Discrete Entropy Exercise Sheet 8

Question 1 (Combinatorial Shearer's Lemma). Let \mathcal{F} be a family of (not necessarily distinct) subsets of [n] such that each $i \in [n]$ is in at least t sets in \mathcal{F} . Let \mathcal{A} be another family of subsets of [n] and let us define, for every $F \subset [n]$,

$$\operatorname{trace}_F(\mathcal{A}) = \{A \cap F : A \in \mathcal{A}\}.$$

Using Shearer's lemma show that

$$|\mathcal{A}| \leq \prod_{F \in \mathcal{F}} |\operatorname{trace}_F(\mathcal{A})|^{\frac{1}{t}}.$$

Question 2. Let G be a graph with e(G) = m edges. Let $X = (X_1, X_2, X_3)$ be a random variable which is uniform on the subset $T \subseteq V(G)^3$ where

 $T = \{(a, b, c) : a, b, c \text{ distinct and } G[a, b, c] \text{ is a triangle} \}.$

By considering the collection $\{(1,2), (1,3), (2,3)\}$, use Shearer's lemma to give a bound on the number of triangles in G.

Question 3. Let \mathcal{G} be a set of graphs on [n] such that for every pair of graphs $G_i, G_j \in \mathcal{G}$ there is an edge in their intersection $G_i \cap G_j$. How large can \mathcal{G} be?

Suppose instead that we insist that there is a triangle in each intersection. Give an explicit example of a family of size $2^{\binom{n}{2}-3}$ with this property.

Let us presume for ease of presentation that n is even. We consider each G_i as a subset of the set $U = \binom{n}{2}$, and for each equipartition $[n] = A \cup B$ such that |A| = |B|, let U(A, B) be the set of edges which lie entirely in A or B.

Show that the trace of \mathcal{G} on any U(A, B) is an intersecting family. Hence by considering the trace of \mathcal{G} over the family $\mathcal{F} = \{U(A, B) : (A, B) \text{ an equipartition}\}$ show that

$$|\mathcal{G}| \le 2^{\binom{n}{2}-2}.$$

Question 4. Suppose \mathcal{G} is set of graphs on [n] such that for every pair of graphs $G_i, G_j \in \mathcal{G}$ the intersection $G_i \cap G_j$ contains no isolated vertices. Prove an upper bound for $|\mathcal{G}|$ and show that it is tight.

Question 5. Let \mathcal{A} be a multiset of non-empty subsets of [n]. Given a pair A_i, A_j of non-nested (that is, neither $A_i \subseteq A_j$ or $A_j \subseteq A_i$) sets in \mathcal{A} let \mathcal{A}' be the set obtained by replacing A_i and A_j with $A_i \cap A_j$ and $A_i \cup A_j$ (keeping only the latter if the former is empty). We call \mathcal{A}' and elementary compression of \mathcal{A} and we define a partial order < on multisets by letting $\mathcal{A} < \mathcal{B}$ if \mathcal{A} can be obtained from \mathcal{B} via a sequence of elementary compressions.

Show that < is a partial order and show that there is a unique minimal multiset $\mathcal{A}^{\#}$ dominated by \mathcal{A} .

Let $X = (X_1, \ldots, X_n)$ be a random variable and let $\mathcal{A} < \mathcal{B}$. Show that

$$\sum_{A \in \mathcal{A}} \mathbb{H}(X_A) \le \sum_{B \in \mathcal{B}} \mathbb{H}(X_B).$$

Show that Shearer's inequality follows from the above.