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Preface

These are skeleton notes for the course ”Probabilistic Methods in Combinatorics” for the summer
semester of 2017/2018 at the University of Hamburg. These notes are intended to indicate the
key points of the lectures. Students are highly encouraged to take their own notes to supplement
this material, and to consider reviewing the material both before and after the lectures, if time
permits.
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1 Preliminaries

1.1 Probability Theory

This section is intended as a short introduction to the very basics of probability theory, covering
only the basic facts about finite probability spaces that we will need to use in this course.

Definition (Probability space, events, elementary events). A probability space is a triple (Ω,Σ,P),
where Ω is a set, Σ ⊆ 2Ω is a σ-algebra (A non-empty collection of subsets of Ω which is closed
under taking complements and countable unions/intersections), and P is a measure on Σ with
P(Ω) = 1. The elements of Σ are called events and the elements of Ω are called elementary
events. For an event A, P(A) is called the probability of A.

Definition (Finite probability space, uniform distribution). A finite probability spaces is one
where Ω is finite and Σ = 2Ω. In this case the probability measure P is determined by the
value it takes on elementary events. That is, given any function p : Ω → [0, 1] that satisfies∑

ω∈Ω p(ω) = 1, then the function on Σ given by P(A) =
∑

ω∈A p(ω) is a probability measure.

The uniform distribution on Ω, is the probability measure given by

P(A) =
|A|
|Ω|

for all A ⊆ Ω.

Definition (Random graph). The probability space of random graphs G(n, p) is a finite prob-
ability space whose elementary events are all graphs on a fixed set of n vertices, and where the
probability of each graph with m edges is

p(G) = pm(1− p)(
n
2)−m

• We will often denote an arbitary event from this space by G(n, p). Note that p can, and
often will be, a function of n.

Definition (Almost surely/with high probability). Given a property of graphs P we say that
G(n, p) satisfies P almost surely or with high probability if

lim
n→∞

P(G(n, p) satisfies P ) = 1.

Lemma 1.1 (The union bound). For any A1, A2, . . . , An ∈ Σ,

P

(
n⋃
i=1

Ai

)
≤ Σn

i=1P(Ai)

Definition (Independence, mutual independence). Two events A,B ⊆ Σ are independent if

P(A ∩B) = P(A)P(B).

More generally, a set of events {A1, A2, . . . , An} is mutually independent if, for any subset of
indices I ⊆ [n],

P

(⋂
i∈I

Ai

)
=
∏
i∈I

P(Ai).
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Definition (Conditional probability). Given two events A,B ∈ Σ such that P(B) 6= 0, we define
the conditional probability of A, given that B occurs, as

P(A|B) =
P(A ∩B)

P(B)
.

• A and B are independent if and only if P(A|B) = P(A).

Definition (Random variable). A real random variable on probability space (Ω,Σ,P) is a func-
tion X : Ω→ R that is P-measurable.

In a finite probability space, any function X : Ω → R defines a random variable. Given a
measurable set A ⊆ R the probability that the value X takes lies in A is P({ω ∈ Ω : X(ω) ∈ A})
which we will write as P(X ∈ A).

Definition (Expectation). The expectation of a random variable X is

E(X) =

∫
Ω
X(ω) dP(ω).

In the case of a finite probability space this can be expressed more clearly as

E(X) =
∑
ω∈Ω

p(ω)X(ω).

• The set of random variables forms an algebra over R with addition and multiplication
defined pointwise. For example the random variable X + Y is the function from Ω to R
defined by (X + Y )(ω) = X(ω) + Y (ω).

Lemma 1.2 (Linearity of expectation). For any two random variables X and Y

E(X + Y ) = E(X) + E(Y ).

Definition (Independence of random variables). Two random variable X,Y are independent if,
for any two measurable sets A,B ⊆ R we have

P(X ∈ A and Y ∈ B) = P(X ∈ A)P(Y ∈ B).

Lemma 1.3. For any two independent random variables, X and Y ,

E(XY ) = E(X)E(Y )

1.2 Useful Estimates

Many proofs using the probabilistic method will reduce to calculating certain probabilities, for
example showing they are less than 1 or tend to 0. For this purpose we will often need to
estimate some quite complicated combinatorial expressions. In this section we will note down
some useful estimates to apply later, both weak and strong.
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• A weak upper bound for n! is n! ≤ nn.

• A stronger estimate is (n
e

)n
≤ n! ≤ en

(n
e

)n
.

• Stirling’s formula gives

n! ∼
√

2πn
(n
e

)n
.

• A weak upper bound for
(
n
k

)
is
(
n
k

)
≤ nk, or even worse

(
n
k

)
≤ 2n.

• A stronger estimate is (n
k

)k
≤
(
n

k

)
≤
(en
k

)k
.

• For the middle binomial co-efficient we have

22m

2
√
m
≤
(

2m

m

)
≤ 22m

√
2m

• Since 1 + x ≤ ex for all real x,
(1− p)m ≤ e−mp.

• If 0 ≤ p ≤ 1
2 , then

1− p ≥ e−2p.

Definition (O, o, Ω,ω). Given two functions f, g : N→ R we say that:

– f = O(g) if there exists C > 0 such that for all sufficiently large n, f(n) ≤ Cg(n);

– f = Ω(g) if there exists C > 0 such that for all sufficiently large n, f(n) ≥ Cg(n);

– f = o(g) if for sufficiently large n, f(n) ≤ Cg(n), for any fixed C > 0;

– f = ω(g) if for sufficiently large n, f(n) ≥ Cg(n), for any fixed C > 0;
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2 The Probabilistic Method

In its most basic form the probabilistic method can be described as follows: In order to prove
the existence of a combinatorial object with certain properties we pick a random object from a
suitable probability space and calculate the probability that it satisfies these conditions. If we
can prove that this probability is strictly positive, then we conclude that such an object must
exist, since if none of the objects satisfied the conditions, the probability of a random object
doing so would be zero.

The probabilistic method is useful in cases when an explicit construction of such an object
does not seem feasible, and when we’re more interested in the existence of such an object than
in a specific example.

2.1 Ramsey Numbers

Theorem 2.1 (Ramsey’s Theorem, without proof). For any k, l there exists an n such that
every |G| ≥ n either has ω(G) ≥ k or α(G) ≥ l.

Definition (Ramsey numbers). Let k, l ∈ N. The Ramsey number R(k, l) is the smallest n such
that

R(k, l) := min{n : any graph on n vertices contains a clique

of size k or an independent set of size l}.

Theorem 2.2 (A lower bound for the diagonal Ramsey numbers). For any k ≥ 3

R(k, k) > 2k/2−1.

2.2 Set Systems

Definition. A family F of sets is intersecting if for all A,B ∈ F , A ∩B 6= ∅

• The size of a largest intersecting family of subsets of [n] is 2n−1.

Theorem 2.3 (The Erdős-Ko-Rado Theorem). For any n and k < n/2, if F ⊂ [n](k) is an
intersecting family, then

|F| ≤
(
n− 1

k − 1

)
Definition. Let n(k, l) be the largest n such that there exists two families of setsA = {A1, A2, . . . , An}
and B = {B1, B2, . . . , Bn} satisfying the following properties

– |Ai| = k, |Bi| = l for all 1 ≤ i ≤ n;

– Ai ∩Bi = ∅ for all 1 ≤ i ≤ n;

– Ai ∩Bj 6= ∅ for all i 6= j, 1 ≤ i, j ≤ n.

Theorem 2.4. For any k, l ≥ 1, n(k, l) =
(
k+l
k

)
.
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3 The First Moment Method

Lemma 3.1. Let X1, . . . , Xn be random variables, λ1, . . . , λn ∈ R, and X =
∑n

i=1 λiXi. Then

E(X) =

n∑
i=1

λiE(Xi).

Definition (Indicator random variables). For an event A in a probability space the indicator
random variable IA is defined by

– IA(ω) = 1 if ω ∈ A

– IA(ω) = 0 if ω 6∈ A

• E(IA) = P(A).

• If X =
∑n

i=1 IAi , then E(X) =
∑n

i=1 P(Ai).

• For any random variable X, there always exists a point ω in the probability space such
that X(ω) ≥ E(X) and a point ω′ such that X(ω′) ≤ E(X).

The above is the key idea to this section. Showing that the expected value of a random
variable is small or large will guarantee that there is an point in the probability space on which
this variable is small or large.

Lemma 3.2. [Markov’s Inequality] Let X be a non-negative random variable and a > 0, then

P(X ≥ a) ≤ E(X)

a
.

3.1 Hamiltonian Paths in a Tournament

Definition. A tournament is an orientation of a complete graph. A Hamiltonian path in a
tournament is a directed path that meets every vertex.

Theorem 3.3. There exists a tournament T on n vertices which has at least n!/2n−1 Hamilto-
nian paths.

3.2 Turán’s Theorem

Lemma 3.4. Let G be a graph and, for each v ∈ V (G), let d(v) be the degree of v. Then G
contains an independent set of size at least∑

x∈V

1

d(v) + 1
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Corollary 3.5. Let G be a graph on n vertices. Then G contains a clique of size at least∑
x∈V

1

n− d(v)

It is simple to deduce (a weak form of) Turán’s Theorem from this corollary.

Theorem 3.6 (Turán’s Theorem). Let G be a graph on n vertices such that Kr 6⊂ G, then

e(G) ≤ (r − 2)n2

2(r − 1)
.

3.3 Crossing Number of Graphs

Definition. Given a graph G = (V,E) an embedding of G into the plane is a planar representa-
tion of G, where each vertex is represented by a point, and each edge from u to v is represented
by a curve between the points represented by u and v. The crossing number of an embedding
of a graph is the number of pairs of curves which intersect, which do not share endpoints. The
crossing number of G, cr(G) is the minimal crossing number of a planar embedding of G.

Theorem 3.7. Let G be a graph such that |E| ≥ 4|V |, then

cr(G) ≥ |E|3

64|V |2
.
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4 Alterations

Sometimes it is the case that the first attempt to find a ‘good’ object via a random construction
fails, but what we find is an object which almost satisfies our conditions. Often it is possible to
then deterministically modify this object to get what we need.

4.1 Ramsey Numbers Again

Theorem 4.1. For any integer n,

R(k, k) > n− 2.

(
n

k

)
2−(k2).

Theorem 4.2 (Without proof). For all integers n and p ∈ [0, 1]

R(k, l) > n−
(
n

k

)
p(
k
2) −

(
n

l

)
(1− p)(

l
2).

Theorem 4.3 (Without proof). If there exists an integer n and p ∈ [0, 1] such that(
n

k

)
p(
k
2) +

(
n

l

)
(1− p)(

l
2) < 1

Then R(k, l) > n.

4.2 Graphs of High Girth and High Chromatic Numbers

Definition (k-colouring, chromatic number and girth). A k-colouring of a graph G is a function
f : V (G)→ [k] such that (v, w) ∈ E(G)⇒ f(v) 6= f(w). The chromatic number of G, χ(G), is
the smallest k such that a k-colouring exists. The girth of a graph G, g(G), is the size of the
shortest cycle in G.

Theorem 4.4. For any k, l > 0, there exists a graph G such that χ(G) > k and g(G) > l.
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5 Dependent random choice

Dependent random choice is a relatively new technique based on the alteration method which
has been used in various contexts, normally to do with embedding sparse graphs. The basic idea
can be summarised as follows: We would like to find, in a dense graph, a set of vertices U such
that every small subset of U has many common neighbours. To do this, we first pick a small
set of vertices T at random from the graph and let U ′ be the set of common neighbours of T .
Intuitively, if we have some subset of G with not many common neighbours, then it is unlikely
that all the members of T will lie in this set of common neighbours, and hence it is unlikely to
be a subset of U ′. Therefore the expected number of ‘bad’ subsets in U ′ will be small and so by
removing a small number of vertices, one from each ‘bad’ set, we should find a set U with the
desired properties. Such a set U will be useful for finding embeddings of bipartite graphs.

Lemma 5.1. Let G be a graph with |G| = n and let d = 2|E(G)|/n be the average degree of G.
If there exist positive integers t, a,m, r such that

dt

nt−1
−
(
n

r

)(m
n

)t
≥ a,

then G contains a subset U of at least a vertices such that every subset R ⊂ U of size |R| = r
has at least m common neighbours.

Lemma 5.2. Let G be a graph, a,m, r be positive integers and suppose there exists a subset
U ⊂ V (G) of at least a vertices such that every subset R ⊂ U of size r has at least m common
neighbours.

If H is a bipartite graph on vertex sets A and B such that |H| ≤ m, |A| ≤ a and every vertex
in B has degree at most r, then H is a subgraph of G.

5.1 Turán Numbers of Bipartite Graphs

Theorem 5.3 (The Erdős-Stone Theorem, without proof). For any graph H with χ(H) ≥ 3

ex(n,H) =

(
1− 1

χ(H)− 1
+ o(1)

)(
n

2

)

• For graphs with χ(H) = 2, the situation is more complicated.

Theorem 5.4. Let H be a bipartite graph on vertex sets A and B such that all vertices in B
have degree at most r. Then there exists some constant c = C(H) such that

ex(n,H) ≤ cn2− 1
r .

5.2 The Ramsey Number of the Cube

Definition (Ramsey number of H and hypercube). The Ramsey number of an arbitrary graph
H is

r(H) = min{n : Every 2 colouring of Kn contains a monochromatic copy of H}.
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The r-dimensional Hypercube, Qr, is a graph with vertex set {0, 1}r where two vertices are
adjacent if and only if they differ in exactly one coordinate.

Theorem 5.5.
r(Qr) ≤ 23r

5.3 Improvements

Lemma 5.6 (Without proof). Let ε > 0, r ≤ n be positive integers, and G a graph on

N > 4rε−rn vertices with at least εN
2

2 edges. Then there is a subset U ⊂ V (G) with |U | > 2n
such that number of subsets S ⊂ U with |S| = r and less than n common neighbours is at most

1

(2r)r

(
|U |
r

)
.

Theorem 5.7 (Without proof).

r(Qr) ≤ r22r+3 ≤ 22r+o(r).
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6 The Second Moment Method

6.1 Variance and Chebyshev’s Inequality

Markov’s inequality tells us that, for a non-negative random variable X, if the expectation of X
gets small, then it’s very likely that X is small. In general, if the expectation of X is large, it is
not true that it is very likely that X is large. However this will be true if the variance is small.

Definition (Variance). The variance of a random variable X is

Var(X) := E
(

(X − E(X))2 ) = E(X2)−
(
E(X)

)2
,

where the first equality is the definition, and the second follows from linearity of expectation.

Definition (Covariance). The covariance of two random variables X and Y is

Cov(X,Y ) = E
((
X − E(X)

)(
Y − E(Y )

))
= E(XY )− E(X)E(Y ).

Lemma 6.1. Given a sequence of random variables X1, X2, . . . , Xn, let X =
∑

iXi. Then

Var(X) =
n∑
i=1

Var(Xi) +
∑
i 6=k

Cov(Xi, Xj).

• If X and Y are independent, then Cov(X,Y ) = 0.

• The converse is not true.

Lemma 6.2 (Chebyshev’s Inequality). Let X be a random variable with Var(X) < ∞. Then
for any t > 0

P(|X − E(X)| ≥ t) ≤ Var(X)

t2
.

A consequence of this lemma is the idea from the start of the section: If E(X) is large and
Var(X) is small then X is very likely to be large.

6.2 Threshold Functions

Definition (Monotone properties). Given a random graph G(n, p) and an arbitrary graph H, a
natural question to consider is what is the probability that H appears as a subgraph of G. For
example let us consider the triangle, K3. We note that the property of containing a triangle as a
subgraph is a increasing property of graphs; that means, if it holds for a graph G and G ⊂ G′, it
also holds for G′. We can similarly define a decreasing property of graphs, and we call a property
that is either decreasing or increasing a monotone property.

• Let T be the random variable which counts the number of triangles in G(n, p).

• E(T ) =
(
n
3

)
p3.

14



• If p(n) = o(1/n), then

P(K3 ⊂ G(n, p)) = P(T ≥ 1) ≤ E(T )→ 0.

Lemma 6.3. Let X1, X2, . . . be a sequence of non-negative random variables such that

Var(Xn)

E(Xn)2
→ 0.

Then
P(Xn > 0)→ 1.

• If X =
∑

A∈A IA, then

Var(X) =
∑
A∈A

P(A)(1−P(A))+
∑
A 6=B

P(A)(P(B|A)−P(B)) =
∑
A∈A

P(A)

(∑
B∈A

P(B|A)− P(B)

)
.

• Var(T ) =
(
n
3

)
p3
(
3(n− 3)(p2 − p3) + (1− p3)

)
.

• If p(n) = ω(1/n), then Var(T )/(E(T ))2 → 0 and so

P(K3 ⊂ G(n, p)) = P(T ≥ 1) ≤ E(T )→ 1.

Definition (Threshold function). A function r : N→ R is a threshold function for a monotone
graph property A, if for any p : N→ [0, 1]

• p(n) = o(r(n)) ⇒ P(A holds for G(n, p))→ 0;

• p(n) = ω(r(n)) ⇒ P(A holds for G(n, p))→ 1.

6.3 Balanced Subgraphs

Definition (Density, balanced subgraph). Let H be a graph with |H| = v and e(H) = e. The
density of H is defined to be

ρ(H) =
e

v
.

H is said to be balanced if no subgraph of H has strictly greater density than H itself.

Theorem 6.4. Let H be a balanced graph with density ρ. Then

r(n) = n
− 1
ρ

is a threshold function for the property that H is a subgraph of G(n, p).

Theorem 6.5 (Without proof). Let H be a graph and H ′ ⊂ H a subgraph of H with the
maximum density. Then

r(n) = n
− 1
ρ(H′)

is a threshold function for the property that H is a subgraph of G(n, p).
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7 The Hamiltonicity Threshold

7.1 The Connectivity Threshold

Theorem 7.1 (Threshold for having an isolated vertex). r(n) = log (n)/n is a threshold function
for the event that G(n, p) contains an isolated vertex

• If p(n) = o(log (n)/n), then

P(G(n, p) is connected) ≤ P(X1 = 0)→ 0.

• Let Xk be the random variable which counts the number of components of size k in G(n, p).

Lemma 7.2. If p(n) = c log (n)/n, for c ≥ 1, then

n
2∑

k=2

P(Xk > 0) = o(1).

Theorem 7.3 (Threshold for connectivity). r(n) = log (n)/n is a threshold function for the
event that G(n, p) is connected.

7.2 Posá’s Rotation-Extension Technique

Definition (Rotation, transform, U , P , N , R). Given a graph G and a vertex x0 ∈ V (G)
suppose that P = x0x1 . . . xk is a longest path in G starting at x0. Given an edge (xk, xi) ∈ E(G)
a rotation of P is a new path P ′ = x0x1 . . . xixkxk−1 . . . xi+1. We say that a path P ′ is a transform
of P if it can be obatined from P by a sequence of rotations. Let U be the set of endvertices of
all possible transforms of P and let

N = {xi : {xi+1, xi−1} ∩ U 6= ∅}

be the set of neighbours of this set in P . Finally let R = V (P ) \ (U ∪ N) be the rest of the
vertices in P .

Lemma 7.4. Let G be a graph, x0 ∈ V (G) and P a longest path in G starting at x0. If U,N
and R are defined as above then there are no edges in G between U and R.

Lemma 7.5. Let G be a connected graph. Suppose that the longest path in G has length k ≥ 2,
G contains no cycles of length k+1 and for some u ∈ N we have that for every subset U ⊂ V (G)
with |U | < u

|U ∪N(U)| ≥ 3|U |.
Then there are at least u2/2 non-edges in G whose addition forms a k + 1 cycle in G.

Lemma 7.6. Suppose c is sufficiently large and p = c log (n)/n. Then almost surely in G(n, p)
every subset U ⊂ V (G) with |U | ≤ n/4 satisfies

|U ∪N(U)| ≥ 3|U |.

In particular the property that some set U fails to satisfy this property is less then n−2.
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Lemma 7.7. Suppose c is sufficiently large and p = c log (n)/n. Then almost surely in G(n, p)
contains a Hamiltonian path.

7.3 Hamiltonicty Threshold

• If p(n) = c log (n)/n for large enough c, then G(n, p) almost surely contains a Hamiltonian
path and satisfies the condition of Lemma 7.5 for a large u, and so, if G(n, p) does not
contain a Hamiltonian cycle then there are a large number of non-edges whose addition
would form a Hamiltonian cycle in G(n, p)

Definition (Sprinkling). If we pick two random graphs G(n, p1) and G(n, p2) and let H =
G(n, p1) ∪ G(n, p2) be the union of the two graphs, then it is a simple a exercise to show that
H is distributed as G(n, q) for q = p1 + p2 − p1p2. We can think of the process as a two step
exposure of the edges in G(n, q). This idea is sometimes called sprinkling, we can think of it as
picking G(n, p1) and then ‘sprinkling’ some extra edges on top, with a fixed probability.

Theorem 7.8. r(n) = log (n)/n is a threshold function for the event that G(n, p) is Hamilto-
nian.
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8 Strong Concentration

8.1 Motivation

In many application of the probabilistic method, we want to bound probabilities of the for
P(X ≥ E(X) + t) for some random variable X, or often more generally P(|X − E(X)| ≥ t) .
We call bounds for such probabilities tail estimates. If we can show that with high probability
|X−E(X)| ≤ t, where t is considerably smaller than E(X), we say that X is concentrated about
its expectation. Chebyshev’s inequality is a very general result of this type, however it is quite
weak.

8.2 The Chernoff Bound

Theorem 8.1 (The Chernoff bound). Let X1, X2, . . . Xn be independent random variables taking
the values 1 and −1, each with probability 1/2. Let X = X1 + X2 + . . . + Xn. Then, for any
t ≥ 0,

P(X ≥ t) < e−
t2

2n and P(X ≤ −t) < e−
t2

2n .

Theorem 8.2. The maximum degree of G(n, 1/2) is almost surely n/2 +O(
√
n log (n)).

Theorem 8.3 (Without proof). Let X1, X2, . . . , Xn be independent random variables, each
taking values in [0, 1], let X = X1 + X2 + . . . + Xn and let σ2 = Var(X) =

∑
i Var(Xi). Then

for any t ≥ 0

P(X ≥ E(X) + t) < e
− t2

2(σ2+ t
3 ) and P(X ≤ E(X)− t) < e

− t2

2(σ2+ t
3 ) .

Definition. For any two vertices x and y in a connected graph G we define the distance between
x and y, dist(x, y), to be the length of the shortest path between x and y. The diameter of a
graph G is the maximum distance between any pair of vertices, and the radius is the minimum
distance r such that there exists a vertex x such that dist(x, y) ≤ r for all y ∈ G.

Theorem 8.4. Let d ≥ 2 be fixed. Suppose c > 0 and pdnd−1 = log (n2/c). Then almost surely
G(n, p) has diameter at least d.

Theorem 8.5 (Without proof). Let d ≥ 2 be fixed. Suppose c > 0 and pdnd−1 = log (n2/c).
Then (as n→∞) with probability e−c/2 the diameter of G(n, p) is d and with probability 1−e−c/2
the diameter is d+ 1.

8.3 Combinatorial Discrepancy

Definition (Discreprancy). Let (V,F) be a set system and consider a two colouring χ : V →
{−1,+1}. For F ∈ F we define

χ(F ) =
∑
i∈F

χ(i).

The discrepancy of F with respect to χ is

discχ(F) = max
F∈F
|χ(F )|
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and the discrepancy of F is
disc(F) = min

χ
discχ(F).

Theorem 8.6. Let (V,F) be a set system such that |V | = n and |F| = m. Then if the maximum
size of a set F ∈ F is s

disc(F) ≤
√

2s log (2m).

In particular, for any F
disc(F) ≤

√
2n log (2m).

8.4 A Lower Bound for the Binomial Distribution

Theorem 8.7. [Without proof] Let X be a sum of independent random variables, each taking
values in [0, 1], and let σ =

√
Var(X) ≥ 200. Then for all t ∈ [0, σ2/100], we have

P(X ≥ E(X) + t) ≥ ce−
t2

3σ2

for a suitable constant c > 0.

Theorem 8.8. For n even, let X1, X2, . . . , Xn be independent random variables taking the values
1 and −1, each with probability 1/2. Let X = X1 +X2 + . . .+Xn. Then we have, for any integer
t ∈ [0, n/8],

P (X ≥ 2t) ≥ 1

15
e−

16t2

n ,

Theorem 8.9. For any n,m ∈ N such that 15n ≤ m ≤ 2
n
8 there exists a set system (V,F) such

that |V | = n and |F| = m such that

disc(F) ≥ Ω

(√
n log

( m

15n

))
.
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9 The Lovás Local Lemma

9.1 The Local Lemma

In a typical probabilistic proof of a combinatorial result, one has to show that the probability
of a certain event is positive. If we have n mutually independent events Ai, each of which hold
with probability p > 0, then the probability that they all hold simultaneously is at least pn,
which is positive, but may be exponentially small in n.

It is natural to expect that something similar will be true if the events are not entirely
independent, but only ‘mostly independent’, for some sensible definition of ‘mostly independent’.

Definition (Dependency digraph). Let A1, A2, . . . , An be events in an arbitrary probability
space. A directed graph D = ([n], E)is called a dependency digraph for the events A1, A2, . . . , An
if for all i the event Ai is mutually independent of all the events {Aj : (i, j) 6∈ D}.

• For an event Ai let us write Ai for the negation of this event.

Lemma 9.1 (The Lovás Local Lemma). Let A1, A2, . . . , An be events in an arbitrary probability
space. Suppose that D = ([n], E) is a dependency digraph for the events {Ai}ni=1 and there exists
x1, x2, . . . xn ∈ [0, 1) such that

P(Ai) ≤ xi
∏

(i,j)∈E

(1− xj)

for all i ∈ [n]. Then

P

(
n⋂
i=1

Ai

)
≥

n∏
i=1

(1− xi).

In particular, with positive probability no event Ai holds.

Corollary 9.2. [Symmetric Local Lemma] Let A1, A2, . . . , An be events in an arbitrary proba-
bility space. Suppose that each event Ai is mutually independent of a set of all but at most d
of the other Aj (equivalently there is a dependency digraph with all outdegrees less than d), and
that P(Ai) ≤ p for all i. If ep(d+ 1) ≤ 1 then

P

(
n⋂
i=1

Ai

)
> 0.

9.2 Ramsey Bounds for the last time

Theorem 9.3. If

e

(
k

2

)(
n− 2

k − 2

)
21−(k2) < 1

then R(k, k) > n.

20



• Can use the local lemma to show

R(k, 3) ≥ c k2

(log (k))2
.

• A similar argument shows that

R(k, 4) ≥ k
5
2

+o(1).

9.3 Directed Cycles

Theorem 9.4. Let D = (V,E) be a directed graph with minimum outdegree δ and maximum
indegree ∆. Then for any k ∈ N such that

k ≤ δ

1 + log (1 + δ∆)
,

D contains a directed cycle of length divisible by k.

9.4 The Linear Aboricity of Graphs

Definition (Arboricity, linear forest, linear arboricity). Given a graph G the aboricity of G,
a(G), is the minimum number of forests into which the edge set E(G) can be partitioned. A
linear forest is a forest in which every component is a path, and the linear aboricity of a graph,
la(G), is the minimum number of linear forests into which the edge set E(G) can be partitioned.

Conjecture 9.5 (The Linear Aboricity Conjecture). Let G be a d-regular graph. Then

la(G) =

⌈
d+ 1

2

⌉
.

Definition (Regular digraph, linear directed forest, dilinear arboricity). A d-regular digragph
is a directed graph in which the indegree and outdegree of every vertex is precisely d. A linear
directed forest is a directed graph in which every connected component is a directed path and
the dilinear aboricity of a directed graph D, which we denote by dla(D), is the minimum number
of linear directed forests into which the edge set E(G) can be partitioned.

Conjecture 9.6. Let D be a d-regular digraph. Then

dla(D) = d+ 1.

Lemma 9.7. Let H = (V,E) be a graph with maximum degree ∆, and let V = V1∪V2∪ . . .∪Vr
be a partition of V into r pairwise disjoint sets. Suppose that |Vi| ≥ 2e∆ for each i ∈ [r]. Then
there is an independent set W ⊂ V that contains a vertex from each Vi.

• The directed girth of a graph is the minimum length of a directed cycle in that graph.

Theorem 9.8. Let D = (V,E) be a d-regular directed graph with directed girth g ≥ 8ed. Then

dla(D) = d+ 1.
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Lemma 9.9. Let D = (V,E) be a d-regular directed graph, where d is sufficiently large, and let
p be an integer such that 10

√
d ≤ p ≤ 20

√
d. Then there is a p-colouring of V , f : V → [p], such

that, for each v ∈ V and each i ∈ [p] the number

N+(v, i) = |{u ∈ V : (v, u) ∈ E and f(u) = i}|

and
N−(v, i) = |{u ∈ V : (u, v) ∈ E and f(u) = i}|

satisfy ∣∣∣∣N+(v, i)− d

p

∣∣∣∣ , ∣∣∣∣N−(v, i)− d

p

∣∣∣∣ ≤ 3

√
d

p
log (d).

Theorem 9.10. There exists a constant c > 0 such that for every d-regular digraph D

dla(D) ≤ d+ cd
3
4 (log (d))

1
2 .

Corollary 9.11. There exists a constant c > 0 such that for every d-regular graph G

la(G) ≤ d

2
+ cd

3
4 (log (d))

1
2 .
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10 Martingales and Strong Concentration

10.1 The Azuma-Hoeffding Inequality

The strong concentration bounds we obtained in Section 8 only applied to sums of random
variables which were independent. This is quite a strong condition to ask for, and in this
section we will prove strong concentration results of a similar nature that do not need to rely
on independence. S

Definition (Martingale). Let Z1, Z2, . . . , Zn and X0, X1, . . . , Xn be sequences of random vari-
ables on the same probability space such that Xi is determined by {Z1, Z2, . . . , Zi} and, for all
i,

E(Xi |Z1, Z2, . . . , Zi−1) = Xi−1.

Then (Xi) is called a martingale with respect to (Zi).

Lemma 10.1 (Doob Martingale). Let A and (Zi) be random variables on the same probability
space. The Xi = E(A |Z1, Z2, . . . , Zi) is a martingale with respect to (Zi).

Proof. Note firstly that Xi is determined by {Z1, Z2, . . . , Zi}. Also, for all i we have that

E(Xi |Z1, Z2, . . . , Zi−1) = E(E(A |Z1, Z2, . . . , Zi) |Z1, Z2, . . . , Zi−1).

However it is clear that the above expectation is, for given Z1, Z2, . . . , Zi−1, averaging over all
possible values of Zi the expected value of (A|Z1, Z2, . . . , Zi). Hence

E(Xi |Z1, Z2, . . . , Zi−1) = E(A |Z1, Z2, . . . , Zi−1) = Xi−1.

Definition. Consider the probability space G(n, p) and order the set of potential edges (i, j) ∈
[n](2) arbitrarily as e1, e2, . . . , em, where m =

(
n
2

)
. Let Zi to be the indicator function of the

event that ei is an edge in G(n, p). Any graph theoretic function f is some function of the
random variables (Zi). Given such a function f , the edge exposure martingale is the martingale
Xi = E(f |Z1, Z2, . . . , Zi) with respect to (Zi). Note that X0 = E(f) and Xn = f .

Let Z ′i ∈ {0, 1}i−1 be the vector of indicator functions of whether the edge between the vertex
i and j < i is in G(n, p). Again for any graph theoretic function f , the vertex exposure martingale
is the martingale Xi = E(f |Z ′1, Z ′2, . . . , Z ′i) with respect to (Z ′i). In this case X1 = E(f) and
Xn = f .

Theorem 10.2 (The Azuma-Hoeffding Inequality). Let c1, . . . , cn > 0 and let (Xi)
n
0 be a mar-

tingale with respect to (Zi)
n
1 such |Xi −Xi−1| ≤ ci for all 1 ≤ i ≤ n then

P(Xn ≥ X0 + t) ≤ e−
t2

2σ2 and P(Xn ≤ X0 − t) ≤ e−
t2

2σ2

where σ2 =
∑n

i=1 c
2
i .

For the proof of the above we need the following technical lemma.
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Lemma 10.3. Let Y be a random variable which takes values in [−1,+1] such the E(Y ) = 0.
Then for any t ≥ 0

E(etY ) ≤ e
t2

2 .

Definition. A graph theoretic functions f is edge Lipschitz if whenever H and H ′ differ in
only one edge then |f(H) − f(H ′)| ≤ 1. Equivalently, if we consider f as a function of the
variables f(Z1, Z2, . . . , Zn) then we require that changing one coordinate does not change f by
more than 1. Similarly it is vertex Lipschitz if whenever H and H ′ differ at only one vertex
|f(H)− f(H ′)| ≤ 1.

Lemma 10.4. For any graph theoretic function f , if f is edge Lipschitz then the corresponding
edge exposure martingale satisfies |Xi −Xi−1| ≤ 1 and similarly if f is vertex Lipschtiz.

10.2 The Chromatic Number of a Dense Random Graph

• The chromatic number χ(G) is a vertex Lipschitz function.

Theorem 10.5. For any n and p and for all t ≥ 0

P(|χ(G(n, p))− E(χ(G(n, p))| ≥ t) ≤ e−
t2

2(n−1) .

• If we take t = ω(
√
n) we see that χ(G(n, p)) is ‘tightly’ concentrated about its expectation,

although we still don’t know what it’s expectation is.

• Let us just consider the case p = 1/2 for ease of presentation, the arguments are similar
for all fixed p.

• Note χ(G) ≥ n
α(G) .

• Without proof Using the second moment method it is possible to show that, for any
ε < 0 almost surely α(G(n, 1/2)) is between (2− ε) log2 (n) and 2 log2 (n).

• Hence almost surely

χ(G(n, 1/2)) ≥ (1 + o(1))
n

2 log2 (n)
.

Definition (f(k) and Y ). Let f(k)

f(k) =

(
n

k

)
2−(k2)

and let k0 be such that f(k0− 1) > 1 > f(k0) and let k1 = k0− 4. Let Y be the maximal size of
a family of edge disjoint cliques of size k1 in G(n, 1/2) (that is, the number of cliques it contains,
not the union of their sizes). ’

Note that G will have no k1-clique if and only if Y = 0 and that Y is edge Lipschitz.

Lemma 10.6.

E(Y ) ≥ (1 + o(1))
n2

4k4
1

.
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Lemma 10.7.
P(ω(G(n, 1/2)) < k1) = e−n

2+o(1)
.

Theorem 10.8. Almost surely

χ(G(n, 1/2)) ≤ (1 + o(1))
n

2 log2 (n)
.

10.3 The Chromatic Number of Sparse Random Graphs

Theorem 10.9. Let p = n−α for some fixed α > 5/6 then there exists some u = u(n, p) such
that almost surely

u ≤ χ(G(n, p)) ≤ u+ 3.

We use the following result in the proof.

Lemma 10.10. Let p = n−α for some fixed α > 5/6 and let c > 0. Then almost always it is
true that, for every subset S ⊂ [n] with |S| = c

√
n

χ(G(n, p)|S) ≤ 3.

11 Talagrand’s Inequality

Our previous results on strong concentration gave us an exponentially small bound on the
probability of deviations from the mean of suitably well behaved random variables. Our notion
of suitably well behaved was basically that it was close, or bounded by, some random variable
on a product space where in each co-ordinate the random variable was bounded. However these
results required that the deviations we considered be at least as large as the square root of the
dimension of this product space. Talagrands inequality gives us a much stronger result for a
similar class of random variables.

Definition (Product space). Let {(Ωi, 2
Ωi ,Pi) : i ∈ [n]} be finite probability spaces. We let

Ω =
n∏
i=1

Ωi = {(ω1, ω2, . . . , ωi) : ωi ∈ Ωi for all i ∈ [n]}

be the product of the sets Ωi and define a probability measure P on 2Ω by defining the probability
of elementary events to be

P((ω1, ω2, . . . , ωi)) =
n∏
i=1

Pi(ωi)

and extending it to 2Ω in the obvious way. Then the product space (of {(Ωi,Σi,Pi) : i ∈ [n]})
is the probability space (Ω, 2Ω,P).

• For example G(n, p) is the product of
(
n
2

)
identical probability spaces, each of which cor-

responds to a possible edge of G(n, p).
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• Given a random variable on a product space we can consider the co-ordinate exposure
martingale.

Definition. Given a unit vector α ∈ Rn and two points ω, ω′ ∈ Ω the α-Hamming distance
between ω and ω′ is

dα(ω, ω′) =
∑
ωi 6=ω′i

αi.

Given a set A ⊂ Ω and a point ω for any α we can consider the α-Hamming distance between
ω and A.

dα(ω,A) = inf{d(ω, ω′) : ω′ ∈ A}.

We will think of ω as being far from A if it’s far in some α-Hamming distance, with α a unit
vector. That is, we define

d(ω,A) = sup
|α|=1

dα(ω,A).

Theorem 11.1 (Talagrand’s Inequality). Let {(Ωi,Σi,Pi) : i ∈ [n]} be probability spaces and
let (Ω,Σ,P) be their product. If A,B ∈ Σ are such that d(ω,A) ≥ τ for all ω ∈ B, then

P(A)P(B) ≤ e−
τ2

4 .

Definition. A random variable X : Ω → R is c-Lipschitz if changing just one co-ordinate can
change the value of X by at most c. Given some function f : N → N we say that X is f -
certifiable if whenever X(ω1, ω2, . . . , ωn) ≥ s there is a subset I ⊂ [n] of size |I| = f(s) such that
X is greater than s on the entire subspace

{(ω′1, ω′2, . . . , ω′n) : ω′i = ωi for all i ∈ I}.

Corollary 11.2. Let X be a c-Lipschitz random variable which is f -certifiable and let m be the
median of X (that is m is the unique real number such that P(X > m) ≤ 1/2 and P(X < m) ≤
1/2). Then for any t ≥ 0

P(X ≤ m− t) ≤ 2e
− t2

4c2f(m) and P(X ≥ m+ t) ≤ 2e
− t2

4c2f(m+t) .

• Note that the two tail estimates are not necessarily symmetric.

• The important thing is that gives us strong concentration in a way that does not depend
on the dimension of the product space Ω.

• This theorem talks about a variable being concentrated about its median rather than its
mean, however in a lot of cases one can show the median must be close to the expectation.

Lemma 11.3. Let {(Ωi, 2
Ωi ,Pi) : i ∈ [n]} be probability spaces and let (Ω, 2Ω,P) be their

product. Let X be a c-Lipschitz, f(s) = rs-certifiable random variable and let m be the median
of X. Then

|E(X)−m| ≤ 20c
√
rm.

11.1 Longest Increasing Subsequence

• Suppose we pick a permutation of [n] uniformly at random and consider the random
variable X which counts the longest increasing subsequence.
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• If we let Y be the longest decreasing subsequence, then a theorem of Erdős and Szekeres
says that XY ≥ n.

• If we let m be the median of X then m = Ω(
√
n).

• By applying Talagrand’s inequality one can show that, with high probability

X ∼ m± n1/4 log (n).

• The Azuma-Hoeffding inequality would only give concentration about the mean for devi-
ations t >>

√
n.

• It can be shown that E(X) = Ω(
√
n).

11.2 Chromatic Number of Graph Powers

Definition (Powers of a graph). Given a graph G the kth power of G, Gk is defined to be the
graph with

V (Gk) = V (G) and E(Gk) = {(x, y) : distG(x, y) ≤ k}.

Theorem 11.4 (Without proof). Let H be such that g(H) ≥ 5, then χ(g) ≤ (1+o(1))∆(H)/ log (∆(H))

Theorem 11.5 (Without proof). Let H be such that g(H) ≥ 4 (that is, triangle-free), then
χ(g) ≤ O

(
∆(H)/ log (∆(H))

)
• If G is d-regular then χ(G) ≤ d+ 1, and χ(Gk) ≤ dk + 1.

• If g(G) >> k then the above theorems give a better upper bound for χ(Gk).

Theorem 11.6. Let g ≥ 3 and k be fixed. Then for large enough d there exist graphs G with
g(G) ≥ g and ∆(G) ≤ d such that

χ(Gk) ≥ Ω

(
dk

log (d)

)
.

We use the following lemma in the proof

Lemma 11.7. Let G(n, p) be chosen with p = d
2n . Then for an appropriate choice of constant

ck the following holds: For every subset U ⊂ V (G) of size

|U | = ckn
log (d)

dk
= x

let P be the random variable which counts the maximum size of a family of paths of length k
which lie in G(n, p) such that both endpoints lie in U , all the internal vertices of the paths lie
outside of U , and no two paths share a vertex except in U . Then almost surely

P ≥
c2
kn log (d)2

2k+7dk
.
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11.3 Exceptional outcomes

Our previous concentration results have all relied on our random variables being c-Lipschitz for
some small enough c, when considered as functions on an underlying product probability space.
Whilst they can’t tell us anything if the function is not well behaved in this way, sometimes it
will be the case that the random variable is still be tightly concentrated.

• Consider the random variable T which counts the number of triangles in G(n, p).

• r(n) = 1/n is a threshold function for the event that G(n, p) contains a triangle.

• Suppose p = nβ−1 for some small β > 0. In this case the expected number of triangles will
get arbitrarily large.

• Since T is not ‘very Lipschitz’, our previous concentration results cannot guarantee that
T is large with high probability if β ≤ 2/3.

• However, whilst changing an edge can change T a lot, the expected change in T from any
particular edge is still quite low.

• As the following example shows, this is not quite enough to guarantee concentration.

Example. Let m = 4k, we will consider a probability space on {0, 1}m where each event

ω = (ω1, ω2, . . . , ωm) is such that the probability that ωi = 1 is, independently, p = m−
1
2 for

each i. Consider the following function

f(t1, t2, . . . , tm) = (t1t2 + t2t3 + . . .+ t2k−1t2k)(t2k+1 + t2k+2 + . . .+ t4k).

• E(f) = 1
8m

1
2 .

• |E(f |ti = 0)− E(f |ti = 1)| = 1
2 for i ≤ 2k.

• |E(f |ti = 0)− E(f |ti = 1)| = 1
4 for i ≥ 2k.

• With high probability f(t) is either 0, or larger than 4E(f).

• A stronger notion than being ‘quite Lipschitz on average’ would be that the function is
‘quite Lipschitz’ ‘almost always, that is, there is a set of events of small probability such
that everywhere else f is c-Lipschitz for some small c.

• In order to make this precise we will change our notion of certifiability slightly.

Definition. Given an exceptional set Ω∗ ⊂ Ω and s, c > 0 we say that a random variable X
has (s, c)-certificates if for every t > 0 and every ω ∈ Ω \ Ω∗ there is an index set I of size at
most s so that X(ω′) > X(ω)− t for any ω′ ∈ Ω \ Ω∗ for which the ω and ω′ differ in less than
t/c co-ordinates.

• Note that, if X is f -certifiable and c-Lipschitz and s is the maximum value of f over the
range of X, then X has (s, c)-certificates.
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Theorem 11.8. Let {(Ωi, 2
Ωi ,Pi) : i ∈ [n]} be probability spaces and let (Ω, 2Ω,P) be their

product. Let Ω∗ ⊆ Ω be a set of exceptional events. Suppose X is a random variable which has
(s, c)-certificates, let m be the median of X and let t ≥ 0. Then

P(|X −m| ≥ t) ≤ 4e−
t2

4c2s + 4P(Ω∗).

Lemma 11.9. Let {(Ωi, 2
Ωi ,Pi) : i ∈ [n]} be probability spaces and let (Ω, 2Ω,P) be their

product. Let Ω∗ ⊆ Ω be a set of exceptional events. Let X be a random variable which has
(s, c)-certificates, let m be the median of X and let M = max{ sup |X|, 1}. Then

|E(X)−m| ≤ 20c
√
s+ 20M2P(Ω∗).

Corollary 11.10. Let {(Ωi, 2
Ωi ,Pi) : i ∈ [n]} be probability spaces and let (Ω, 2Ω,P) be their

product. Let Ω∗ ⊆ Ω be a set of exceptional events. Let X be a random variable which has
(s, c)-certificates, let m be the median of X and let M = max{ sup |X|, 1}. If P(Ω∗) ≤ M−2

then for t > 50c
√
s

P(|X − E(X)| ≥ t) ≤ 4e−
t2

16c2s + 4P(Ω∗).

• One can use these results to deduce that T is concentrated about its mean for β arbitrarily
small.

• If we let β = 2/3 + ε for some small ε then we can use the Azuma-Hoeffding inequality to
show that the number of triangles is tightly concentrated about its mean, and hence the
probability that there are more that n3β triangles is exponentially small.

• Similarly using Chernoff’s bound we can say the probability that any (potential) edge
extends to more than max{2np2, nδ} triangles is exponentially small.

• Since both these random variables are montone, this also holds for smaller p.

• This allows use to apply Corollary 11.10 with s = n3β and c = max{2np2, nδ} to β =
4/9 + ε′ and deduce concentration.

• However, we can now bootstrap this result for smaller p, using the previous step to get a
better bound on s and c.

Theorem 11.11. Let p = n−1+β for β > 0 and let δ > 0. Then with high probability

|T − E(T )| ≤ nδ
√
E(T ).
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12 Entropy Methods

12.1 Basic Results

Definition. Given a discrete random variable X let us denote by p(x) := P(X = x) for each x
in the range of X. The entropy of X is

H(X) =
∑
x

p(x) log

(
1

p(x)

)
.

• H(X) ≥ 0.

Lemma 12.1. Let X be a discrete random variable and let R be the range of X.

H(X) ≤ log (|R|).

Definition. Given two discrete random variables, X and Y , we define the joint entropy (X,Y )
to be

H(X,Y ) =
∑
x

∑
y

p(x, y) log

(
1

p(x, y)

)
,

where, as before, p(x, y) := P(X = y, Y = y). We also define the conditional entropy, of Y given
X, to be

H(Y |X) =
∑
x

p(x)H(Y |X = x) = Ex
(
H(Y |X)

)
.

Lemma 12.2. Let X and Y be discrete random variables. Then

H(Y |X) ≤ H(Y ).

Lemma 12.3 (Chain rule). Let X and Y be discrete random variables. Then

H(X,Y ) = H(X) +H(Y |X).

• If we define the joint entropy of a sequence of discrete random variables X1, X2, . . . , Xn in
a similar way then

H(X1, X2, . . . , Xn) = H(X1) +H(X2|X1) + . . . H(Xn|X1, X2, . . . , Xn−1).

• We call this the chain rule.

• If the random variable Y completely determines the random variable Z then H(X|Y ) =
H(X|Y,Z).

12.2 Brégman’s Theorem

• For a graph G let us write Φ(G) for the set of perfect matchings of G and φ(G) = |Φ(G)|.

Theorem 12.4 (Brégman’s Theorem). Let G be a bipartite graph on vertex classes A and B
such that |A| = |B| = n. Then

φ(G) ≤
∏
v∈A

(d(v)!)
1

d(v) .
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12.3 Shearer’s lemma and the Box theorem

• Given a sequence of discrete random variables random variables X1, X2, . . . , Xn and some
subset A ⊆ [n] let us define XA := (Xi : i ∈ A).

Lemma 12.5 (Shearer’s inequality). Let X1, X2, . . . , Xn be discrete random variables and A
a collection (not necessarily distinct) of subsets of [n], such that each i ∈ [n] is in at least m
members of A. Then

H(X1, X2, . . . , Xn) ≤ 1

m

∑
A∈A

H(XA).

• If we take a shape S ⊂ Zd and pick a point uniformly at random inside of S this gives a
vector X = (X1, . . . , Xn) of random variables.

• H(X) = log |S| and for A ⊂ [n] we have the range of X1 is the ‘volume’ of the (n− |A|)-
dimensional projection onto the subspace where xi = 0 for i ∈ A.

• Let us call this projection SA and we note that H(XA) ≤ log |SA|.

Theorem 12.6 (The Loomis-Whitney inequality). Let S ⊂ Zn then,

|S|n−1 ≤
n∏
i=1

|S[n]\{i}|

• This theorem is tight when |S| is a ‘box’, that is, a set of the form [1,m1]× [1,m2]× . . .×
[1,mn].

Definition. We say a collection of sets C = {C1, . . . , Cm} ⊂ 2[n] is a k-uniform cover if each
i ∈ [n] belongs to exactly k many of the Cj .

Theorem 12.7 (Uniform covers theorem). Let S ⊂ Zn and let C ⊂ 2[n] be a k-uniform cover,
then

|S|k ≤
∏
C∈C
|SC |

• C = {[n] \ {i} : i ∈ [n]} is an (n − 1)-uniform cover of [n], and so Theorem 12.6 follows
from Theorem 12.7.

• By approximating a shape in Rn with finer and finer grids one can show that Theorem
12.7 still holds for any ‘reasonable’ (say, measurable) shape S ⊂ Rn, where |.| now denotes
the normal volume.

Theorem 12.8 (Bollobás-Thomason Box Theorem). Let S ⊂ Rn. Then there is a box B ⊂ Rn
such that |B| = |S| and |BA| ≤ |SA| for all A ⊆ [n].

Definition. Let C be a uniform cover of [n] we say C is irreducible if we cannot write it as the
disjoint union C = C′ ∪ C′′ of two uniform covers.

Lemma 12.9. There are only finitely many irreducible uniform covers of [n]
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12.4 Independent Sets in a Regular Bipartite Graph

• For a graph G let us write I(G) for the set of independent subsets of V (G).

Theorem 12.10. Let G be a d-regular bipartite graph on 2n vertices with vertex classes A and
B, and let I(G) be the class of independent subsets of V (G). Then

|I(G)| ≤ (2d+1 − 1)
n
d

12.5 Bipartite Double Cover

Definition (Bipartite double cover). Given any graph G we define the bipartite double cover of
G to be the cartesian product, G×K2.

Definition. We say that A is independent from B if there are no edges between A and B and
we define the size of a pair of subsets (A,B) to be |A|+ |B|.

• For a graph G let us write J (G) for the set of (A,B) such that A is independent from B
and G|A∪B is bipartite.

Lemma 12.11. For any graph G, there exists a size preserving bijection between I(G)× I(G)
and J (G).

Theorem 12.12. Let G be a d-regular graph on n vertices, and let I(G) be the class of inde-
pendent subsets of V (G). Then

|I(G)| ≤ (2d+1 − 1)
n
2d
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13 Derandomization and Combinatorial Games

13.1 Maximum Cuts in Graphs

Theorem 13.1. Any graph G, with e(G) = m, contains a bipartite subgraph with at least m/2
edges.

While the theorem asserts the existence of a large cut, it gives no indication of how to find one
deterministically. However in many cases, including this one in particular, we can “derandomize”
such an argument to produce a fully deterministic algorithm.

Example (Derandomising MAXCUT).

13.2 Ramsey graphs

Example (Building a Ramsey graph).

13.3 Positional Games

Definition (Strong positional game, Red-win, Blue-win, draw). A strong positional game con-
sists of a pair (X,F) where X is a set, called the board, and F ⊂ 2X is a family of winning
lines. The game is played by two players, sometimes referred to as Red and Blue, who take
turns claiming points of the board (with Red going first), which we may think of as colouring
some point x ∈ X as either red or blue. Given a particular play of the game, that is a sequence
of moves (r1, b2, r3, b4 . . .), the winner is the first player to claim all points in some winning set
F ∈ F . If at no point during the game either player achieves this, the game is a draw.

If Red has a strategy to win a game (X,F) we call the game Red-win, and similarly for Blue.
If both players have a drawing strategy we call the game a draw.

Lemma 13.2. If X is finite then all strong positional games (X,F) are either Red-win, Blue-
win, or a draw.

Theorem 13.3 (Strategy stealing). Let (X,F) be a strong positional game with X finite. Then
(X,F) is either a Red-win or a draw.

• Consider (X,F) as a hypergraph. If every 2-colouring of X contains a monochromatic
F ∈ F , then (X,F) must be Red-win.

Lemma 13.4. Suppose (X,F) is a hypergraph. If∑
F∈F

2−|F | < 1/2

then there exists a 2-colouring of X containing no monochromatic F ∈ F .
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We can derandomize this argument to give a winning strategy for Blue.

Theorem 13.5. [The Erdős-Selfridge Theorem] Suppose (X,F) is a strong positional game. If∑
F∈F

2−|F | < 1/2

then (X,F) is a draw.

Definition. The Ramsey Game is the game (E(Kn),F) where he board is the edge set of a
complete graph Kn and F is the collection of edge sets of complete subgraphs Kk.

• If n ≥ R(k, k) the Ramsey game is Red-win.

• If (
n

k

)
2−(k2) < 1/2

the game is a draw.

• It follows that we can find a balanced colouring of Kn with no monochromatic Kk.

Definition. The n-in-a-row game is the game (Z2,F) where the board is Z2, and F is the
collection of all consecutive lines of n points in a row, either horizontally, vertically or diagonally.

• For n ≤ 4 one can check by hand that the game is Red-win.

Theorem 13.6. For n ≥ 40 the n-in-a-row game is a draw.

• One can show with a pairing strategy that the 8-in-a-row game is a draw.

• It is unknown who wins for n = 5, 6, 7.

13.4 Weak Games

Definition. Given a strong positional game (X,F) the corresponding weak positional game, or
Maker-Breaker game, MB(X,F) is played as follows. The two players, Maker and Breaker, take
turns claiming points of the board X, with Maker going first. We will still sometimes think of
Maker as colouring his points red, and Breaker blue. Maker wins if at some point in the game he
can claim all the points in some winning set F ∈ F , and Breaker wins otherwise. If Maker has a
winning strategy we call the game Maker-win, and similarly if Breaker has a winning strategy.

• Every Maker-Breaker game is either Maker-win or Breaker-win.

• If MB(X,F) is Breaker-win, then (X,F) is a draw.

• If (X,F) is Red-win, then MB(X,F) is Maker-win.

• Neither converse is true.
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• Given MB(X,F) let us write

∆2(F) = max
x,y∈X

|{F ∈ F : x, y ∈ F}|.

Theorem 13.7. Suppose MB(X,F) is a weak positional game, with F n-uniform. If

|F| > 2n−3|X|∆2(F)

then MB(X,F) is Maker-win.

13.5 The Neighbourhood Conjecture

Lemma 13.8 (Pairing strategy). Let (X,F) be a positional game. Suppose that for every G ⊂ F∣∣∣∣∣ ⋃
G∈G

G

∣∣∣∣∣ ≥ 2|G|

(That is, the total number of points in X contained in some member of G is at least twice as
large as the number of sets in G). Then (X,F) is a draw.

Corollary 13.9. Let (X,F) be a positional game in which every winning set has size ≥ n. If
every point x ∈ X is in at most n/2 winning sets, then the game is a draw.

Lemma 13.10. Suppose H = (X,F) is an n-regular hypergraph in which every vertex is in at
most 2n−2/n edges, then there exits a 2-colouring of X with no monochromatic edge.

• Let denote by f(n) the smallest number such that the following is true: Every positional
game (X,F) in which every winning set has size n and each point in is at most f(n)
winning sets is a draw.

• Corollary 13.9 tell us that f(n) ≥ n/2.

Conjecture 13.11 (The Neighbourhood Conjecture).

f(n) =
2n−2

n
.

• The best current bounds are that n/2 ≤ f(n) ≤ 2n−1/n

14 The Algorithmic Local Lemma

Suppose we have a probability space Ω which comes with an underlying set of mutually inde-
pendent random variable Z1, . . . , Zn. We are considering some set of events (Ai ∈ i ∈ I), as in
the local lemma, where each Ai is determined by some subset vbl(Ai) ⊂ {Z1, . . . , Zn} of the Zj .

In this case, a very natural dependency graph to take is that graph where i ∼ j if and only
if vbl(Ai) ∩ vbl(Aj) 6= ∅, when the events Ai and Aj depend on a common variable. Let use
denote by Di the neighbourhood of i in this graph.
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Given an assignment of values to the variable Zj , that is, some γ = (γ1, . . . , γn) where
γj ∈ range(Zj) for each j, we say that Ai is violated by this assignment if Ai is true under this
assignment.

Our aim will be, given that the events (Ai, i ∈ I) satisfy the conditions of the local lemma,
to algorithmically find an assignment of values such that no event Ai is violated. The algorithm
can be stated extremely simply:

• Pick a random assignment for each Zj independently

• while there exists a violated Ai

– Pick a violated Ai (according to some deterministic rule)

– Re-sample the assignments for each Zj ∈ vbl(Ai)

• return the values of the Zj

It is clear that if this algorithm terminates, then we have found our desired requirement.

Theorem 14.1. Let Z1, . . . , Zn and (Ai : i ∈ I) be as above. If there exists real numbers
0 < xi < 1 such that

P(Ai) ≤ xi
∏
j∈Di

(1− xj)

for each i then the algorithm finds an assignment of values to the Zj such that no event Ai is
violated in expected time at most ∑

i∈I

xi
1− xi

Definition. The log of the algorithm is a sequence L = (L(1), L(2), L(3) . . .) where L(t) is the
event Ai such that vbl(Ai) was re-sample in the tth step of the algorithm. We note that the log
may be an infinite sequence.

A witness tree is a rooted tree T whose vertices are labelled with events Ai such that if Aj
is a child of Ai, then j ∈ Di ∪ {i}. We call T proper if at each vertex the set of labels on its
children is distinct.

Given a log L we define a witness tree T (t) for each step of the algorithm recursively. We
first label the root with the event L(t). Then, for each i = t− 1, t− 2, . . . we consider the event
L(i) = Ak. If there exists a vertex in the tree which is labelled with an event in Dk∪{k} then we
pick one furthest from the root (breaking ties arbitrarily) and we add a leaf to the tree behind
this vertex labelled Ak. If no such vertex exists then we go on to the next L(i− 1).

We say a witness tree T occurs in L if there is some t such that T = T (t).

Lemma 14.2. Let T be a witness tree and L the log file of a random execution of the algorithm.

• If T occurs in L then T is proper;

• P(T occurs in L) ≤
∏
v∈T P(A[v]).
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• For an event Ai let Ni be the number of times that vbl(Ai) is re-sampled in the algorithm.

• Note, given L, Ni is precisely the number of times that the root of the witness tree T (t)
is labelled Ai.

• By counting over all proper witness trees with root Ai

E(Ni) =
∑

T : root=Ai

P(Toccurs in L)

≤
∑

T : root=Ai

∏
v∈V (T )

P(A[v])

≤
∑

T : root=Ai

∏
v∈V (T )

x[v]

∏
j∈D[v]

xj

We will evaluate this sum using another random process called a Galton-Watson branching
process.

In this process we build a labelled tree by first picking a root with a label Ai and then, for
each j ∈ Di ∪ {i} we add with probability xj a child of the root with label Aj . We then do the
same for each child of the root according to the same rule, and so on. This process may die out
eventually, or may produce an infinite tree.

Lemma 14.3. Let T be a proper witness tree with root Ai. The probability that T is given by
the above Galton-Watson branching process is

pT =
1− xi
xi

∏
v∈V (T )

x′[v]

where x′i = xi
∏
j∈Di(1− xj).

So putting this all together we see that

E(Ni) ≤
∑

T : root=Ai

∏
v∈V (T )

x′[v] ≤
∑

T : root=Ai

pT ≤
xi

1− xi
.

• This gives us a randomised algorithm that has a low expected running time, but it can be
changed into a deterministic algorithm using the method of conditional expectations as in
the previous section.

37


