Discrete Entropy Exercise Sheet 1

Question 1. Give an example of a set of events $\{A_i : i \in I\}$ which are pairwise independent, but not mutually independent.

Give an example of a collection of random variables $\{X_i : i \in I\}$ which are pairwise independent, but not mutually independent.

Give an example of two random variables X and Y such that $\mathbb{E}(XY) \neq \mathbb{E}(X)\mathbb{E}(Y)$.

Question 2. Let $k \ge 3$, $n \le 2^{k/2-1}$ and let K_n be the complete graph on n vertices. Show that there is a 2-colouring $c : E(K_n) \to \{1, 2\}$ of the edges of K_n such that there is no subset $X \subseteq V(K_n)$ of size $|X| \ge k$ on which c is monochromatic.

Question 3. Let $n \ge 4$ and let H = (V, E) be an *n*-uniform hypergraph with at most $4^{n-1}/3^n$ edges. Show that there is a 4-colouring $c: V \to [4]$ of the vertices of H such that each colour appears in every edge.

Question 4 (Kraft's inequality). Let $\mathcal{F} \subset \{0,1\}^{<\omega}$ be a finite collection of binary strings of finite length such that no member of \mathcal{F} is a prefix of another. Let $n_i = |\mathcal{F} \cap \{0,1\}^i|$ be the number of strings of length i in \mathcal{F} . Show that

$$\sum_{i} \frac{n_i}{2^i} \le 1. \tag{1}$$

(Hint: Pick a random string of length longer than the longest in \mathcal{F} and consider the probability that a string in F is a prefix of it)

Conversely, show that if (1) holds for a sequence of numbers n_i then there exists such a collection \mathcal{F} .

Question 5. Let $T = (x_1, x_2, \ldots, x_m)$ be a sequence of not necessarily distinct reals and let

$$T_b = \{ (x_i, x_j) | x_i - x_j | \le b \}.$$

a) Show that $|T_2| < 3|T_1|$

b) Prove that for every two independent identically distributed real random variables X and Y,

$$\mathbb{P}(|X - Y| \le 2) \le 3\mathbb{P}(|X - Y| \le 1).$$