Exercise Sheet 9

Problem 1. Properties of tensor products. Let K be a field, let V, W be K-vector spaces, and let $V \otimes_{K} W$ denote their tensor product, considered as a K-vector space.

1. Formulate the universal property of the map $u: V \times W \rightarrow V \otimes W,(v, w) \mapsto v \otimes w$.
2. Let $v_{1}, v_{2} \in V \backslash\{0\}$ and $w_{1}, w_{2} \in W \backslash\{0\}$. Show that $v_{1} \otimes w_{1}=v_{2} \otimes w_{2}$ implies that there exists an element $a \in K$ such that $v_{1}=a v_{2}$ and $w_{2}=a w_{1}$.
3. Show that, if $\left\{v_{i}\right\}_{i \in I}$ is a basis of V and $\left\{w_{j}\right\}_{j \in J}$ is a basis of W then $\left\{v_{i} \otimes w_{j}\right\}$ is a basis of $V \otimes W$.
4. Let $V_{1} \subset V_{2}$ inclusion of vector spaces, show that there is an isomorphism

$$
\left(V_{2} \otimes W\right) /\left(V_{1} \otimes W\right) \cong\left(V_{2} / V_{1}\right) \otimes W
$$

of vector spaces.
Problem 2. Show that every linear algebraic group G is isomorphic to the Galois group of a Picard-Vessiot extension E / F.

Problem 3. Let $A \in \mathrm{GL}(n, K)$ be a diagonal matrix with diagonal entries $\lambda_{1}, \ldots, \lambda_{n}$ and let $G=\langle A\rangle$ denote the subgroup generated by A.

1. Show that, in general, we have $G \neq \bar{G}$.
2. Show that G consists of those diagonal matrices with diagonal entries d_{1}, \ldots, d_{n} satisfying: if $\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{Z}^{n}$ such that $\lambda_{1}^{m_{1}} \ldots \lambda_{n}^{m_{n}}=1$ then $d_{1}^{m_{1}} \ldots d_{n}^{m_{n}}=1$.

Problem 4. A character of a linear algebraic group G is a homomorphism $\chi: G \longrightarrow$ $\mathrm{GL}(1, K)$ of linear algebraic groups.

1. Show that the set of characters of G forms a group with multiplication $\left(\chi \chi^{\prime}\right)(g)=$ $\chi(g) \chi^{\prime}(g)$.
2. Show that a character of G is uniquely determined by the element $a_{\chi}=\chi^{*}(x \in \mathcal{O}(G))$ where $\mathcal{O}(\operatorname{GL}(1, K))=K\left[x, x^{-1}\right]$.
3. Show that the conditions for an element $a \in \mathcal{O}(G)$ to be of the form a_{χ} for a character χ are that a is invertible and $m^{*}(a)=a \otimes a$ where $m: G \times G \rightarrow G$ is the multiplication morphism.
4. Let $T \subset \mathrm{GL}(n, K)$ be the group of diagonal matrices. Show that the group of characters of T is isomorphic to \mathbb{Z}^{n}.
5. What is the group of characters of $\mathrm{GL}(n, K)$?
