Exercise Sheet 4

Problem 1. Let K be an algebraically closed field of characteristic 0 , let $K[[t]]$ be the ring of power series and $K((t))$ its field of fractions. Let $A \in K[t]^{n \times n}$.

1. Show that there exists a fundamental solution matrix $Y \in \mathrm{GL}(n, K[[t]])$ of the form

$$
Y=I+\sum_{k>0} B_{k} t^{k}
$$

with $B_{k} \in K^{n \times n}$.
2. Deduce that there exists a Picard-Vessiot extension $E / K(t)$ for A with $E \subset K((t))$.

Problem 2. Let F be a ∂-field of characteristic 0 with algebraically closed field of constants K and let $a \in F^{*}$. Consider the matrix

$$
A=(a) \in F^{1 \times 1} .
$$

and let

$$
R=F\left[T, T^{-1}\right]
$$

with $\partial(T)=a T$. Suppose that there exists $n \in \mathbb{N} \backslash\{0\}$ and $0 \neq y \in F$ with $\partial(y)=$ nay. We assume $n>0$ to be minimal. Let

$$
\bar{R}=R /\left(T^{n}-y\right)
$$

be the Picard-Vessiot ring for A (cf. Sheet 3) and E its field of fractions. Determine the ∂-Galois group $\mathrm{Gal}^{\partial}(E / F)$ and verify, in particular, that it is the solution set of polynomial equations on $\mathrm{GL}(1, K)$.

Problem 3. Let F be a ∂-field of characteristic 0 with algebraically closed field of constants K, and let $A \in F^{n \times n}$. Let G be the ∂-Galois group of A considered as a subgroup $G \leq$ $\mathrm{GL}(n, K)$ via the choice of a generating fundamental solution matrix $Y \in \mathrm{GL}(n, E)$ for a Picard-Vessiot extension E / F. Show that $G \leq \mathrm{SL}(n, K)$ if and only if the ∂-equation $\partial(u)=\operatorname{tr}(A) u$ has a nonzero solution in F.
Problem 4. Let M be a ∂-field of characteristic 0 with algebraically closed field of constants K. Let $n \geq 1$, and consider the polynomial ring (in infinitely many variables)

$$
R=M\left[y_{1}^{(0)}, y_{1}^{(1)}, y_{1}^{(2)}, \ldots, y_{2}^{(0)}, y_{2}^{(1)}, y_{2}^{(2)}, \ldots, y_{n}^{(0)}, y_{n}^{(1)}, y_{n}^{(2)}, \ldots\right]
$$

equipped with the derivation ∂ given by extending the formula $\partial\left(y_{j}^{(i)}\right)=y_{j}^{(i+1)}$ via additivity and Leibniz rule to R. We set $y_{j}:=y_{j}^{(0)}$. Let E be the field of fractions of R with derivation extended from R via the quotient rule.

1. Show that $K_{E}=K$.
2. Let $l \in E[\partial]$ be the differential operator obtained by formally evaluating the expression

$$
l(y)=\frac{\operatorname{wr}\left(y, y_{1}, \ldots, y_{n}\right)}{\operatorname{wr}\left(y_{1}, \ldots, y_{n}\right)}=\partial^{n}(y)+a_{n-1} \partial^{n-1}(y)+\cdots+a_{0} y .
$$

Show that

$$
a_{n-1}=\frac{\partial\left(\operatorname{wr}\left(y_{1}, \ldots, y_{n}\right)\right)}{\operatorname{wr}\left(y_{1}, \ldots, y_{n}\right)} .
$$

3. Let $F \subset E$ be the smallest subfield of E containing M and the coefficients $a_{k}, 0 \leq$ $k \leq n-1$. Show that, for every $C \in \mathrm{GL}(n, K)$, the formula

$$
\left(\sigma_{C}\left(y_{1}\right), \ldots, \sigma_{C}\left(y_{n}\right)\right):=\left(y_{1}, \ldots, y_{n}\right) C
$$

extends to define an automorphism σ_{C} of the ∂-field E fixing F.
4. Show that E / F is a Picard-Vessiot extension with ∂-Galois group GL (n, K).

