Discrete Entropy Exercise Sheet 6

Question 1. Let X be distributed as Bin(n, p) and Y as Bin(m, q) where $n \le m$ and $p \le q$. By giving a coupling of X and Y show that for any $a \in \mathbb{R}^+$

$$\mathbb{P}(X \ge a) \le \mathbb{P}(Y \ge a).$$

Question 2. Suppose P and Q are distributions on the same set \mathcal{X} and we write p(x) and q(x) for $\mathbb{P}(P = x)$ and $\mathbb{P}(Q = x)$ respectively. The Kullback-Leibler divergence of P and Q is given by

$$D_{KL}(P||Q) = \sum_{x \in \mathcal{X}} p(x) \log\left(\frac{p(x)}{q(x)}\right).$$

- Show that $D_{KL}(P||Q) \ge 0$.
- If X takes values on \mathcal{X} and U is uniformly distributed on \mathcal{X} show that $\mathbb{H}(X) = \log |\mathcal{X}| D_{KL}(X||U)$.
- Given X and Y, let (\hat{X}, \hat{Y}) be independent with $\hat{X} \sim X$ and $\hat{Y} \sim Y$. Show that

$$I(X;Y) = D_{KL}(X,Y||\hat{X},\hat{Y}).$$

Question 3. Suppose P and Q are distributions on the same set \mathcal{X} . Let $||P-Q||_1 = \sum_{x \in \mathcal{X}} |p(x)-q(x)|$. Suppose that P and Q are distributed as Bernoulli random variables with success probability p and q respectively. Show that

$$D_{KL}(P||Q) \ge \frac{1}{2\log_e 2} ||P - Q||_1^2.$$

Question 4 (Pinsker's inequality). Suppose P and Q are distributions on the same set \mathcal{X} . Let $A = \{x: p(x) \ge q(x)\}$ and let P_A and Q_A be distributed as Bernoulli random variables with success probability p(A) and q(A) respectively. Show that $||P - Q||_1 = ||P_A - Q_A||_1$.

(*Furthermore, show that $D_{KL}(P||Q) \ge D_{KL}(P_A||Q_A)$. Hint: Develop a chain rule for KL-divergence)

(Assuming *) Deduce that the bound in Question 2 holds for arbitrary P and Q. Show that if X is a random variable taking values on \mathcal{X} with $\log |\mathcal{X}| - \mathbb{H}(X) \leq \epsilon$ and U is uniform on \mathcal{X} , then $||X - U||_1 \leq f(\epsilon)$ for some function f which tends to 0 with ϵ .

Question 5. Suppose G_1, \ldots, G_t are bipartite graphs on vertex set [n] with partition classes (A_i, B_i) such that $\bigcup_i G_i = K_n$. Show that $t \ge \log(n)$.

(Hint: Let X be a uniformly chosen vertex and consider χ_i , the indicator random variable of the event that $X \in B_i$.)

* Let $size(G_i)$ be the number of non-isolated vertices in G_i . Show that in fact the stronger bound holds

$$\frac{1}{n}\sum_{i=1}^{t}\operatorname{size}(G_i) \ge \log n$$