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1 Introduction

The preceding talks presented examples for deformation problems and intro-
duced a framework to talk about them in a unified manner. We learned about
deformations of associative algebras and complex structures and about the clas-
sical approach of deformation theory, which aims to associate to each deforma-
tion problem a deformation functor. However, a lot of information is lost by this
procedure. Instead, we can first associate to a deformation problem a differen-
tial graded Lie algebra (dgla) (in general only unique up to quasiisomorphism).
The dgla contains more structure and preserves more information about the
initial deformation problem. From there there is a well defined and functorial
procedure to associate to each dgla a deformation functor, whose description is
today’s task.
The slogan is: Over a field of characteristic zero, every deformation problem is
governed by a dgla via solutions of the Maurer-Cartan equation modulo gauge
action. - [Man99]

2 DGLAs and Maurer-Cartan Elements

Let’s fix some notation: We work over a field k of characteristic zero. Tensor
products are always taken over k : ⊗ = ⊗k.

This section introduces dglas and auxiliary structures, as well as the Maurer-
Cartan equation, which is central to constructing deformation functors.
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Definition 2.0.1. A differential graded vector space (dg-vector space) is a
cochain complex in k-vector spaces. That is, it is a Z-graded vector space
V = ⊕i∈ZV i together with a linear map d : V → V of degree +1, i.e. d(V i) ⊂
V i+1, called differential, that satisfies d2 = 0.
A morphism of dg-vector spaces f : V →W is a cochain map, i.e. a linear map
of degree 0 that satisfies dW f = fdV
Assembled together they form the category of dg-vector spaces, denoted DG.

Definition 2.0.2. DG is equipped with a monoidal structure, given by ten-
sor product of dg-vector spaces, which is the usual tensor product of cochain
complexes. For V,W ∈ DG, the tensor product V ⊗W is defined as follows:

(V ⊗W )n = ⊕p+q=nV p ⊗W q

dV⊗W (v ⊗ w) = dV v ⊗ w + (−1)v̄ ⊗ dWw

Definition 2.0.3. A commutative differential graded algebra (cdga) is a dg-
vector space (A, d) together with a morphism

A⊗A→ A

a⊗ b 7→ ab

called product, that satisfies

1. Associativity: (ab)c = a(bc)

2. Graded commutativity: ab = (−1)āb̄ba

3. Graded Leibniz: d(ab) = (da)b+ (−1)āa(db)

Example 2.0.1. • cdgas are just monoids in Ch(Vectk)

• Commutative algebras are the same as cdgas concentrated in degree zero
and vice versa

• The de Rham complex Ω∗(M) of a smooth manifold M with wedge prod-
uct ∧ is a cdga

• Denote the de Rham complex of algebraic differential forms on the affine
line by k[t, dt]. The underlying dg-vector space is concentrated in degree
zero and one:

k[t]⊕ k[t]dt

The differential on a general element p(t) + q(t)dt is defined as

d(p(t) + q(t)dt) = ṗ(t)dt

Multiplication is multiplication of polynomials. There are evaluation maps

es : k[t, dt]→ k

p(t) + q(t)dt 7→ k(s), s ∈ k
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Definition 2.0.4. A differential graded Lie algebra (dgla) is a dg-vector space
(L, d) together with a bilinear bracket [−,−] : L× L→ L satisfying

1. Graded skewsymmetry: [a, b] + (−1)āb̄[b, a] = 0

2. Graded Jacobi: [a, [b, c]] = [[a, b], c] + (−1)[b, [a, c]]

3. Graded Leibniz: d[a, b] = [da, b] + (−1)ā[a, db]

A morphism f : L → L′ of dglas is a morphism of dg-vector spaces that com-
mutes with brackets, i.e. f([l, k]L) = [f(l), f(k)]L′ . They assemble into a cate-
gory called DGLA.

Remark 2.0.1. Due to the grading of the bracket, [a, a] = 0 is only true for
a ∈ L even. For a ∈ L odd, it holds that [a, [a, a]] = 0.

Example 2.0.2. • Lie algebras are dglas concentrated in degree 0 and vice
versa

• As introduced in talk 2, the dgla that governs the deformation theory of
associative algebras, is the Hochschild cocomplex with the Gerstenhaber
bracket

• The Kodaira-Spencer dgla of a compact, complex manifold X, defined by

KS(X)p = Γ(X,A0,p(TM ))

with Dolbeaut differential ∂̄ and bracket given by wedge of forms and
bracket of vector fields.

We can tensor cdgas with dglas:

Lemma 2.0.1. Let L : dgla, A : cdga, x, y ∈ L, a, b ∈ A. The tensor product
of dg-vector spaces L⊗A equipped with the bracket

[x⊗ a, y ⊗ b] = (−1)āȳ[x, y]⊗ ab

is a dlga and the tensor product is functorial in both arguments.

Example 2.0.3. • Let L : dgla. Then

(L⊗ k[t, dt])n = Ln ⊗ k[t]⊕ Ln−1 ⊗ k[t]dt

Think of elements as polynomials with values in L:

ln ⊗ p(t) + ln−1 ⊗ q(t)dt =: ln(t) + ln−1(t)dt

• Let M : smooth manifold, g: Lie algebra. Then Ω∗(M)⊗ g is a dgla.

After this preparatory work, we can define
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Definition 2.0.5. The Maurer-Cartan equation of a dgla L is

da+
1

2
[a, a] = 0

for a ∈ L1. Solutions to the Maurer-Cartan equation are called Maurer-Cartan
elements of L. They assemble into a set denoted MC(L) ⊂ L1.

Lemma 2.0.2. Morphisms of dlgas f : L → L′ commute with the Maurer-
Cartan equation, i.e. f(MC(L)) ⊂ MC(L′)

Proof. Let a ∈ L1, so that dLa+ 1
2 [a, a]L = 0. Then f(dLa+ 1

2 [a, a]L) = 0. The
LHS can be expanded:

f(dLa+
1

2
[a, a]L) = f(dLa) +

1

2
f([a, a]L) = dL′f(a) +

1

2
[f(a), f(a)]L′

which shows that f(a) is a Maurer-Cartan element in L′.

Example 2.0.4. Gauge theory on a trivial G-bundle: Connections on M×G are
in one-to-one correspondence with elements of Ω1(M ; g). The curvature/field
strength of A ∈ Ω1(M ; g) is defined by the Maurer-Cartan equation

FA = dA+
1

2
[A,A]

It follows that flat connections on M ×G are in bijection with MC(Ω1(M)⊗ g))

3 The Maurer-Cartan and Gauge Group Func-
tor

Now we define the two functors that make up the deformation functor associated
to a dgla.

Warning: we need the change the category Artk from last talk: Its objects
are now commutative local Artinian k-algebras with residue field k. Otherwise
the tensor product L⊗mA would not be defined.

Definition 3.0.1. Let L be a dgla. The Maurer-Cartan functor of L is defined
as

MCL : Artk → Set

MCL(A) = MC(L⊗mA)

Remark 3.0.1. MCL is well defined. mA is the maximal ideal of the commutative
Artinian algebra A and as such a cdga concentrated in degree zero. By 2.0.1
L⊗mA is a dgla. Since morphisms of Artin algebras preserve the maximal ideal,
L⊗mA is functorial in A by 2.0.1: Let f : A→ A′, then

L⊗mA
L⊗f−−−→ L⊗mA′
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is a morphism of dglas. By 2.0.2, this means that

MCL(A)
MCL(f)−−−−−→ MCL(A)

is a morphism of sets. By the same reasoning, MCL(A) is functorial in L.

Remark 3.0.2. Recall from talk 2 that the exponential exp(g) of a nilpotent Lie
algebra g can be viewed as a group with the same underlying set as g equipped
with the Baker-Campell-Hausdorff product

x • y = x+ y +
1

2
[x, y] + ...

Since g is nilpotent, the BCH-product is a finite sum and thus well-defined.
The maximal ideal mA of an Artin algebra is nilpotent. By 2.0.1, L ⊗ mA is a
nilpotent dgla. In particular, L0 ⊗mA is a nilpotent Lie algebra.

Definition 3.0.2. Let L be a nilpotent dgla. The gauge action of exp(L0) on
L1 is defined as:

ea ∗ x = x+
∑
n≥0

(ada)n

(n+ 1)!
([a, x]− da)

where x ∈ L1, a ∈ L0.

Lemma 3.0.1. The set of Maurer-Cartan elements is stable under gauge action.

Proof. see [Man], Lemma 7.5.3

Definition 3.0.3. Let L be a dgla. Define the gauge group functor

expL : Artk → Grp

expL(A) = exp(L0 ⊗mA)

By 3.0.2, this construction is well-defined.

4 Deformation Functors from DGLAs

Definition 4.0.1. Define the deformation functor associated to a dgla L as

DefL : Artk → Set

DefL(A) =
MCL(A)

expL(A)

Let’s look briefly at some of the properties of these functors. We use axioms
as introduced by Manetti in chapter 3 of [Man06], which differ from the classical
ones of Schlessinger.

Lemma 4.0.1. MCL and expL are local in the sense of talk 4, i.e. they map k
to the one-point set.
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Proof. As Artin algebra k has the maximal ideal 0.

MCL(k) = MCL(L⊗ 0) = {0} ∼= {∗}

expL(k) = exp(L0 ⊗ 0) = {e0} ∼= {∗}

Definition 4.0.2. A local functor F : Artk → Set is homogenous if B → A
surjective implies η : F (B ×A C)→ F (B)×F (A) F (C) is an isomorphism.

Definition 4.0.3. A local functor F : Artk → Set is called deformation functor,
using the same setting as in the definition of homogeneity, if B → A surjective
implies η is surjective and if A = k implies η is an isomorphism.

Remark 4.0.1. Homogeneity implies deformation functor.

Proposition 4.0.1. Both MCL and expL are homogenous deformation func-
tors. DefL is a deformation functor.

Proof. see [Man] section 7.6.

Let’s do a concrete calculation.

Proposition 4.0.2. The tangent space of a deformation functor DefL is

T DefL = DefL(kε) = H1(L)⊗ kε ∼= H1(L)

Proof.

MCL(kε) = MC(L⊗ kε) = {l ⊗ αε ∈ L1 ⊗ kε|d(l ⊗ αε) +
1

2
[l ⊗ αε, l ⊗ αε] = 0}

= {l ⊗ αε ∈ L1 ⊗ kε|dl ⊗ αε+ (−1)l̄
1

2
[l, l]⊗ α2ε2︸︷︷︸

=0

= 0}

= Z1(L)⊗ kε

Let a ∈ L0 ⊗ kε, x ∈ L1 ⊗ kε.

ea ∗ x = x+
∑
n≥0

(ada)n

(n+ 1)!
([a, x]︸ ︷︷ ︸

=0

−da) = x+ da+
1

2
[a, da]︸ ︷︷ ︸

=0

+... = x− da

So T DefL = Z1⊗kε
exp(L0⊗kε) = H1(L)⊗ kε ∼= H1(L)

We achieved our goal.

Proposition 4.0.3. There is a functor

DGLA→ DefFun

L 7→ DefL

where DefFun is the category of deformation functors, as defined above, and
natural transformations.
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Proof. As noted above, MCL is functorial in L and so is expL. Together they
establish the functoriality of DefL in L.

There is a different notion of equivalence on Maurer-Cartan elements, which
is equivalent to the one induced by gauge action.

Definition 4.0.4. Let L be a dgla and x, y ∈ MC(L). We say x and y are
homotopy equivalent if there exists ξ ∈ MC(L[t, dt]) such that e0(ξ) = x and
e1(ξ) = y. Denote by π0(MC∗(L)) the quotient of MC(L) under homotopy
equivalence.

Proposition 4.0.4. MCL → π0(MC∗(L)) factors through DefL and DefL →
π0(MC∗(L)) is an isomorphism of deformation functors.

Proof. see [Man] Corollary 7.9.8

The notation suggests that ξ can be thought of as an edge in a simplicial
set.

Remark 4.0.2. Quasiisomorphisms of dglas induce isomorphisms on deformation
functors.
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