Exercise Sheet 5

Problem 1 (8 points). Familiarize yourself with basic categorical concepts such as: categories, functors, natural transformations, fully faithful functors, equivalence of categories, products, coproducts, limits, colimits. To this end, choose a book of your liking (for example, Leinster: Basic category theory, https://arxiv.org/abs/1612.09375) and do 3 problems of your choice.

Problem 2. Let K be a field and let \mathbf{Calg}_K denote the category of commutative K-algebras.

- 1. Show that, for objects A, B of \mathbf{Calg}_K , there exists a product $A \times B$ with underlying set given by the Cartesian product of the sets underlying A and B.
- 2. Show that, for objects A, B of \mathbf{Calg}_K , there exists a coproduct $A \amalg B$ with underlying set given by the tensor product $A \otimes_K B$.

Problem 3. Let K be and algebraically closed field.

- 1. Verify for each of the following examples, that the given subset X is an affine variety, determine generators for the vanishing ideal I(X) and describe the coordinate ring $\mathcal{O}(X)$.
 - (a) $X = \{p\} \subset K^n$ for $p \in K^n$.
 - (b) $X = \{(t, t^2, t^3) | t \in K\} \subset K^3.$
 - (c) $X = \{(t^2, t^3) | t \in K\} \subset K^2$.
- 2. Show that no two of the affine varieties of Part 1. are isomorphic.

Problem 4. Let $V \subset K^n$ and $W \subset K^m$ be affine K-varieties.

1. Show that the Cartesian product

$$V \times W \subset K^n \times K^m = K^{n+m}$$

is an affine K-variety.

- 2. Show that the Zariski topology on $V \times W$ is, in general, not the product topology of the Zariski topologies on V and W. Hint: Determine the Zariski closed subsets of the affine line $\mathbb{A}^1(K)$.
- 3. Show that the above product $V \times W$ is a product in the category \mathbf{Var}_K of affine varieties and determine the coordinate ring of $V \times W$, in terms of the coordinate rings of V and W (cf. Problem 2.2).