Exercise Sheet 6

Problem 1. Let K be an algebraically closed field and let V be an affine K-variety. For a commutative K-algebra R, denote by V(R) the set of R-valued points of V.

1. Show that the association

$$V(-): \mathbf{Calg}_K \longrightarrow \mathbf{Set}, R \mapsto V(R)$$

extends to a functor.

- 2. Show that a morphism $f: V \to W$ of affine K-varieties defines a natural transformation f_* from V(-) to W(-).
- 3. Show that, for every natural transformation η from V(-) to W(-), there exists a unique morphism $f: V \to W$ such that $\eta = f_*$.

Problem 2. Let K be an algebraically closed field. For each of the following affine K-varieties compute the dimensions of all tangent spaces.

- 1. $\{p\} \subset K^n$ for $p \in K^n$.
- 2. $\{(t, t^2, t^3) | t \in K\} \subset K^3$.
- 3. $\{(t^2, t^3) | t \in K\} \subset K^2$.

Problem 3. Let K be an algebraically closed field and $n \ge 1$. Show that each of the following groups is a linear algebraic group, determine the corresponding Lie algebra and its dimension as a K-vector space.

1. A finite subgroup

$$G \subset \operatorname{GL}(n, K).$$

2. The orthogonal group

$$\mathcal{O}(n,K) = \{ X \in \mathrm{GL}(n,K) \mid X^{\mathrm{tr}}X = I_n \} \subset \mathrm{GL}(n,K).$$

3. The symplectic group

$$\operatorname{Sp}(2n, K) = \{X \in \operatorname{GL}(2n, K) \mid X^{\operatorname{tr}}\Omega X = \Omega\} \subset \operatorname{GL}(2n, K)$$

where

$$\Omega = \left(\begin{array}{cc} 0 & I_n \\ -I_n & 0 \end{array}\right).$$

Problem 4. Let K be an algebraically closed field.

- 1. Let $\varphi: V \to W$ be a morphism of affine K-varieties. Show that φ is continuous with respect to the Zariski topology.
- 2. Let $\varphi : G \to G'$ be a morphism of linear algebraic groups, i.e., a morphism of affine *K*-varieties which is also a group homomorphism. Show that $\ker(\varphi) \subset G$ is a Zariskiclosed subgroup.

- 3. Let G be a linear algebraic group over K and let $H \subset G$ be a subgroup. Denote by \overline{H} the closure of H in G with respect to the Zariski topology on G. Show that $\overline{H} \subset G$ is a subgroup (and hence a linear algebraic group).
- 4. Recall that a topological space is called connected if it cannot be expressed as the union of two disjoint non-empty open subsets. Every topological space admits a partition into its connected components which are the maximal connected subspaces. For a linear algebraic group G, let G^0 denote the connected component (with respect to the Zariski topology) which contains the identity element $e \in G$. Show that $G^0 \subset G$ is a Zariski closed normal subgroup.