Exercise Sheet 4

Problem 1. Let K be an algebraically closed field of characteristic 0, let K[[t]] be the ring of power series and K((t)) its field of fractions. Let $A \in K[t]^{n \times n}$.

1. Show that there exists a fundamental solution matrix $Y \in GL(n, K[[t]])$ of the form

$$Y = I + \sum_{k>0} B_k t^k$$

with $B_k \in K^{n \times n}$.

2. Deduce that there exists a Picard-Vessiot extension E/K(t) for A with $E \subset K((t))$.

Problem 2. Let F be a ∂ -field of characteristic 0 with algebraically closed field of constants K and let $a \in F^*$. Consider the matrix

$$A = (a) \in F^{1 \times 1}.$$

and let

$$R = F[T, T^{-1}]$$

with $\partial(T) = aT$. Suppose that there exists $n \in \mathbb{N} \setminus \{0\}$ and $0 \neq y \in F$ with $\partial(y) = nay$. We assume n > 0 to be minimal. Let

$$\overline{R} = R/(T^n - y)$$

be the Picard-Vessiot ring for A (cf. Sheet 3) and E its field of fractions. Determine the ∂ -Galois group $\operatorname{Gal}^{\partial}(E/F)$ and verify, in particular, that it is the solution set of polynomial equations on $\operatorname{GL}(1, K)$.

Problem 3. Let F be a ∂ -field of characteristic 0 with algebraically closed field of constants K, and let $A \in F^{n \times n}$. Let G be the ∂ -Galois group of A considered as a subgroup $G \leq \operatorname{GL}(n, K)$ via the choice of a generating fundamental solution matrix $Y \in \operatorname{GL}(n, E)$ for a Picard-Vessiot extension E/F. Show that $G \leq \operatorname{SL}(n, K)$ if and only if the ∂ -equation $\partial(u) = \operatorname{tr}(A)u$ has a nonzero solution in F.

Problem 4. Let M be a ∂ -field of characteristic 0 with algebraically closed field of constants K. Let $n \geq 1$, and consider the polynomial ring (in infinitely many variables)

$$R = M[y_1^{(0)}, y_1^{(1)}, y_1^{(2)}, \dots, y_2^{(0)}, y_2^{(1)}, y_2^{(2)}, \dots, y_n^{(0)}, y_n^{(1)}, y_n^{(2)}, \dots]$$

equipped with the derivation ∂ given by extending the formula $\partial(y_j^{(i)}) = y_j^{(i+1)}$ via additivity and Leibniz rule to R. We set $y_j := y_j^{(0)}$. Let E be the field of fractions of R with derivation extended from R via the quotient rule.

- 1. Show that $K_E = K$.
- 2. Let $l \in E[\partial]$ be the differential operator obtained by formally evaluating the expression

$$l(y) = \frac{\operatorname{wr}(y, y_1, \dots, y_n)}{\operatorname{wr}(y_1, \dots, y_n)} = \partial^n(y) + a_{n-1}\partial^{n-1}(y) + \dots + a_0y.$$

Show that

$$a_{n-1} = \frac{\partial(\operatorname{wr}(y_1, \dots, y_n))}{\operatorname{wr}(y_1, \dots, y_n)}$$

3. Let $F \subset E$ be the smallest subfield of E containing M and the coefficients $a_k, 0 \leq k \leq n-1$. Show that, for every $C \in GL(n, K)$, the formula

$$(\sigma_C(y_1),\ldots,\sigma_C(y_n)) := (y_1,\ldots,y_n)C$$

extends to define an automorphism σ_C of the $\partial\text{-field}~E$ fixing F.

4. Show that E/F is a Picard-Vessiot extension with ∂ -Galois group $\operatorname{GL}(n, K)$.