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ABSTRACT. Let X be a connected separable linear order, a connected separable
metric space or a connected, locally connected complete metric space. We
show that every continuous function f : X — R with the property that every
r € X is a local maximum or minimum of f is in fact constant. We provide
an example of a compact connected linear order X and a continuous function
f : X — R that is not constant and yet every point of X is a local minimum

or maximum of f.

The following question was recently asked by M. R. Wojcik [1]:

Question 1. Let f : [0,1] — R be a continuous function such that every point in

[0,1] is a local maximum or minimum of f. Is it true that f has to be constant?

The answer is clearly yes if f is assumed to be differentiable, but the question
is about continuous functions. Still, the answer to Question 1 is yes, and this was
shown by a number of people independently. However, we are not aware of any
published proof of this fact. In this note we give two elementary proofs showing
that a continuous function from [0, 1] to R for which every point in [0, 1] is a local
minimum or maximum indeed has to be constant. The first proof only uses the

most basic topological properties of R. We actually get the following theorem:

Theorem 2. Let X be a connected separable metric space. Then every continuous
function f : X — R for which every x € X is a local minimum or maximum is

constant.
The second proof uses the linear order on the reals.

Theorem 3. Let X be a connected separable linearly ordered space. Then every
continuous function f : X — R for which every x € X 1is a local minimum or

maximum 1s constant.

Note, however, that Theorem 3 is weaker than it looks at first sight. Every
connected separable linear order is actually isomorphic to some interval of the real

line. But see Remark 4.
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Proof of Theorem 2. Let f : X — R be continuous and such that f has a local
extremum at every z € X. Since X is a separable metric space, the topology on X
has a countable base {B,, : n € N}. For each n € N let

Dyt = {z € By : Yy € Bu(f(z) < f(y)}

and
D ={x € By : Vy € Byu(f(x) = f(y))}-

Clearly, f is constant on each D™ and each D™&x,

If x € X, then by our assumptions on f, x is a local minimum or maximum of
f. Assume it is a local mininum. Then there is some n € N such that z € B,
and for all t € B, f(t) > f(z). In particular, x € D™". Similarly, if = is a local
maximum, then for some n € N, x € D**. In summary, we have

X = J Dy uDpe).
neN

It follows that f[X] is countable. Since X is connected, so is f[X]. But the only
nonempty countable and connected subsets of the real line are the singletons. It
follows that f is constant. O

Proof of Theorem 8. Let < denote the order on X. Suppose that f is not constant.
For simplicity assume that there are z,y € X such that z < y and f(z) < f(y).
Since X is connected, [x, y] is connected. Since f is continuous, f[[z,y]] is connected.
It follows that [f(z), f(y)] C fl[z,y]]-

Since X is separable, every family of pairwise disjoint open intervals in X is
countable. It follows that there is some z € (f(z), f(y)) such that f~!(z) does not
contain a nonempty open interval. Since X is connected, every bounded subset of

X has a supremum in X. Let

a=sup{b € (z,y) : Ve € (2,5)(f(¢) < 2)}.

By the continuity of f, f(a) = z. By the definition of a and by the connectedness
of X, for every b > a there is ¢ € (a,b) such that f(c¢) > z. Since a is a local
extremum of f, it follows that a is a local minimum.

This implies that there is b < a such that for all ¢ € (b,a), f(¢) > 2. But by
the definition of a, for all ¢ € (b,a), f(c) = 2. Hence f~1(2) contains a non-empty

open interval after all, contradicting the choice of z. O

Remark 4. A closer analysis of the proofs of Theorem 2 and Theorem 3 shows
that in both cases the separability assumption can be weakened.
a) Let X be a connected topological space that has a base of its topology of size

< |R]. If f: X — R is continuous and such that every z € X is a local extremum
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of f, then f is constant. This holds in particular if X is a connected metric space
such that every family of pairwise disjoint open sets is of size <|R|.

b) Let X be a connected linear order such that every family of pairwise disjoint
open intervals is of size < |[R|. If f : X — R is continuous and such that every

x € X is a local extremum of f, then f is constant.
A questions that arises naturally is this:

Question 5. Let X be a connected topological space such that every family of
pairwise disjoint open sets is of size <[R|. If f : X — R is continuous and such that

every x € X is a local extremum of f, does f have to be constant?

Remark 4 tells us where we should look if we want to find a connected space
X and a continuous function f : X — R that is not constant but such that every

z € X is a local minimum or maximum.

Example 6. Let I denote the closed unit interval. Consider the set X = I x I
ordered lexicographically, i.e., for a,b,c,d € I let (a,b) < (¢,d) if a < cor (a = ¢
and b < d). The linear order X can be considered as obtained from I by replacing
every point of I by a copy of I.

It is easily checked that X is a connected linear order. It is even compact.
The projection f : X — R;(a,b) — a is continuous and obviously not constant.

However, every z € X is a local extremum of f.

It it worth pointing out that X is not metrizable, which follows from the fact

that X is compact but not separable. This brings up the following question:

Question 7. Is there an example of a connected metric space X with a continuous
function f: X — R that is not constant but such that every point in X is a local

minimum or maximum of f7
We can provide a partial answer to this question:

Theorem 8. Suppose X is a connected, locally connected complete metric space.
If f: X — R is a continuous function and every x € X is a local extremum of f,

then f is constant.
The proof of this theorem is based on the following lemma:

Lemma 9. Let X be a metric space that is Baire, i.e., in which no nonempty open
set is the union of countably many nowhere dense sets. If f : X — R is continuous
and such that every x € X is a local extremum of f, then V =, g int(f~1(y)) is

dense in X.
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Proof. Since X is metric, by Bing’s Metrization Theorem it has a o-discrete base
B. Let B = UneN B,, with each B,, discrete. For each x € X fix B, € B such that
f(x) < f(2') for all 2’ € B, if z is a local minimum of f or f(z) > f(z) for all
7’ € B, if z is a local maximum. For every n € N let X" denote the set of all
x € X that are local minima of f with B, € B,,. Similarly, let X'** denote the set
of all x € X that are local maxima with B, € B,,.

Now let G C X be nonempty and open. Since X is Baire, there is n € N such
that XM or X™aX i5 dense in some nonempty open set Gy C G. Assume that
Xmin jg dense in Go and fix € X™ N Gy. Then H = Gy N B, is nonempty and
open, and X™* N H is dense in H. Since B, is discrete, for every 2’ € B, N XM we
have B, = B, and thus f(z) = f(z'). It follows that f is constant on H N Xm0,
Since f is continuous, f is constant on all of H. Therefore H C V and hence
GNV #£0. O

Proof of Theorem 8. Suppose f is not constant. For every y € Rlet V,, = int(f~!(y)).
Let V.= ,cg Vy and F' = X \ V. Note that F' = {J, g bd(f~(y)). Since X is
connected and f is not constant, for every y € f[X] we have bd(f~1(y)) # 0. In
particular, F' # (.

Since F is closed in X, F' is a complete metric space. By Lemma 9, the space
I has a nonempty open subset on which f is constant. In other words, there is an
open subset U of X such that U N F # () and f is constant on U N F. Since X is
locally connected, we may assume that U is connected.

Since U € V, f is not constant on U. Let y € f[U] be different from the unique
value of f on U N F. Now bd(V,) C F. Since y ¢ f[U N F], bd(V,)NU = 0. But
this implies that V, NU = int(V,) NU is a proper clopen subset of U, contradicting

the assumption that U is connected. ([l
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