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Abstract

In this talk we survey Sections 5.2 and 5.4 of [Lur17]. We introduce two ∞-operads associated
to a manifold M : the ∞-operad E⊗

M that describes embeddings of disks into M up to continuous
deformations, and the ∞-operad NDisk(M)⊗ of discrete nature that consists only of topologically
trivial open subsets of M and their disjoint inclusions into each other. The final section of this talk
shows the relation of these operads to each other, and points towards their importance for chiral
homology and factorisation algebras on M . In particular, this relation makes precise the slogan
that ‘locally constant factorisation algebras are equivalent to E⊗

k -algebras’.
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1 Introduction

1.1 Configurations

Recall that one of our motivating examples at the beginning of this seminar was to formalise ‘config-
urations of points in a space M with summable labels’. Let M be a manifold, let S be a set, and let
A be a monoid. A configuration in M of the points of S is a span of maps A← S

ι→M , where ι is an
injection. In other words, an A-labelled S-configuration in M is a set of tuples

{(x(s), a(s)) ∈M ×A | s ∈ S, x(s) 6= x(s′) ∀s 6= s′ ∈ S}

A path of S-configurations in M is a path in the space CS(M) = Emb(S,M) – this provides us with
an ∞-groupoid Sing Emb(S,M) of S-configurations in M . If A is a topological monoid, we obtain an
∞-groupoid of A-labelled S-configurations in M as

CS(M ;A) = Sing
(

Emb(S,M)×Σ|S| A
S
)
.
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However, we would like to assemble all the ∞-groupoids C〈m〉◦(M ;A) for m ∈ N0 into one ∞-category
by adding in more morphisms. For example, we would like to allow for any number of points to collide
in a single point – this replaces all these points by the point of collision, whose label now becomes the
sum of the labels of the incoming points.

This looks very much like the outcome should be an ∞-operad – however, making this idea precise
requires significant work. In the special case ofM = Rk, this has been achieved originally by Fulton and
MacPherson [FM94]. The problem is to find a correct incorporation of enough geometric information
about the collisions of points; this leads to the Fulton-MacPherson operads, see [Sal01] for a good
treatment in the context of manifolds. The key is to not just remember that a certain number of
points collide, but to remember a certain amount of information about how they collide, i.e. relative
distances and velocities – points can collide in many different ways.

A different idea to approach the description of collisions arises from the realisation that the main
difficulties in turning configurations in M into an operad stem from the singular nature of the points
that we map into M . So let us focus on the points for now and forget about labelling them from now
on. An idea is to thicken the points a little: instead of embeddings S ↪→ M , we consider embeddings
S × Rk ↪→ M , where k = dim(M). Instead of the(!) collision of a certain number of points in M , we
can now understand a choice of(!) collision of a certain number of thickened points, i.e. disks, in M
as a larger disk in M that contains all the original disks. Thus, instead of the spaces Emb(〈m〉◦,M),
we ask weather we can turn the spaces EM |m = Emb(〈m〉◦ × Rk,M) into an ∞-operad E⊗M , where
the composition maps are built from embeddings of disks into each other, together with isotopies of
embeddings of disks into M .

1.2 Observables in quantum field theory

There is a variant of the spaces EM |k that is important in approaches to observables in (topological)
quantum field theories [CG17, CG16]: in this approach to field theories on M , one would like to
associate to each region U in M the set of observables A(U) that can be measured in U . By invoking
the principle of locality, it is assumed that observables in any region U should always be constructible
from observables in subregions that cover U . Thus, since M is locally euclidean, it would be enough
to know observables on open subsets U ⊂ M where U is a disk in M in the sense that there is some
homeomorphism U ∼= Rk.

For a generic field theory, it might happen that for an inclusion U ⊂ V of open subsets of M as
above there are strictly more observables supported in V than there are in U . Thus, there is no reason
to expect that a continuous change of U (in whatever sense) should lead to equivalent observables.
Consequently, in this case we are only interested in the discrete category Disk(M) of open subsets of
M as above with inclusions.

Let U, V ∈ Disk(M) be disjoint. We would like to talk about observables on U and V at the same
time, so we assume that C is a monoidal ∞-category. Given an object W ∈ Disk(M) with U, V ⊂W ,
a multiplication of observables in A(U) and A(V ) is then given by a morphism

A(U)⊗A(V )→ A(W ) .

Note that there is no prescribed ordering on subsets U ⊂M , so that the above should be accompanied
by a morphism A(V ) ⊗ A(U) → A(W ), and talking about ‘observables on U and observables on V ’
should be equivalent to talking about ‘observables on V and observables on U ’. Thus, A should factor
through the centre of C, and we may assume right away that C is symmetric monoidal.
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Summarising, Disk(M) should assemble into an ∞-operad, denoted NDisk(M)⊗, with morphisms
for inclusions with disjoint images, and observables in a quantum field theory should be modelled by
algebras over that operad. Finally, one might understand topological field theories as those theories
whose observables do not (essentially) change by passing to smaller sub-regions in Disk(M), and
whose observables assigned to a disk in M do not (essentially) change when the disk is moved around
in M continuously. Thus, topological field theories in this sense should be related to both ∞-operads
NDisk(M)⊗ and E⊗M . This will be made precise in Section 3.2.

Conventions: Embeddings and homeomorphisms of manifolds

We fix some notation:

• Throughout these notes, a manifold will mean a compact topological manifold, unless otherwise
specified.

• For manifolds M,N , we let Emb(M,N) denote the topological space of embeddings of M into N –
the topology comes from the inclusion Emb(M,N) ⊂ Mfd(M,N). Similarly, we let Homeo(M,N)

denote the space of homeomorphisms from M to N .

• We use the shorthand notation
Top(k) := Homeo(Rk,Rk) .

2 Embeddings of disks into M

2.1 Variations on the little cubes operad

Recall that the little cubes operads Ek from last week are built from spaces of rectilinear embeddings
with disjoint images of k-cubes into a k-cube. As motivated in Section 1.1, we would like to consider
embeddings of cubes into a manifoldM , where a priori there is no such notion as ‘rectilinear’. Thus, we
start by dropping this requirement and consider generic embeddings instead. Instead of the standard
open k-cube (−1, 1)k, we consider the equivalent space Rk.

Construction 2.1 Let k ∈ N0 and define the following topological category denoted tEBTop(k):

(1) The objects of tEBTop(k) are the finite pointed sets 〈m〉 ∈ Fin∗.

(2) We define the mapping spaces in tEBTop(k) via

tEBTop(k)(〈m〉, 〈n〉) =
∐

α : 〈m〉→〈n〉

∏
1≤i≤n

Emb
(
Rk × α−1(i),Rk

)
.

Observe that there is a canonical projection functor tEBTop(k) → Fin∗. /

Definition 2.2 We let BTop(k)⊗ := N(tEBTop(k)) denote the ∞-operad obtained by applying the
homotopy-coherent nerve to tEBTop(k).

Remark 2.3 (1) We have
BTop(k)⊗〈0〉 = ∗ ,

where the one object is the unique morphism ∅ → ∅. Even more, this unique object in the fibre
BTop(k)⊗〈0〉 is initial in BTop(k). In particular, BTop(k)⊗ is unital.
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(2) We find that the ∞-category underlying BTop(k)⊗ is the homotopy-coherent nerve

BTop(k)⊗〈1〉 = N
(

Emb(Rk,Rk) ⇒ ∗
)

=: B Emb(Rk,Rk) ,

the homotopy-coherent nerve of the topological category with one object ∗ and whose space of
morphisms ∗ → ∗ is the topological monoid Emb(Rk,Rk). Note that we may think of the unique
object ∗ as a copy of Rk. /

The reason why this ∞-operad is called BTop(k)⊗ derives from

Theorem 2.4 (Kister-Mazur Theorem, [Lur17, Thm. 5.4.1.5]) For each k ∈ N0, the canonical inclu-
sion Top(k) ↪→ Emb(Rk,Rk) is a homotopy equivalence. In fact, the inclusions of topological monoids

O(k) ↪→ GL(k) ↪→ Top(k) ↪→ Emb(Rk,Rk)

are all homotopy equivalences [AF19, Prop. 2.6].

Corollary 2.5 The topological monoid Emb(Rk,Rk) is grouplike; that is, the set π0 Emb(Rk,Rk)
endowed with the induced monoid structure is a group.

Corollary 2.6 We infer that BTop(k)⊗〈1〉 is an ∞-groupoid, i.e. a Kan complex, and moreover, that

BTop(k)⊗〈1〉 ' B
(

Top(k)
)

is equivalent to the classifying space of the topological group Top(k).

Example 2.7 The operad BTop(1)⊗ describes homotopy-associative algebras with an anti-involution;
the latter comes from the (essentially unique) orientation-reversing embedding of R into itself [Lur17,
E.g. 5.4.3.5]. /

Remark 2.8 Let �k = (−1, 1)k denote the topological k-cube. Any choice of homeomorphism �k →
Rk induces an inclusion of ∞-operads

E⊗k → BTop(k)⊗ .

However, this inclusion is not an equivalence: while in E⊗k the multi-morphisms contain no more
information (up to homotopy) than the location of an embedded cube inside another cube – see
Lemma 2.2 of Merlin’s notes – the morphism spaces in BTop(k) are non-trivial, even up to homotopy.
For instance, an embedding Rk ↪→ Rk might preserve or reverse orientations on Rk, already leading to
multiple path-connected components of mapping spaces. /

Construction 2.9 [Lur17, Constr. 2.4.3.1] Let Γ∗ be the category of injective morphisms 〈1〉 → 〈n〉
in Fin∗. In other words, an object of Γ∗ is a pair (〈n〉, j), where 〈n〉 ∈ Fin∗ and j ∈ 〈n〉◦. A morphism
(〈m〉, i)→ (〈n〉, j) in Γ∗ is a morphism α : 〈m〉 → 〈n〉 in Fin∗ that maps i to j.

Let K ∈ Set∆. We define a new simplicial set Kq with a morphism p : Kq → NFin∗ by the
following universal property: for every L ∈ (Set∆)NFin∗ , there is a canonical bijection

HomNFin∗(L,K
q) ∼= Set∆

(
L ×

NFin∗
NΓ∗,K

)
.

Lurie shows in [Lur17, Prop. 2.4.3.3] that if K = C is an ∞-category, then p : Cq → NFin∗ is an
∞-operad. Further, this is even a symmetric monoidal ∞-category if and only if C admits finite
coproducts [Lur17, Rmk. 2.4.3.4].
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Unravelling the definition1, we see that the ∞-operad Cq has as objects finite tuples (C1, . . . , Cm)

of objects in C, and a morphism (C1, . . . , Cm)→ (C ′1, . . . , C
′
n) consists of a map α : 〈m〉 → 〈n〉 together

with families {fl : Cl → C ′α(l)}l∈α−1〈n〉◦ of morphisms in C. In other words, for every l′ ∈ 〈n〉◦ and
every l ∈ 〈m〉◦ such that α(l) = l′ we choose a morphism Cl → C ′l′ . /

Example 2.10 Consider the ∞-groupoid BTop(k). An object in BTop(k)q consists of a finite tu-
ple2 (〈m〉,Rk, . . . ,Rk) of copies of the unique object of BTop(k) (see Remark 2.3). A morphism
(〈m〉,Rk, . . . ,Rk) → (〈n〉,Rk, . . . ,Rk) consists of a map α : 〈m〉 → 〈n〉, and for every l′ ∈ 〈n〉◦ and
every l ∈ 〈m〉◦ such that α(l) = l′ an embedding Rk ↪→ Rk. Higher morphisms stem from homotopies
of embeddings.

Note that, for example for α the unique active morphism 〈2〉 → 〈1〉, we need to choose two
embeddings Rk ↪→ Rk, but in contrast to the morphisms in BTop(k)⊗ these embeddings are now
completely independent of each other; in particular, their images do not need to be disjoint. /

We can use the construction K 7→ Kq in order to ‘reduce the structure group’ of the ∞-operad
BTop(k)⊗. For example, we might want to consider only those embeddings that are homotopic to a
special orthogonal transformation, i.e. to an element of the subspace SO(k) ↪→ Emb(Rk,Rk).

Definition 2.11 [Lur17, Def. 5.4.2.10] Let B be a Kan complex, and let θ : B → BTop(k) be a Kan
fibration. We define a new ∞-operad as the fibre product (in Set∆)

E⊗B := BTop(k)⊗ ×
BTop(k)q

Bq .

Lemma 2.12 The underlying ∞-category of the ∞-operad E⊗B satisfies

E⊗B〈1〉 ∼= B .

Proof. Since limits commute with limits, we have

E⊗B〈1〉 ∼= BTop(k)⊗〈1〉 ×
BTop(k)q〈1〉

Bq〈1〉 .

Also, it holds true that BTop(k)⊗〈1〉 = BTop(k)q〈1〉 = BTop(k) and Bq〈1〉 = B.

Example 2.13 (1) Consider the case of B contractible, e.g. B = ETop(k) and θ the projection
ETop(k)→ BTop(k). From this we obtain the ∞-operad

E⊗ETop(k)
:= BTop(k)⊗ ×

BTop(k)q
ETop(k)q

The factor ETop(k)q makes all information contained in the embeddings Rk ↪→ Rk entirely trivial;
the only remaining restriction is that embeddings into the same copy of Rk must have disjoint
images. For example, we can contract all embeddings onto the image of the origin. Thus, at
least heuristically, all information left in the morphism spaces in EETop(k) is given by specifying
configurations in Rk. In the last talk, we have seen that the configuration spaces C〈m〉◦(Rk) are
equivalent to the level spaces of the little k-cubes operad Ek. Via the usual passage from topological

1Consider L = (∆0 〈m〉−→ NFin∗) in order to obtain the objects over 〈m〉, consider L = (∆1 α−→ NFin∗) in order to
obtain the morphisms over α, etc.

2We have added 〈m〉 to the notation here for the reader’s convenience.
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operads to ∞-operads, the latter gives rise to an ∞-operad3 E⊗k . There is an equivalence of ∞-
operads [Lur17, Rmk. 5.4.2.15]

E⊗ETop(k) ' E⊗k .

(2) [Lur17, Rmk. 5.4.2.16] We consider the inclusion SO(k) ↪→ Top(k). It gives rise to a Kan fibration
θ : BSO(k)→ BTop(k) and thus to an∞-operad E⊗BSO(k). Similarly to the preceding example, the
∞-operad E⊗BSO(k) is equivalent to a more hands-on∞-operad: Let B(1) denote the unit open ball
in Rk. For a finite set S, define the topological subspace

Isom+
(
B(1)× S,B(1)

)
⊂ Emb

(
B(1)× S,B(1)

)
of those embeddings ι whose restriction to each component B(1) × {s}, s ∈ S, is an affine trans-
formation of the form

ιB(1)×{s} = λs · γs + vs λs ∈ R>0, γs ∈ SO(k), vs ∈ Rk ∀ s ∈ S

These mapping spaces assemble into a topological operad, whose associated ∞-operad E⊗k,fr is
called the ∞-operad of framed k-disks. There is an equivalence of ∞-operads

E⊗BSO(k) ' E⊗k,fr .

The framed disk operads are important: for example, for k = 2 they describe BV-algebras.
(3) Given two Kan complexes B,B′ and Kan fibrations θ : B → BTop(k) and θ′ : B′ → BTop(k′),

there is an equivalence of ∞-operads [Lur17, Rmk. 5.4.2.14]

E⊗B×B′ ' E⊗B ⊗ E⊗B′ ,

which, for the special case of B,B′ contractible, implies that there is an equivalence

E⊗k+k′ ' E⊗k ⊗ E⊗k′ .

This is often called the Dunn Additivity Theorem [Lur17, Rmk. 5.4.2.14]. /

2.2 The ∞-operad EM

We now come to the definition of the operad E⊗M associated to a topological manifold M . Given M ,
we define a topological category CM with two objects Rk, M , and the following topological morphism
spaces:

CM (Rk,Rk) = Emb(Rk,Rk) , CM (Rk,M) = Emb(Rk,M) ,

CM (M,M) = {1M} CM (M,Rk) = ∅ .

Observe that there is a canonical inclusion BTop(k) ↪→ NCM . Hence we can define the simplicial set

BM := BTop(k) ×
NCM

(NCM )/M .

Lemma 2.14 The simplicial set BM is a Kan complex, and the projection θ : BM → BTop(k) is a
Kan fibration.

3See Section 3 of Merlin’s notes and [Lur17, Sect. 5.1] for more on the ∞-operads E⊗k .
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Proof. Since in the pullback diagram

BM (NCM )/M

BTop(k) NCM

(RFib) p RFib (2.15)

the right vertical morphism is a right fibration (dual of [Lur09, Prop. 2.1.2.2]), so is the left vertical
morphism. It is then also a Kan fibration by Theorem 2.4 and [Lur09, Lem. 2.1.3.3] (left/right fibrations
whose target is a Kan complex are Kan fibrations).

Remark 2.16 The right vertical map in Diagram (2.15) is in particular an inner fibration, and all
vertices of the diagram are ∞-categories. Hence, this pullback is a model for the homotopy pullback
of the diagram in the Joyal model structure on Set∆. /

Morally, an object in BM is an embedding ι : Rk ↪→ M , and a morphism ι → ι′ is an embedding
 : Rk ↪→ Rk with a homotopy ι→ ι′ ◦ .

Remark 2.17 Note that it might be tempting to use B̃M := Sing(Emb(Rk,M)) instead of BM . This
is also a Kan complex describing embeddings of Rk into M , but it does not come with a Kan fibration
to BTop(k), which we need in order to apply the construction behind Definition 2.11. /

Definition 2.18 Given a topological manifold M of dimension k ∈ N0, we define an ∞-operad

E⊗M := E⊗BM = BTop(k)⊗ ×
BTop(k)q

BqM .

Let us have a closer look at the ∞-category E⊗M . Its objects over 〈m〉 ∈ Fin∗ consist of m copies of
the unique object Rk of BTop(k)⊗ and an m-tuple (ιi : Rk ↪→M)i=1,...m of objects in BM ; we thus only
need to remember the m-tuple ιi of embeddings of Rk into M . Observe, however, that the embeddings
ιi do not necessarily have disjoint images.

A morphism (ιi)i∈〈m〉◦ → ι in E⊗M that covers α : 〈m〉 → 〈1〉 consists of a collection of embeddings
(i : Rk ↪→ Rk)i∈〈m〉◦ with disjoint images and homotopies hi : ιi → ι ◦ i of embeddings Rk ↪→ M . In
particular, observe that since ι : Rk ↪→ M is an embedding and since ()i have disjoint images, the
family of embeddings (ι ◦ i : Rk ↪→ M)i∈〈m〉◦ always has disjoint images in M . That is, in order to
compose a family of embedded disks in M (with possibly intersecting images), we first have to specify
a way of pulling the disks apart from each other, and then we have to specify an embedded disk in M
that contains all the new embedded disks.

Proposition 2.19 [Lur17, Rmk. 5.4.5.2] There is an isomorphism BM ∼= Sing(M) in H, the homotopy
category of the ∞-category of spaces.

Corollary 2.20 For any k ∈ N0, there is an equivalence of ∞-operads

E⊗Rk ' E⊗k ,

which follows from BRk ' ∆0 ' ETop(k), together with Example 2.11.1.

Example 2.21 In particular, we have E1 ' E⊗R 6' E⊗BTop(1): the ∞-operad on the left describes
homotopy-associative algebras, while the ∞-operad on the right describes homotopy-associative alge-
bras with an anti-involution. Of course the ∞-operad E⊗R still contains orientation-reversing embed-
dings R ↪→ R as objects, but our choice of θ : BR ' ETop(1) → BTop(1) adds in a contractible space
of paths that connect this object to the identity embedding 1R. /
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This completes the construction of the operads motivated in Section 1.1. Compared to configura-
tions of points in M , the operads E⊗M overcount: they contain not just information about the location
of a thickened point in M , but also the whole embeddings behind. we can trivialise parts of this
additional information, if desired, by certain choices of θ : B → BTop(k).

3 Disks in M

We now pursue the ideas outlined in Section 1.2 and construct an operad NDisk(M)⊗ of open subsets
of a manifold M that are homeomorphic to Rk. The two essential differences to the construction of
the operad EM are that we do not care about how that disk gets into the manifold M (i.e. we do not
specify any actual embeddings), and that we do no longer care about continuous deformations of the
disks inside M .

The operad NDisk(M)⊗ is strongly related to factorisation algebras – see, for instance, [AF19,
CG17, CG16, Gin15] and the next talk in this seminar. Finally, we will give a precise statement about
the relation of the two operads E⊗M and NDisk(M)⊗ that we can associate to a manifold M .

3.1 The ∞-operad NDisk(M)⊗

Motivated by our discussion in Section 1.2, we make the following definition.

Definition 3.1 [Lur17, Def. 5.4.5.6] Let M be a manifold of dimension k ∈ N0.

(1) Let Disk(M) denote the partially ordered set of those open subsets of M that are homeomorphic to
Rk. The partial order is given by inclusion of sets.

(2) Let NDisk(M)⊗ ⊂ NDisk(M)q denote the subcategory spanned by those morphisms (U1, . . . , Um)→
(V1, . . . Vn) with the property that for every pair i, j ∈ 〈m〉◦ that have the same image in 〈n〉◦ the
subsets Ui and Uj are disjoint.

Remark 3.2 The ∞-category NDisk(M)⊗ is precisely the ∞-operad associated4 to the (ordinary)
coloured operad OM whose colours are the objects U ∈ NDisk(M)⊗, and whose sets of multi-morphisms
read as

MulOM
(
(U1, . . . , Um), V

)
=

{
∗ , (U1, . . . , Um) are pairwise disjoint and Ui ⊂ V ∀ i ∈ 〈m〉◦ ,
∅ , otherwise .

Our goal for the remainder of this talk is now to compare the ∞-operads E⊗M and NDisk(M)⊗.
In order to achieve this, we first define an intermediate operad NDisk′(M)⊗: let Disk′(M) denote the
category whose objects are embeddings Rk ↪→ M and whose morphisms are (strictly) commutative
triangles of embeddings

Rk Rk

M

f

(3.3)

This comes with a functor
π : Disk′(M)→ Disk(M)

4This construction was presented in Hendrik’s talk.
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that sends an embedding  : Rk ↪→ M to its image (Rk). Since all morphisms in Diagram (3.3) are
embeddings, the functor π is an equivalence of categories.

The category Disk′(M) gives rise to a coloured operad O′M in a fashion analogous to Remark 3.2:
its colours are the objects  : Rk ↪→M of Disk′(M), and its multi-morphisms read as

MulO′M

(
(1, . . . , m), 

)
=

{
∗ , i(Rk) ∩ j(Rk) = ∅ ∀ i 6= j and i(Rk) ⊂ (Rk) ∀i ∈ 〈m〉◦ ,
∅ , otherwise .

Let NDisk′(M)⊗ be the∞-operad associated to the operad O′M . By construction, he functor π induces
an equivalence

π : NDisk′(M)⊗
∼−→ NDisk(M)⊗

of ∞-operads, and we can choose a homotopy-inverse ψ for π.

On the other hand, there is a canonical inclusion

φ : NDisk′(M)⊗ → E⊗M ,

and composing this with ψ yields a morphism (canonical up to the contractible choice of ψ) of ∞-
operads

Ψ: NDisk(M)⊗ → E⊗M .

This morphism is not an equivalence: for instance, the underlying ∞-category of NDisk(M)⊗ is
NDisk(M), which is not a Kan complex, but the underlying ∞-category of E⊗M is BM ' Sing(M),
which is a Kan complex; these cannot be equivalent as ∞-categories.

Nevertheless, the morphism Ψ establishes a very important relation between NDisk(M)⊗ and E⊗M ,
which we state and (partially) prove in the next subsection.

3.2 Algebras over E⊗M and NDisk(M)⊗

The crucial difference between NDisk(M)⊗ and E⊗M , or at least of their underlying ∞-categories, is
that in E⊗M there exists a homotopy inverse to every embedding of a disk in M into another disk in M
– this is once again the Kister-Mazur Theorem 2.4. It turns out that E⊗M is obtained from NDisk(M)⊗

by adding an inverse to each of the above morphisms; this is made precise by the following theorem:

Theorem 3.4 [Lur17, Thm. 5.4.5.9] Let M be a manifold, and let C⊗ be an ∞-operad. The morphism

Ψ: NDisk(M)⊗ → E⊗M

induces a fully faithful embedding

Ψ∗ : AlgEM (C) −→ AlgNDisk(M)(C) .

Its essential image is the subcategory spanned by the locally constant NDisk(M)⊗-algebras in C⊗.

Remark 3.5 The specification locally constant of an algebra has a precise meaning, which is given
in [Lur17, Def. 2.3.3.20]. Stating this precisely requires the technical notion of a weak approximation
of ∞-operads [Lur17, Def. 2.3.3.6], which we will not introduce here.

However, for an ∞-operad p : O⊗ → NFin∗ the fact that an O-algebra A : O⊗ → C⊗ is locally
constant implies in particular that for every morphism f in O⊗ with p(f) = 1〈1〉 the image A(f) is an
equivalence in C⊗.
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In our case, this means that the value of A on a disk in M only changes up to equivalence under
continuous changes of the disk. /

The proof of Theorem 3.4 rests on invoking [Lur17, Prop. 2.3.4.5], a statement about weak approx-
imations of ∞-operads. In order to apply it to the present situation, one first needs to show that Ψ

is a weak approximation of ∞-operads, which is done in [Lur17, Lem. 5.4.5.11]. Second, an lastly, one
needs to prove that Ψ induces an equivalence of the underlying ∞-categories:

Lemma 3.6 For any manifold M , the morphism ψ := Ψ〈1〉 : NDisk(M)→ BM ' Sing(M) is a weak
homotopy equivalence.

Note that here we talk about weak equivalences in Set∆ with the Quillen model structure for
∞-groupoids, so that this is equivalent to the claim that BM is equivalent as an ∞-category to the
groupoid completion of NDisk(M), as we claimed in the introduction to this subsection. The proof of
Lemma 3.6 relies on the ∞-categorical Seifert-van Kampen Theorem 3.7:

Theorem 3.7 [Lur17, Thm. A.3.1] Let X be a topological space, and let U(X) denote the partially
ordered set of open subsets of X. Let C be a small category, and let F : C → U(X) be a functor.
For each x ∈ X, let Cx ⊂ C be the full subcategory spanned by those objects c ∈ C with x ∈ F (c).
Assume that for every x ∈ X the simplicial set NCx is weakly contractible (weakly equivalent to ∆0

in the Quillen model structure on Set∆). Observe that for every c ∈ C there is a canonical morphism
F (c) ↪→ X of topological spaces. In this situation, the resulting morphism

hocolim(Sing ◦F : C→ Set∆) −→ Sing(X)

is a weak homotopy equivalence in the Quillen model structure on Set∆.

With this at hand, we can prove Lemma 3.6:

Proof of Lemma 3.6. The construction U 7→ BU yields a functor FB : Disk(M) → Set∆. Via the
∞-categorical Grothendieck construction, this gives rise to a cocartesian fibration q : X → NDisk(M)

(this should even be a left fibration since FB is actually valued in spaces). The fibre of q over an object
U ∈ NDisk(M) is the Kan complex BU , which is contractible as a consequence of Proposition 2.19.
Then, by [Lur09, 2.1.3.4], q is a trivial Kan fibration.

The inclusions U ⊂ M induces a morphism φ : X → BM . Further, observe that q admits a
section s : NDisk(M)→ X: this is essentially given by choosing an inverse equivalence for the functor
π : Disk′(M)→ Disk(M), i.e. by choosing a homeomorphism Rk ∼= U for each object U ∈ NDisk(M).
By construction, ψ = φ◦s, and since s : NDisk(M)→ X is a weak equivalence, it now suffices to show
that φ : X → BM is a weak equivalence. Note that X (or rather a Kan fibrant replacement thereof) is
a model for the (∞-categorical) colimit of FB [Lur09, Cor. 3.3.4.6]. Consequently, if we can show that
BM , together with the inclusions BU ↪→ BM is a colimit of FB in the ∞-category S of spaces, then it
will follow that φ is a weak equivalence as claimed, by the essential uniqueness of colimits.

Using again Proposition 2.19 to replace the spaces BU and BM by Sing(U) and Sing(M), we need
to show that

hocolim
(

Sing : NDisk(M)→ Set∆

)
' Sing(M) .

This will follow immediately from Theorem 3.7, but in order to apply it, we need to check that for
every x ∈M , the partially ordered set

Singx :=
{
U ∈ NDisk(M)

∣∣x ∈ U}
10



is weakly contractible. Since M is locally euclidean, it is cofiltered (each finite intersection of open
disks around x contains a smaller open disk), and hence it is weakly contractible.

Remark 3.8 (1) Locally constant NDisk(M)⊗-algebras in a symmetric monoidal∞-category are also
called locally constant factorisation algebras on M . Factorisation algebras will be introduced as
certain cosheaves in the following talk. (Note that local constancy implies the cosheaf property.)

(2) Factorisation algebras play an important role in topology [AF19, Gin15] and quantum field the-
ory [CG17, CG16].

(3) ForM = Rk, Theorem 3.6 is often phrased as the slogan that locally constant factorisation algebras
on Rk are the same as Ek-algebras.

Remark 3.9 Given θ : B → BTop(k) and a map τ : M → B, we obtain a morphism τ⊗ : E⊗M → E⊗B.
For every ∞-operad, this induces a map

Ψ∗ ◦ τ∗ : AlgEB (C)→ AlgEM (C)→ AlgNDisk(M)(C) .

For example, if M is smooth, the tangential bundle TM always yields a classifying map TM : M →
BO(k). An orientation on M is equivalent to a lift of this map to BSO(k), giving a map

AlgEk,fr(C)→ AlgEM (C)→ AlgNDisk(M)(C) .

A framing on M is equivalent to a lift of TM to ETop(k), or equivalently to giving a trivialisation of
the tangent bundle, giving a map

AlgEk(C)→ AlgEM (C)→ AlgNDisk(M)(C)

from Ek-algebras to locally constant factorisation algebras onM . This will be interesting in subsequent
talks. /

A The definition of an ∞-operad

For convenience and for looking up, we copy Lurie’s definition of an ∞-operad:

Definition A.1 [Lur17, Def. 2.1.1.10] An ∞-operad is a functor p : O⊗ → NFin between ∞-categories
satisfying the following conditions:

(1) For every inert morphism f : 〈m〉 → 〈n〉 and every object C ∈ O⊗〈m〉, there exists a p-cocartesian
lift f : C → C ′ in O⊗ of f to O⊗. We denote the functor between fibres induced by this lift by
f! : O

⊗
〈m〉 → O⊗〈n〉.

(2) For C ∈ O⊗〈m〉, C
′ ∈ O⊗〈n〉 and f : 〈m〉 → 〈n〉, let Mapf

O⊗(C,C ′) denote the union of those path-

connected components of MapO⊗(C,C ′) that lie over f . Any choice of p-cocartesian lifts ρi : C ′ →
C ′i of the morphisms ρi : 〈n〉 → 〈1〉 for i = 1, . . . , n induces a homotopy equivalence

Mapf
O⊗(C,C ′) −→

∏
i=1,...,n

Mapρ
i◦f

O⊗ (C,C ′i) .

(3) For every finite collection of objects C1, . . . , Cn ∈ O⊗〈1〉, there exists an object C ∈ O⊗〈n〉 and a
collection of p-cocartesian morphisms C → Ci that cover ρi : 〈n〉 → 〈1〉.

The fibre O⊗〈1〉 =: O is the underlying ∞-category of the ∞-operad p : O⊗ → NFin.

Recall also that there is a functorial nerve-type construction that allows us to produce ∞-operads
in the above sense from any coloured topological or simplicial operad.
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