ask how
the maximal almost disjoint (mad) families extending F look like. In this
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and forthcoming note [5] we address some instances of this question and
other related problems.

Let us begin with the definition of some notions and notation about
almost disjointness we shall use here. Two countable sets A, B are said to
be almost disjoint (ad for short) if A ∩B is finite. A family F of countable
sets is said to be pairwise almost disjoint (ad for short) if any two distinct
A, B ∈ F are ad.

If X ⊆ [S]ℵ0 and S =
∪
X , F ⊆ X is said to be mad in X if F is ad

and there is no ad F ′ such that F $ F ′ ⊆ X . Thus an ad family F is mad
in X if and only if there is no X ∈ X which is ad from every Y ∈ F . If F
is mad in [S]ℵ0 for S =

∪
F , we say simply that F is a mad family (on S).

S is called the underlying set of F .
Let

(1.1) a(X ) = min{|F | : | F | ≥ ℵ0 and F is mad in X}.

Clearly, the cardinal invariant a known as the almost disjoint number ([2])
can be characterized as:

Example 1. a = a([S]ℵ0) for any countable S.

In this paper we concentrate on the case where the underlying set S =∪
X (or S =

∪
F) is countable. In [5] we will deal with the cases where S

may be also uncountable.
As the countable S =

∪
X , we often use ω or T = ω>2 where T is

considered as a tree growing downwards. That is, for b, b′ ∈ T , we write
b′ ≤T b if b ⊆ b′. Each f ∈ ω2 induces the (maximal) branch

(1.2) B(f) = {f ¹ n : n ∈ ω} ⊆ T

in T .
In Section 2, we consider several cardinal invariants of the form a(X ) for

some X ⊆ [T ]ℵ0 .
For X ⊆ [S]ℵ0 with S =

∪
X , let

(1.3) X⊥ = {Y ∈ [S]ℵ0 : ∀X ∈ X |X ∩ Y | < ℵ0}.

If Y ∈ X⊥ we shall say that Y is almost disjoint (ad) to X .
For an ad family F , let

(1.4) a+(F) = a(F⊥).

For a cardinal κ, let

(1.5) a+(κ) = sup{a+(F) : F is an ad family on ω of cardinality ≤ κ}.

Clearly, a+(ω) = a and a+(κ) ≤ a+(λ) ≤ c for any κ ≤ λ ≤ c. In Section
3 we give several construction of ad families F for which F⊥ has some
particular property. Using these constructions, we show in Section 4 that
a+(c) = c (actually we have a+(ō) = c, see Theorem 7) and the consistency
of the inequalities a = ℵ1 < a+(ℵ1) = c (actually we have a+(o) = c, see
Corollary 1). We also show the consistency of a+(ℵ1) < c (Theorem 9).
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For undefined notions connected to the forcing, the reader may consult
[7] or [8]. We mostly follow the notation and conventions set in [7] and/or [8].
In particular, the forcing is denoted in such a way that stronger conditions
are smaller. We assume that P-names are constructed just as in [8] for a
poset P but different from [8] we use symbols with tilde below them like
a
∼
, b

∼
etc. to denote the P-names corresponding to the sets a, b etc. in the

generic extension. V denotes the ground model (in which we live). For poset
P (in V ) we use V P to denote a “generic” generic extension V [G] of V by
some (V, P)-generic filter G. Thus V P |= · · · is synonymous to ‖– P “ · · · ”
or V |= ‖– P “ · · · ” and a phrase like: “Let W = V P ” is to be interpreted
as saying: “Let W be a generic extension of V by some/any (V, P)-generic
filter”.

For the notation connected to the set theory of reals see [1] and [2].
With c we denote the size of the continuum 2ℵ0 . M and N are the ideals of
meager sets and null sets (e.g. over the Cantor space ω2) respectively. For
I = M, N etc., cov(I) and non(I) are covering number and uniformity of
I.

For an infinite cardinal κ let Cκ = Fn(κ, 2) or, more generally CX =
Fn(X, 2) for any set X. Cκ is the Cohen forcing for adding κ many Cohen
reals. Rκ denotes the random forcing for adding κ many random reals.
Rκ is the poset consisting of Borel sets of positive measure in κ2 which
corresponds to the homogeneous measure algebra of Maharam type κ.

For a poset P = 〈P,≤P〉, X ⊆ P and p ∈ P, let

X ↓ p = {q ∈ X : q ≤P p}.

2. Mad families and almost disjoint numbers

One of the advantages of using T = ω>2 as the countable underlying set is
that we can define some natural subfamilies of [T ]ℵ0 such as OT , AT , BT

etc. below.
For X ⊆ T , let

(2.1) [X] = {f ∈ ω2 : B(f) ⊆ X}, and
(2.2) dXe = {f ∈ ω2 : |B(f) ∩ X | = ℵ0}.

Clearly, we have [X] ⊆ dXe. For X ⊆ T , let X↑ be the upward closure of
X, that is:

(2.3) X↑ = {t ¹ n : t ∈ X, n ≤ `(t)}.

Then we have dXe ⊆ [X↑] for any X ⊆ T .

Definition 1 (Off-binary sets, [9]). Let

OT = {X ∈ [T ]ℵ0 : dXe = ∅}.

T. Leathrum [9] called elements of OT off-binary sets. Note that dXe = ∅
if and only if there is no branch in T with infinite intersection with X.

Definition 2 (Antichains). Let
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AT = {X ∈ [T ]ℵ0 : X is an antichain in T}.

Clearly, we have AT ⊆ OT .
Using the notation above, the cardinal invariant o and ō introduced by

Leathrum [9] can be characterized as:

(2.4) o = a(OT ),
(2.5) ō = a(AT )

(see [9]). Leathrum also showed a ≤ o ≤ ō. J. Brendle [3] proved non(M) ≤
o.

Definition 3 (Sets without infinite antichains). Let

BT = {X ∈ [T ]ℵ0 : X does not contain any infinite antichain}.

Elements of BT are those infinite subsets of T which can be covered by
finitely may branches:

Lemma 1 (K. Kunen). Let X ∈ [T ]ℵ0 . Then X ∈ BT if and only if X is
covered by finitely may branches in T .

Proof. If X is covered by finitely many branches in T then X clearly does
not contain any infinite antichain since otherwise one of the finitely many
branches would contain an infinite antichain.

Suppose now that X can not be covered by finitely many branches. By
induction on n, we choose tn ∈ 2n such that t0 = ∅, tn+1 = tn

_ i for some
i ∈ 2 and

(2.6) Xn+1 = X ↓ tn+1 can not be covered by finitely many branches.

This is possible since X0 = X and Xn = (Xn ↓ (tn _ 0))∪ (Xn ↓ (tn _ 1))∪
{tn}.

By (2.6), the branch B = {tn : n < ω} does not cover Xn for each
n ∈ ω. So we can pick sn ∈ Xn \ B. Let S = {sn : n ∈ ω}. S is an infinite
set since `(sn) ≥ n for all n ∈ ω. If C is a branch in T different from B then
tn /∈ C for some n ∈ ω and so sm /∈ C for all m ≥ n. Hence S ∩ C is finite.
Moreover S ∩ B = ∅. So we have dSe = ∅. Thus S ⊆ X should contain an
infinite antichain by König’s Lemma. ut

Theorem 1 (K. Kunen). a(BT ) = c.

Proof. Suppose that F ⊆ BT is an ad family of cardinality < c. We show
that F is not mad. For each X ∈ F there is bX ∈ [ω2]<ℵ0 such that X ⊆∪

f∈bX
B(f) by Lemma 1. Since S =

∪
{bX : X ∈ F} has cardinality

≤ |F | · ℵ0 < c, there is f∗ ∈ ω2 \ S. We have B(f∗) ∈ BT and B(f∗) is ad
to F . ut

Let us say X ⊆ T is nowhere dense if dXe is nowhere dense in the Cantor
space ω2. It can be easily shown that X is nowhere dense if and only if

(2.7) ∀t ∈ T ∃t′ ≤T t ∀t′′ ≤T t′ (t′′ 6∈ X).
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Note that, if X ⊆ T is not nowhere dense, then X is dense below some t ∈ T
(in terms of forcing). Also note that from (2.7) it follows that the property
of being nowhere dense is absolute.

Definition 4 (Nowhere dense sets). Let

NDT = {X ∈ [T ]ℵ0 : X is nowhere dense }.

Note that, for X ∈ [T ]ℵ0 with X = {tn : n ∈ ω}, we have

dXe =
∩

n∈ω

∪
m>n[T ↓ tm].

In particular dXe is a Gδ subset of ω2. Hence by Baire Category Theorem
we have

NDT = {X ∈ [T ]ℵ0 : dXe is a meager subset of ω2}.

Lemma 2. If X ∈ [T ]ℵ0 then there is X ′ ∈ [X]ℵ0 such that X ′ ∈ NDT .

Proof. If dXe = ∅ then X ∈ NDT . Thus we can put X ′ = X. Otherwise let
f ∈ dXe and let X ′ = X ∩ B(f). ut

Theorem 2. cov(M), a ≤ a(NDT ).

Proof. For the inequality cov(M) ≤ a(NDT ), suppose that F ⊆ NDT is
an ad family of cardinality < cov(M). Then

∪
{dXe : X ∈ F} 6= ω2. Let

f ∈ ω2 \
∪
{dXe : X ∈ F}. Then B(f) ∈ NDT and B(f) is ad from all

X ∈ F .
To show a ≤ a(NDT ) suppose that F ⊆ NDT is an ad family of car-

dinality < a. Then F is not a mad family in [T ]ℵ0 . Hence there is some
X ∈ [T ]ℵ0 ad to F . By Lemma 2, there is X ′ ⊆ X such that X ′ ∈ NDT .
Since X ′ is also ad to F , it follows that F is not mad in NDT . ut

Let σ be the measure on Borel sets of the Cantor space ω2 defined
as the product measure of the probability measure on 2. For X ⊆ T , let
µ(X) = σ(dXe).

Definition 5 (Null sets). Let

NT = {X ∈ [T ]ℵ0 : µ(X) = 0}.

Theorem 3. cov(N ), a ≤ a(NT ).

Proof. Similarly to the proof of Theorem 2. ut

Definition 6 (Nowhere dense null sets). Let

NDN T = NDT ∩NT .

Lemma 3. a(NDT ) ≤ a(NDN T ) and a(NT ) ≤ a(NDN T ).

Proof. For the first inequality, suppose that F is a mad family in NDN T .
Then F is an ad family in NDT . It is also mad in NDT . Suppose not. Then
there is an X ∈ NDT ad to F . Let X ′ ∈ [X]ℵ0 be as in the measure analog
of Lemma 2. Then X ′ ∈ NDN T . Hence F is not mad in NDN T . This is a
contradiction. The second inequality can be also proved similarly. ut
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Fig. 1.

The diagram Fig. 1 summarizes the inequalities obtained in this section
integrated into the cardinal diagram given in Brendle [4]. “κ → λ” in the
diagram means that “κ ≤ λ is provable in ZFC”. There are still some open
questions concerning the (in)completeness of this diagram. In particular:

Problem 1. (a) Is it consistent that a(NDT ), a(NT ), a(NDT ), a(NDN T )
are different?

(b) Are a(NDT ) etc. independent from o, ō, as ?

3. Ad families F for which F⊥ is contained in a certain
subfamily of [T ]ℵ0

In this section we give several constructions of ad families with the property
that the sets ad to them in a given generic extension are necessarily in a
certain subfamily of [T ]ℵ0 . The constructions in this section are used in the
proof of some results in the next sections.

Theorem 4. (CH) There exists an ad family F ⊆ AT of size ℵ1 such that
for any cardinal κ we have

(3.1) V Cκ |= F⊥ ⊆ NDT .

Proof. Let

(3.2) S = {〈p, B
∼

, t〉 : p ∈ Cω, B
∼

is a nice Cω-name of a subset of T,

t ∈ T and p ‖– Cω “ B
∼

is dense below t ”.}

Note that this set is of cardinality ℵ1 by CH. Let 〈〈pα, B
∼ α, tα〉 : α < ω1\ω〉

be an enumeration of S.
By induction on α < ω1, we construct Aα ⊆ T , α < ω1 such that

(3.3) Aα ∈ AT for all α < ω1,
(3.4) An, n ∈ ω is a partition of T \ {∅} (note that ∅ is the root of the

tree T ),
(3.5) |Aβ ∩ Aα | < ℵ0 for all β < α < ω1, and
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(3.6) if α ∈ ω1 \ ω, for each q ≤Cω pα and n ∈ ω, there are r ≤Cω q and
t ∈ Aα ↓ tα such that | t | ≥ n and r ‖– Cω “ t ∈ B

∼ α ” (in particular,

pα ‖– Cω “ |Aα ∩ B
∼ α | = ℵ0 ”).

We show first that F = {Aα : α < ω1} for Aα’s as above satisfies (3.1).
Since every subset of T in V Cκ is contained in V CX for some countable
X ⊆ κ, it is enough to show (3.1) for κ = ω. Assume for contradiction that
for some t∗ ∈ T , p∗ ∈ Cω and Cω-name B

∼
∗ of subset of T ,

(3.7) p∗ ‖– Cω “ B
∼

∗ is dense below t∗ and | B
∼

∗∩Aα | < ℵ0 for all α < ω1 ”.

We may assume that B
∼

∗ is a nice Cω-name. Let α < ω1 \ ω be such that

〈pα, B
∼ α, tα〉 = 〈p∗, B

∼
∗, t∗〉. Then p∗ ‖– Cω “ |Aα ∩ B

∼
∗ | = ℵ0 ” by (3.6). This

is a contradiction.
To see that the construction of Aα, α < ω1 is possible, assume that

〈Aβ : β < α〉 satisfying (3.3), (3.4), (3.5) and (3.6) has been constructed
for α ∈ ω1 \ ω.

For q ≤Cω pα let

I(B
∼ α, q) = {t ∈ T : t ≤T tα ∧ ∃r ≤Cω q

(
r ‖– Cω “ t̂ ∈ B

∼ α ”
)
}.

Note that I(B
∼ α, q) is dense below tα by the definition (3.2) of 〈pα, B

∼ α, tα〉 ∈
S.

Fix an enumeration {〈qi, ni〉 : i < ω} of {〈q, n〉 : q ∈ Cω ↓ pα, n ∈ ω}
and an enumeration {βi : i < ω} of α.

By induction on m ∈ ω we choose um ∈ T and rm ∈ Cω according to
the following (3.8) – (3.12) and let

Aα = {um : m < ω}.

In the m’th step of the construction, let um ∈ T and rm ∈ Cω be such that

(3.8) {ui : i ≤ m} is an antichain in T ↓ tα which is not maximal below
tα ;

(3.9) um ∈ I(B
∼ α, qm) \

∪
{Aβi : i < m} ;

(3.10) |um| ≥ nm ;
(3.11) rm ≤Cω qm ; and
(3.12) rm ‖– Cω “ ûm ∈ B

∼ α ”.

This can be carried out. Indeed, at the m’th step if {ui : i < m} has been
chosen so that it is a non-maximal antichain below tα, then we can find
u′

m ∈ T ↓ tα distinct from all ui, i < m such that {ui : i < m} ∪ {u′
m}

is still a non-maximal antichain below tα. We can also choose u′
m so that

|u′
m | ≥ nm. Since {Aβi : i < m} are antichains we can find u′′

m ≤T u′
m such

that there is no t ≤T u′′
m with t ∈ ∪{Aβi : i < m}. Since I(B

∼ α, qm) is dense
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below tα we can find um ∈ I(B
∼ α, qm) such that um ≤T u′′

m. By the definition

of I(B
∼ α, qm) there is an rm ≤Cω qm such that rm ‖– Cω “ ûm ∈ B

∼ α ”.

It is easy to see that Aα defined as above satisfies (3.3),(3.5) and (3.6):
Aα ∈ AT by (3.8). |Aβ ∩ Aα | < ℵ0 for all β < α by (3.9). To show that
Aα also satisfies (3.6), suppose that q ≤Cω pα and n ∈ ω. Let m ∈ ω be
such that 〈q, n〉 = 〈qm, nm〉. Then we have rm ≤Cω q by (3.11), um ∈ Aα by
definition of Aα, |um | ≥ n by (3.10) and rm ‖– Cω “ ûm ∈ B

∼ α ” by (3.12).
ut

Problem 2. Is CH really necessary for the conclusion of Theorem 4?

We can obtain a slightly stronger conclusion than that of the theorem
above if our ground model is a generic extension of some inner model by
adding uncountably may Cohen reals. Note that CH need not to hold in
such a model.

Theorem 5. Let W = V Cω1 . Then, in W , there is an ad family F in NDT

of cardinality ℵ1 such that, for any c.c.c. poset P with P ∈ V , we have
W P |= F⊥ ⊆ NDT .

Proof. Let G be a (V, Cω1)-generic filter and W = V [G]. Working in W , let

fG
α = {〈n, i〉 : 〈ωα + n, i〉 ∈ p for some p ∈ G}

for α < ω1. By genericity of G we have fG
α ∈ ω2 and each fG

α is a Cohen
real over V . Let

F = {B(fG
α ) : α < ω1}.

Clearly F is an ad family in NDT . We show that this F is as desired.
Suppose that P is c.c.c. (in W ) and P ∈ V . Let H be a (W, P)-generic

filter. It is enough to show that, in W [H], if X ∈ [T ]ℵ0 is not nowhere dense
then X is not ad to F . So suppose that (in W [H]) X ∈ [T ]ℵ0 is not nowhere
dense. By the c.c.c. of Cω1 ∗ P ∼ Cω1 × P, there is an α∗ ∈ ω1 \ ω such that
X ∈ V [(G ¹ Cωα∗)][H]. Let t ∈ T be such that X is dense below t. Note
that

D = {p ∈ Cω1 : {〈n, i〉 : 〈ωα + n, i〉 ∈ p} ⊇ t for some α ∈ ω1 \ α∗}

is dense in Cω1 . Hence, by the genericity of G, there is an α ∈ ω1 \ α∗ such
that t ⊆ fG

α .
Since fG

α is a V [(G ¹ Cωα∗)][H]-generic Cohen real, it follows that

|B(fG
α ) ∩ X ↓ t | = ℵ0.

ut

A measure version of Theorem 5 also holds:

Theorem 6. Let W = V Cω1 . Then, in W , there is an ad family F in NT

of cardinality ℵ1 such that for any c.c.c. poset P with P ∈ V , we have
W P |= F⊥ ⊆ OT .
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For the proof of Theorem 6 we note first the following:

Lemma 4. Suppose that X ⊆ T is such that X = {tk : k ∈ ω} for some
enumeration tk, k ∈ ω of X with `(tk) ≥ k for all k ∈ ω. Then X ∈ NT .

Proof. For all n ∈ ω, we have dXe ⊆
∪

k∈ω\ndT ↓ tke. Hence

µ(X) = σ(dXe) ≤
∑

k∈ω\n σ(dT ↓ tke) ≤
∑

k∈ω\n 2k = 2−n.

It follows that µ(X) = 0. ut

Proof (of Theorem 6). Let G be a (V, Cω1)-generic filter and W = V [G]. In
W , let fG

α ∈ ω2, α < ω1 be as in the proof of Theorem 5. For α < ω1 let
gG

α ∈ ωω be the increasing enumeration of
(
fG

α

)−1 ′′{1}.
Further in W , we construct inductively Aα ∈ NT , α < ω1 as follows.
For n ∈ ω, let An ∈ NT be such that 〈An : n ∈ ω〉 is a partition of T .

This can be easily done by Lemma 4.
For ω ≤ α < ω1, suppose that pairwise almost disjoint Aβ , β < α have

been constructed. Let 〈B` : ` ∈ ω〉 be an enumeration of {Aβ : β < α}
and, for each n ∈ ω, let 〈bn,m : m ∈ ω〉 be an enumeration of

(3.13) Cn = T \ (n>2 ∪ {B` : ` < n}).

Let

(3.14) Aα = {bn,gG
α (n) : n ∈ ω}.

Aα ∈ NT by (3.13) and Lemma 4. By (3.13) and (3.14) Aα is ad to {Aβ :
β < α}.

Suppose that P is c.c.c. (in W ) and P ∈ V . Let H be a (W, P)-generic
filter. It is enough to show that, in W [H], if X ∈ [T ]ℵ0 \ OT then X is not
ad to F . Thus suppose that (in W [H]) X ∈ [T ]ℵ0 \ OT and f ∈ dXe. Let
B = X ∩ B(f). By the c.c.c. of Cω1 ∗ P ∼ Cω1 × P, there is an α∗ ∈ ω1 \ ω
such that B ∈ V [(G ¹ Cωα∗)][H]. If B ∩Aα is infinite for some α < α∗ then
we are done. So assume that B is ad to all Aα, α < α∗. Then B ∩ Cn is
infinite for all n ∈ ω.

Since fG
α∗ is a V [(G ¹ Cωα∗)][H]-generic Cohen real, it follows that B ∩

Aα∗ is infinite. ut

4. Almost disjoint numbers over ad families

In this section we turn to questions on the possible values of a+(·).

Theorem 7. (K. Kunen) a+(ō) = c.

Proof. Let F be any mad family in AT of cardinality ō. By maximality of
F we have F⊥ = BT . If G ⊆ [T ]ℵ0 is disjoint from F and F ∪G is mad then
G is mad in BT and hence | G | = c by Theorem 1. ut

Theorem 8. V Cκ |= a+(ℵ1) ≥ κ for all regular κ.
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Proof. If κ = ω1 this is trivial. So suppose that κ > ω1. Let W = V Cω1 . Then
V Cκ = W Cκ\ω1 . Let F be as in the proof of Theorem 5. Suppose that F̃ ⊇ F
is mad on T in V Cκ . Then F̃ ⊆ (NDT )V Cκ

. Since V Cκ |= cov(M) ≥ κ, it
follows that | F̃ | ≥ κ by Theorem 2. ut

Corollary 1. The inequality a = ℵ1 < a+(ℵ1) = c is consistent.

Proof. Start from a model V of CH. Since there is a Cκ-indestructible mad
family in V it follows that V Cω2 |= a = ℵ1 (see e.g. [8], Theorem 2.3). On
the other hand we have V Cω2 |= a+(ℵ1) = ℵ2 = c by Theorem 8. ut

Theorem 9. The inequality a+(ℵ1) < c is consistent.

For the proof of the theorem we use the following forcing notions: for a family
I ⊆ {A ∈ [ω]ℵ0 : |ω \A | = ℵ0} closed under union, let QI = 〈QI ,≤QI 〉 be
the poset defined by

QI = Cω × I ;

For all 〈s,A〉, 〈s′, A′〉 ∈ QI

(4.1) 〈s′, A′〉 ≤QI 〈s,A〉 ⇔ s ⊆ s′, A ⊆ A′ and
∀n ∈ dom(s′) \ dom(s) (n ∈ A → s′(n) = 0).

Clearly QI is σ-centered.
For a (V, QI)-generic G, let

fG =
∪
{s : 〈s,A〉 ∈ G for some A ∈ I} and

AG = f−1
G

′′{1}.

Let Ĩ be the ideal in [ω]ℵ0 generated from I (i.e. the downward closure of
I with respect to ⊆). By the genericity of G and the definition of ≤QI it is
easy to see that AG is infinite and

(4.2) for every B ∈ ([ω]ℵ0)V , AG is almost disjoint from B ⇔ B ∈ Ĩ.

Proof (of Theorem 9). Working in a ground model V of 2ℵ0 = 2ℵ1 = ℵ3, let

〈Pα, Q
∼

β : α ≤ ω2, β < ω2〉

be the finite support iteration of c.c.c. posets defined as follows: for β < ω2,
let Q

∼
β be the Pβ-name of the finite support (side-by-side) product of

(4.3) QF̃ , F̃ ∈ Φ

where

Φ = {F̃ : F̃ is an ideal in [ω]ℵ0

generated from an ad family in [ω]ℵ0 of cardinality ℵ1}

in V Pβ . We have

V Pβ |= Q
∼

β satisfies the c.c.c.
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since V Pβ |= QF̃ is σ-centered for all F̃ ∈ Φ. By induction on α ≤ ω2, we
can show that Pα satisfies the c.c.c. and |Pα | ≤ 2ℵ1 = ℵ3 for all α ≤ ω2. It
follows that

(4.4) V Pω2 |= 2ℵ0 = 2ℵ1 = ℵ3.

Thus the following claim finishes the proof:

Claim. V Pω2 |= a = a+(ℵ1) = ℵ2.

` Working in V Pω2 , suppose that F is an ad family in [ω]ℵ0 of cardinality
ℵ1. By the c.c.c. of Pω2 , there is some α∗ < ω2 such that F ∈ V Pα∗ . By
(4.3) and (4.2), there are Aα, α ∈ ω2 \ α∗ such that

(4.5) for every B ∈ ([ω]ℵ0)V Pα , Aα is ad from B ⇔ B ∈ the ideal
generated from F ∪ {Aβ : β ∈ α \ α∗}.

Since ([ω]ℵ0)Pω2 =
∪

α<ω2
([ω]ℵ0)V Pα , it follows that F ∪{Aα : α ∈ ω2 \α∗}

is a mad family in V Pω2 . This shows that V Pω2 |= a+(ℵ1) ≤ ℵ2. Similar
argument also shows that V Pω2 |= a = ℵ2.

We also have V Pω2 |= a+(ℵ1) ≥ ℵ2: for any ad family G ⊆ ([ω]ℵ0)VPω2 of
cardinality ≤ ℵ1, extending an ad family F of cardinality ℵ1, there is some
α∗ ≤ ω2 such that G ∈ V Pα∗ . But Q

∼
α∗ adds an infinite subset of ω almost

disjoint to every element of G. Hence G is not mad. a ut

Clearly, the method of the proof of Theorem 9 cannot produce a model of
a+(ℵ1) = ℵ1 < c.

Problem 3. Is a+(ℵ1) = ℵ1 < c consistent?

All infinite cardinal less than or equal to the continuum c can be repre-
sented as a+(F) for some F .

Theorem 10. For any infinite κ ≤ c, there is an ad family F ⊆ [T ]ℵ0 of
cardinality c such that a+(F) = κ.

Proof. Let F ′ be a mad family in AT . Then by Lemma 1, we have

(4.6) F ′⊥ = BT .

Let X ′′ and X ′′′ be disjoint with ω2 = X ′′ ∪ X ′′′, | X ′′ | = c and | X ′′′ | = κ.
Let

F = F ′ ∪ {B(f) : f ∈ X ′′}.

Clearly F is an ad family. By (4.6) we have F⊥ ⊆ BT .
We claim a+(F) = κ: Since F ∪ {B(f) : f ∈ X ′′′} is a mad family by

Lemma 1, we have a+(F) ≤ κ. Again by Lemma 1, if F ′ ⊆ F⊥ is an ad
family of cardinality < κ, then there is f ∈ X ′′′ such that B(f) is ad from
every B ∈ F ′. Thus a+(F) ≥ κ. ut
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5. Destructibility of mad families

For a poset P, a mad family F in [T ]ℵ0 is said to be P-destructible if

V P |= F is not mad in [T ]ℵ0 .

Otherwise it is P-indestructible.
The results in the previous section can also be reformulated in terms of

destructibility of mad families.

Theorem 11. (1) (CH) There is an ad family F ⊆ AT which cannot be
extended to a Cω-indestructible mad family in any generic extension of the
ground model of the form V Cκ .
(2) Let W = V Cω1 . Then, in W , there is an ad family F ⊆ NDT of cardi-
nality ℵ1 such that, in any generic extension of W by a c.c.c. poset P with
P ∈ V , F cannot be extended to a Cω-indestructible mad family.
(3) Let W = V Cω1 . Then, in W , there is an ad family F ⊆ NT of cardinality
ℵ1 such that, in any generic extension of W by a c.c.c. poset P with P ∈ V ,
F cannot be extended to a Rω-indestructible mad family.

Proof. (1): The family F as in Theorem 4 will do. Since we have F ′ ⊆
NDT for any mad F ′ extending F in V Cκ , a further Cohen real over V Cκ

introduces a branch almost avoiding all elements of F ′. Thus F ′ is no more
mad in V Cκ∗Cω .

(2): By Theorem 5 and by an argument similar to the proof of (1).
(3): In W , let F be as in the proof of Theorem 6. Then any mad F ′ ⊇ F

on T in any W P for P as above is included in NT by OT ⊆ NT . Hence,
in W P∗Rω , the random real f over W P introduces the branch B(f) almost
avoiding all elements of F ′. Thus F ′ is no more mad in W P∗Rω . ut

6. κ-almost decided and λ-minimal mad families

In this final section we collect several other construction of mad families
with some additional properties.

Given an ad family F on T let I(F) be the ideal on T generated by
F ∪ [T ]<ω, i.e. for S ⊂ T we have S ∈ I(F) if S ⊂∗ ∪F ′ for some finite
subfamily F ′ of F .

Let F be mad family on T and B ⊆ F . Clearly B⊥ ⊇ I(F \ B). We say
that B almost decides F if B⊥ = I(F \ B). A mad family F is said to be
κ-almost decided if every B ∈ [F ]κ almost decides F .

Theorem 12. Assume that MA(σ-centered) holds. Then there is a c-almost
decided mad family F on T .

Proof. Let 〈Bβ : β < c〉 be an enumeration of [T ]ℵ0 . We define Aα, α < c
inductively such that

(6.1) {An : n ∈ ω} is a partition of T into infinite subsets;
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For all α ∈ c \ ω

(6.2) Aα is ad from Aβ for all β < α;
(6.3) For β < α, if Bβ /∈ I({Aδ : δ < α}) then |Aα ∩ Bβ | = ℵ0;

Claim. The construction of Aα, α < c as above is possible.

` Suppose that α ∈ c \ ω and Aβ , β < α have been constructed. Let

Sα = {β < α : Bβ /∈ I({Aδ : δ < α})}.

Let Pα = {〈s, f〉 : s ∈ [α]<ℵ0 , f ∈ Fn(T, 2)} be the poset with the ordering
defined by

〈s′, f ′〉 ≤Pα 〈s, f〉 ⇔
s ⊆ s′, f ⊆ f ′ and
∀t ∈ dom(f ′) \ dom(f) (f ′(t) = 1 → t 6∈ Aδ for all δ ∈ s)

for 〈s, f〉, 〈s′, f ′〉 ∈ Pα.
Pα is σ-centered since 〈s, f〉, 〈s′, f ′〉 ∈ Pα are compatible if f = f ′.
For β < α, let

Cβ = {〈s, f〉 ∈ Pα : β ∈ s}

and, for β ∈ Sα and n ∈ ω, let

Dβ,n = {〈s, f〉 ∈ Pα : ∃t ∈ dom(f) (`(t) ≥ n ∧ f(t) = 1 ∧ t ∈ Bβ)}.

It is easy to see that Cβ , β < α and Dβ,n, β ∈ Sα, n ∈ ω are dense in Pα.
Let

D = {Cβ : β < α} ∪ {Dβ,n : β ∈ Sα, n ∈ ω}.

Since | D | < c, we can apply MA(σ-centered) to obtain a (D, Pα)-generic
filter G. Let

Aα = {t ∈ T : f(t) = 1 for some (s, f) ∈ G}.

Then this Aα is as desired. a
Let F = {Aα : α < c}. F is infinite by (6.2) and mad by (6.3).
We show that F is c-almost decided. First, note that we have a = c by

the assumptions of the theorem. By (6.3), we have:

(6.4) For any B ∈ [T ]ℵ0 , if B /∈ I({Aα : α < c}) then
| {α < c : |Aα ∩ B | < ℵ0} | < c.

Suppose that H ∈ [F ]c and B ∈ H⊥. Then | {α < c : |Aα ∩ B | < ℵ0} | = c
and so B ∈ I(F) by (6.4). Thus there is a finite F ′ ⊂ F such that B ⊂∗ ∪F ′

and F ∩B is infinite for each F ∈ F ′. But B ∈ H⊥ so F ′ ∩H = ∅. Thus F ′

witnesses that B ∈ I(F \ H) which was to be proved. ut

For a mad family F on T , C ⊆ F is said to be minimal in F if a+(F\C) =
| C |. A mad family F is said to be λ-minimal if every C ∈ [F ]λ is minimal
in F .
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Lemma 5. Suppose that F is a mad family on T .
(1) If F is | F |-minimal then | F | = a.
(2) If B ⊆ F almost decides F and F \ B is infinite then F \ B is minimal
in F .
(3) If | F | = a and F is κ-almost decided then F is κ-minimal.
(4) If F is κ-almost decided for κ = | F | then F is λ-minimal for all
ω ≤ λ < κ.

Proof. (1): If F is | F |-minimal then F itself is minimal in F . Thus a =
a+(∅) = a+(F \ F) = | F |.

(2): First, note that, for any infinite ad F , we have a(I(F)) = | F |.
Suppose that F is a mad family on T and B ⊆ F almost decides F , i.e.

B⊥ = I(F \ B). Hence
a+(F \ (F \ B)) = a+(B) = a(B⊥) = a(I(F \ B)) = | F \ B |.

(3): Suppose that | F | = a and F is κ-almost decided. Suppose that
C ∈ [F ]a. If | F \ C | < a, then clearly a+(F \ C) = a = | C |. Hence C is
minimal in F . If | F \ C | = a then F \ C almost decides F . Thus, by (2),
C = F \ (F \ C) is again minimal in F .

(4): Suppose that κ = | F | and F is κ-almost decided. If C ∈ [F ]λ for
some ω ≤ λ < κ then | F \ C | = κ and hence F \ C almost decides F . By
(2) it follows that C = F \ (F \ C) is minimal in F . ut
Corollary 2. Assume that MA(σ-centered) holds. Then there is a mad fam-
ily F on T which is λ-minimal for all ω ≤ λ ≤ c.

Proof. By Theorem 12 and Lemma 5, (3), (4). ut
Theorem 12 can be further improved to the following theorem:

Theorem 13. Assume that MA(σ-centered) holds. Let κ = c. Then there
is a Cω-indestructible mad family F (of size κ) such that

V Cω |= F is κ-almost decided on T .

Proof. Let 〈〈tβ , B
∼ β〉 : β < κ〉 be an enumeration of

T × {B
∼

: B
∼

is a nice Cω-name of an element of [T ]ℵ0 in V Cω}.

Let Aα, α < κ be then defined inductively just as in the proof of Theorem
12 with
(6.3)′ For β < α, if t ‖– Cω “ B

∼ α /∈ I({Aδ : δ < α}) ” then t ‖– Cω “ |Aα ∩

B
∼ β | = ℵ0 ”

in place of (6.3). ut
Corollary 3. It is consistent that for arbitrary large uncountable κ < c
there is a κ-almost decided mad family F of size κ (in particular F is λ-
minimal for all ω ≤ λ ≤ κ).

Proof. Start from a model V of κ = c and MA(σ-centered) and let F be as
in Theorem 13. Then F is as desired in V Cµ for any µ > κ. The claim in
the parentheses follows from Lemma 5, (3) and (4). ut
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