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Abstract

The goal here is to introduce the Cobordism Hypothesis as conjectured by Baez and
Dolan and then formalized by Lurie. For this, we try to understand the bordism category
Bordn as an (∞, n)-category and the notion of fully dualizable objects.

1 Introduction

Throughout these notes, we will mainly follow the constructions made in [Lur09] and [CS15].
We begin with reviewing the notion of TFTs and the statement of the Cobordism Hypothesis
as formulated [BD95]. In this section, manifolds will always mean smooth and compact
manifolds (possibly with boundary).

The oriented cobordism category Cob(n)or consists of:

• objects are (oriented) closed (n− 1)-manifolds

• A morphism [M ] : X → Y is represented by an n-bordism M , i.e. an (oriented)
n-dimensional manifold M equipped with boundary parametrisation ∂M ∼= X q Y ,
where X denotes the manifold X with reversed orientation. Two such bordisms M,M ′

are equivalent if there is a diffeomorphism M ∼= M ′ compatible with the boundary
parametrisations.

• For X ∈ Cob(n)or, the identity morphism idX is represented by the cylinder bordism
X × [0, 1].

• Composition is given by gluing1.

This category is symmetric monoidal with tensor product given by the disjoint union of
manifolds and unit by the empty set ∅ regarded as an (n− 1)-dimensional manifold.

We begin with the classical definition of a topological field theory as formulated by the
Atiyah-Segal axioms.

Definition 1. An (oriented) TFT of dimension n is a symmetric moinoidal functor Z :
Cob(n)or → Vect.

1Since we deal with smooth manifolds, the smooth structure on the resulting glued manifold depends on
some choice of smooth structure on collars. However, any two choices will give diffeomorphic structures and
thus representing the same morphism
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Remark. One can replace the category of oriented cobordisms Cob(n)or by the category
of unoriented cobordisms Cob(n) or the category of framed2 cobordisms Cob(n)fr and thus
define unoriented or framed TFTs.

In particular, an n-dimensional TFT assigns to each (n− 1)-dimensional closed manifold
a vector space and to each bordism a linear map between the vector spaces assigned to its
incoming and outgoing boundaries. In particular, to a closed n-manifold regarded as bordism
∅ → ∅, it assigns a linear map k → k, i.e. a number k ∈ k. This number is an invariant of
closed n-manifolds. We proceed with the lowest dimensional examples.

Topological Field Theories of dimension n = 1.
The objects in Cob(1) are generated by points with positive and negative orientation. The

morphisms are then represented by closed intervals and circles. By unravelling the definition,
a 1-dimensional TFT consists of several data:

• Vector spaces Z(•+) =: X and Z(•−) =: Y for each orientation on the point.

• By evaluating Z on the closed interval regarded as a bordism •+ → •+, •+ q •− → ∅
and so on, we get the identities on X and Y and maps X ⊗ Y → k and k→ Y ⊗X

These maps exhibit Y as the dual vector space to X. In particular, both vector spaces are
finite dimensional. Conversely, one can also construct a 1-dimensional TFT for a given fi-
nite dimensional vector space3. Such TFTs are in fact classified by dualizable vector spaces,
i.e. finite dimensional vector spaces. One can use the above data to compute an invariant
on 1-dimensional closed manifolds. For instance, the evaluation on the circle gives us the
dimension of X, i.e. Z(S1) = dim(X) (which we compute by breaking S1 in two pieces and
use functoriality).

Topological Field Theories in dimension n = 2.
The objects in Cob(2) are 1-dimensional closed manifolds, i.e. disjoint unions of S1.

Furtheremore, one can obtain every connected surface with boundary by gluing disks, trinions
(pair of pants) and cylinders together (see Figure 1). Thus, a TFT Z of dimension 2 gives
the following data:

• A vector space Z(S1) =: A

• The disk can be thought as a bordism ∅ → S1 or as a bordism S1 → ∅. The trinion
can be thought as a bordism S1 q S1 → S1 (and in the other direction). Applying our
functor Z gives us linear maps η : k→ A, ε : A→ k, µ : A⊗A→ A and ∆ : A→ A⊗A.

It is straighforward to check that (A, η, µ, ε,∆) forms a commutative Frobenius algebra.
Conversely, given a commutative Frobenius algebra A, one can construct a 2-dimensional
TFT with Z(S1) = A. In fact, the evaluation on the circle gives us an equivalence

Fun⊗(Cob(2),Vect) ' ComFrob

2Let M be a smooth manifold of dimension m ≤ n. An n-framing on M is a trivilisation of the vector
bundle TM ⊕Rn−m.

3Any n-dimensional TFT always takes values in finite dimensional vector spaces, which follows from its
definition axioms.
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Figure 1

between the category of 2-dimensional TFTs and the groupoid of commutative Frobenius
algebras (in particular Fun⊗(Cob(2),Vect) is a groupoid).

.

Once again, one can compute an invariant on closed surfaces by breaking them into smaller
pieces and using functoriality of TFTs. For instance, Z(S2) = ε ◦ η, while Z(S1 × S1) =
dim(A).

Therefore, one should not think of TFTs as invariants of closed manifolds, but rather as
a set of rules on how to compute these invariants.

Extended Topological Field Theories In computing the invariants with TFTs so far,
we were only able to cut along manifolds of codimension 1. Ideally, we would like to continue
cutting even to lower dimensions for greater computability. This process is captured by
extended TFTs.

Definition 2. Let C be a symmetric monoidal n-category. A (fully) extended (C-valued)
TFT of dimension n is a symmetric monoidal functor Z : Cob(n)ext → C.

where the n-category of n-cobordisms Cob(n)ext consists roughly of:

• Objects are points

• 1-morphisms are given by bordisms between points

• 2-morphisms are bordisms between bordisms

• . . .

• (n− 1)-morphisms are bordisms between . . . between bordisms

• Isomoprhism classes of bordisms.

Composition is given by gluing and the monoidal product by taking the disjoint union.
Even though it becomes increasingly harder to formulate it in a precise manner, extended
TFTs are in some sense simpler in that they lead to more computable invariants. In the case
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of extended framed TFTs this idea is captured in the original statement of the Cobordism
Hypothesis [BD95].

Theorem 1. Let C be a symmetric monoidal n-category. The evaluation of Z 7→ Z(•) deter-
mines a bijection between isomorphism classes of fully extended framed TFTs of dimension
n and isomorphism classes of fully dualizable objects in C.

Remark. One could also introduce partially extended TFTs by considering for k < n k-
categories Cob(n)k and so on.

Our next goal will be to extend the notion of n-bordisms by defining the (∞, n)-category
Bordn. Informally, one can think of this by extending Cob(n)ext up:

• . . .

• n-morphisms are bordisms between bordisms . . .

• (n+ 1)-morphisms are diffeomorphisms between . . .

• (n+ 2)-morphisms are homotopies

• . . .

• homotopies between homotopies . . .

2 The (∞, n)-category of bordisms Bordn

The model for (∞, n) used here is that of complete n-fold Segal spaces. Recall that there is
process of turning any n-fold Segal space X into a complete n-fold Segal space X̂ called the
completion of X. With this in mind, we give the definition of an n-fold Segal space PreBordn,
which is not necessarily complete. The bordism category Bordn will then be its completion.
Informally, we should think of elements in (PreBordn)k1,...,kn as a collection of ki composable
bordisms in the ith direction.

Figure 2: An element in PreBord2 for k1 = 1 and k2 = 2.

The following definition is given in [CS15]. For a comparison with the definition in [Lur09]
see Appendix B
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Definition 3. Let V be a finite dimensional vector space. For non-negative integers k1, . . . , kn,
we define the points in (PreBordVn )k1,...,kn to be tuples (M, (ti0 ≤ · · · ≤ tiki)1≤i≤n) such that

1. M is a closed n-dimensional submanifold4 of V ×Rn

2. The projection π : M ↪→ V ×Rn → Rn is proper.

3. For every subset S ⊂ {1, . . . , n} and non-negative integers ji ≤ ki for each i ∈ S,
consider the map pS : M

π−→ Rn → RS . At every point x ∈ p−1{i}({t
i
0, . . . , t

i
ki
}) the map

p{i,...,n} is submersive.

Motivated by our informal description of (PreBordn)k1,...,kn , we imagine that the tu-
ple (M, (ti0 ≤ · · · ≤ tiki)1≤i≤n) represents a collection of ki-composable n-bordisms in the

ith direction which are obtained by cutting M along the points tij . Thus, the ordered tu-

ples ti0 ≤ · · · ≤ tiki should be thought of as cut points in each time direction. The set

(PreBordVn )k1,...,kn will be endowed with topology induced by the Whitney C∞-topology on
the space of embeddings Emb(M,V ×Rn).

Let Sub(V × Rn) denote the set of closed n-dimensional submanifolds M ⊂ V × Rn.
Moreover, the space of smooth embeddings Emb(M,V ×Rn) carries an action of the group
of diffeomorphisms Diff(M). This leads to the identifaction∐

[M ]

Emb(M,V ×Rn)/Diff(M) ∼= Sub(V × Rn)

which endows Sub(V × Rn) with the quotient topology. More on this topology can be
found in [Gal11].

Given a morphism (fi : [k′i]→ [ki])1≤i≤n in ∆×n, we define a function

(PreBordVn )k1,...,kn → (PreBordVn )k′1,...,k′n

(M, (ti0 ≤ · · · ≤ tiki)1≤i≤n)→ (M, (tifi(0) ≤ · · · ≤ t
i
fi(ki)

)1≤i≤n).

In this way PreBordVn defines an n-fold simplicial space.

Proposition 2.1. This forms an n-fold Segal space (PreBordVn )•,...,•.

Fix an infinite dimensional vector space R∞ of countable dimension. Define

PreBordn := lim
V⊂R∞

PreBordVn

as the direct limit over all finite dimensional sub-vector spaces in R∞ (any different choice
of infinite dimensional vector space leads to equivalent objects).

Remark. In [CS15] a finer variant of Bordint
n was introduced by replacing the cut points

ti0 ≤ . . . tiki in Definition 3 by ordered intervals Ii0 ≤ Iiki . In this framework, we imagine

elements in PreBordint
n to represent composable bordisms with collars. There is an obvious

map PreBordint
n → PreBordn by taking the middle point of each interval as a cut point. This

is in fact a weak equivalence. The proof of Proposition 2.1 is then given only for this interval
variant.

4In this section a manifold can be non-compact.
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3 Fully Dualizable Objects

When considering (oriented) TFTs of dimension 1, we found a classification by restricting to
finite dimensional vector spaces (i.e. which admit duals). This result can generalized for any
target category. Let C be a symmetric monoidal category. Then, the evaluation Z 7→ Z(•)
induces an equivalence

Fun⊗(Cob(1), C) ' core(Cd),

where Cd denotes the full subcategory of dualizable objects. We say that X in C admits right
dual if there exists an X∗ together with evaluation map

evX : X ⊗X∗ → 1

and coevaluation
coevX : 1→ X∗ ⊗X

such that they satisfy the (rigidity) axioms

idX = X ' X ⊗ 1 idX⊗coevX−−−−−−−→ X ⊗ (X∗ ⊗X) ' (X ⊗X∗)⊗X evX⊗idX−−−−−−→ 1⊗X

and

idX∗ = X∗ ' 1⊗X∗ coevX⊗idX∗−−−−−−−−→ (X∗ ⊗X)⊗ ' X∗ ⊗ (X ⊗X∗) idX∗⊗evX−−−−−−→ X∗ ⊗ 1 ' X∗.

In a similar way (by inverting the order on tensor products), we say that X admits a left
dual. If an object has a left and a right dual, we call it dualizable. We say that C has duals
if every object has a dual.

To any monoidal category C, one can associate a 2-category BC which has one object
? and MapBC(?, ?) = C where composition is given by the tensor product and the identity
by the unit in C. Then, a symmetric monoidal category C has duals if and only if BC has
adjoints.

Let C be a symmetric monoidal (∞, n)-category. Recall that its homotopy 1-category
h1(C) inherits a symmetric monoidal structure. We say that C has duals for objects if h1(C)
has duals.

Let C be an (∞, n ≥ 2)-category. We say that C has adjoints for 1-morphisms if its
homotopy 2-category h2(C) has adjoints. Inductively, we say that C has adjoints for k-
morphisms for k < n if for all pair of objects X,Y ∈ C the (∞, n − 1)-category Map(X,Y )
has adjoints for (k − 1)-morphisms. We say that C admits adjoints if it has adjoints for all
k-morphisms where 1 < k < n.

Definition 4. A monoidal (∞, n)-category C admits duals if it has duals for objects and
adjoints.

Similarly to the ordinary categories, given a monoidal (∞, n)-category, we associate an
(∞, n + 1)-category BC (with essentially one object). Then, the condition that C admits
duals is equivalent to the condition that BC admits adjoints. Finally, we can define what
fully dualizable objects are.
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Definition 5. Let C be a symmetric monoidal (∞, n)-category. Then, there is a symmetric
monoidal (∞, n)-category Cfd with duals together with symmetric monoidal functor Cfd → C
with the universal property that for any other (∞, n)-category with duals D, there is an
equivalence

Fun⊗(D, Cfd)
'−→ Fun⊗(D, C)

Then, we say that an object X ∈ C is fully dualizable if it is in the essential image of
Cfd → C.

Example 1. This example is given in [Sch11]. Consider the 2-category Alg2 with:

• objects are algebras over a ring k

• 1-morphisms from A to B are B-A-bimodules

• 2-morphisms are bimodule maps

• composition is given by the tensor product of bimodules

The tensor product of algebras gives Alg2 a symmetric monoidal structure. An equivalence in
Alg2 coincides with the notion of Morita equivalence. Every algebra A ∈ Alg2 is 1-dualizable
with dual given by the opposite algebra Aop. An algebra A is fully-dualizable in this category
if A is projective as an Ae-module, where Ae = A ⊗ Aop is the enveloping algebra over A,
and projective as an k-module.

Example 2. For dualizability in the 3-category with tensor categories as objects, and the
2-category of bimodule categories for morphisms, see [DSS18].

4 The Cobordism Hypothesis

Given an (∞, n)-category C, let core(C) denote the (maximal)∞-groupoid in C by discarding
all non-invertible morphisms.

Theorem 2 (Cobordism Hypothesis). Let C be a symmetric monoidal (∞, n)-category. Then,
there is an equivalence

Fun⊗(Bordfr
n , C) ' core(Cfd)

By considering manifolds with n-framings, we obtain an action of the orthogonal group
O(n) on the collection of all n-framings. In particular, we get an O(n)-action on Bordfr

n and
hence the (∞, n)-category of framed TFTs. By Theorem 2, this induces an action of the
orthogonal group on the underlying ∞-groupoid of fully dualizable objects.

Definition 6. Let X be a topological space and ζ a real vector bundle on X of dimension n.
Let M be a smooth manifold with dimension m ≤ n. An (X, ζ)-structure on M consists of:

1. a continuous map f : M → X and

2. An isomorphisms of vector bundles TM ⊕Rn−m ∼= f∗ζ.
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Theorem 3. Let C be a symmetric monoidal (∞, n)-category with duals and (X, ζ) where
X is a CW complex and ζ a real vector bundle of rank n equipped with an inner product.
Let X̃ → X denote the principal O(n)-bundle of orthogonal frames in ζ. Then, there is an
equivalence of (∞, 0)-categories

Fun⊗(Bord(X,ζ)
n , C) ' HomO(n)(X̃, core(C))

Some interesting of (X, ζ)-structures are the following.

Definition 7. Let G be a topological group together with continuous homomorphism ζ :
G → O(n). Let BG = EG/G be the classifying space of G, where EG is the total space of
the universal bundle over BG with a free action of G. Consider the associated vector bundle
ζχ = (Rn ×EG)/G over BG. By a G-structure on M , we then mean an (BG, ζχ)-structure.

Example 3. • Let G be the trivial group. Then, BG = ∗ and ζ is trivial. An G-structure
is then a framing. In particular, BordGn ' Bordfr

n .

• Let G = O(n) with χ = idO(n). An O(n)-structure is an (unoriented) smooth manifold.

In particular, Bord
O(n)
n ' Bordn.

• Let G = SO(n) with χ : SO(n) ↪→ O(n). An SO(n)-structure is an orientation. In

particular, Bord
SO(n)
n ' Bordorn .

Corollary. Let C be a symmetric monoidal (∞, n)-category with duals, and let χ : G→ O(n)
be a continuous group homomorphism. Then, there is an equivalence

Fun⊗(BordGn , C) ' (coreC)hG

of G-structured TFTs and homotopy fixed points in core(C).

Some special choices of G lead to:

• Bordn ' Bord
O(n)
n

• Bordor
n ' Bord

SO(n)
n

• Bordfr
n ' Bord

{1}
n

Example 4. In the 1-dimensional case the action of O(1) = Z2 in coreC is given by taking
the dual, i.e. X 7→ X∗. Then homotopy fixed points correspond to symmetric objects. For
example, in the category of finite dimensional vector spaces, such objects would be vector
spaces V together with a symmetric non-degenerate bilinear form.

A Complete n-fold Segal spaces

Definition 8. A simplicial space X• is a Segal space if the the Segal maps

Xn → X ×hX0
· · · ×hX0

X1

are weak homotopy equivalences.
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Let X be a Segal space. Then, we can associate its homotopy 1-category h1(X) which has
the same objects as X and for objects x, y the morphism set Homh1(X)(x, y) := π0({x} ×hX0

X1 ×hX0
{y}). A morphism f in X is called an equivalence if it is invertible in h1(X). Let

Xequiv denote the subspace of equivalences in X1. Then, it is clear that the degenerate map
δ : X0 → X1 takes values in Xequiv.

Definition 9. A Segal space X is called complete if the canonical map δ : X0 → Xequiv is a
weak homotopy equivalence.

Complete Segal spaces model (∞, 1)-categories. For (∞, n)-categories, one extendes this
notion to that of complete n-fold Segal spaces.

Definition 10. An n-fold simplicial space X : (∆op)×n → Sp is called n-fold Segal space if
for every i ∈ {1, . . . , n}

1. for every k1, . . . , ki−1, ki+1, . . . , kn the simplicial space

Xk1,...,ki−1,•,ki+1,...,kn

is a Segal space,

2. for every k1, . . . , ki−1 the (n− i)-fold simplicial space

Xk1,...,ki−1,0,•,...,•

is essentially constant5.

In this setting, one should think of elements in Xk1,...,kn as a colletction of ki composable
morphisms in the ith-direction. The (∞, n)-category which we want to associate to such
n-fold Segal spaces should have k-morphisms given by elements in X1,...,1,0,...,0 where k ≤ n
is the number of 1’s.

Definition 11. An n-fold Segal space X is called complete if for all i ∈ {1, . . . , n} and every
k1, . . . , ki−1 the Segal space

Xk1,...,ki−1,•,0,...,0

is complete.

Let (C)SSpn denote the category of (complete) n-fold Segal spaces. Given an n-fold
Segal space X ∈ SSpn, there exists a (unique up to weak equivalence) complete n-fold Segal
space X̂. In fact, this construction (−̂) : SSpn → CSSpn is a left adjoint to the functor
CSSpn ↪→ SSpn which forgets the completeness.

5A n-fold simplicial space X•,...,• is called essentially constant if the degenerate map X0,...,0 → X•,...,• is
a weak equivalence.
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B PreBordn in [Lur09]

The definition proposed by Lurie is the following:

Definition 12. Let V be a finite dimensional vector space. Elements in (PreBordVn )k1,...,kn
are tuples (M, (ti0 ≤ · · · ≤ tiki)1≤i≤n) where

• M is a closed n-submanifold in V ×Rn

• The projection map π : M ↪→ V ×Rn → Rn is proper.

• For any subset S ⊂ {1, . . . , n} and non-negative integers ji ≤ ki for each i ∈ S the
projection map onto the S-coordinates pS : M

π−→ Rn → RS has no critical values on
(tiji)i∈S .

• At every point x ∈ p−1{i}({t
i
0, . . . , t

i
ki
}) the map p{i+1,...,n} is submersive.

However, the resulting PreBordVn is not quite an n-fold Segal space as observed in [CS15].
It satisfies the Segal condition but not the essential constancy (for the relevant case when
n > 1). To see this, consider Figure 3 as an example of an element in (PreBord2)0,1. Namely,
a torus embedded in R3 where the red line indicates the cut in the first time coordinate and
the green lines the two cut points in the second time coordinate. This element however cannot
be connected to an degenerate element, which fails the essentially constancy condition.

Figure 3

Remark. Suppose we have an element in (PreBordVn )k1,...,kn as in Definition 3, i.e. a tuple
(M, (ti0 ≤ · · · ≤ tiki)1≤i≤n) such that the map p{i,...,n} is submersive at every point x ∈
p−1{i}({t

i
0, . . . , t

i
ki
}). Let now S be any subset in {1, . . . , n} and {1 ≤ ji ≤ ki}i∈S any collection

of integers. Let i0 be the smallest integer in S. Then, we can write pS = pr ◦p{i0,...,in}, where
pr is the projection onto the S-coordinates. Suppose x ∈ M such that pS(x) = (tiji)i∈S . In

particular, we have p{i0}(x) = ti0ji0
. Thus, p{i0,...,n} is submersive at x and therefore pS is also

submersive at x. In particular, pS has no critical values on (tiji)i∈S .
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