Exercise Sheet 2

Bonus-Problem 1 (8 points). If you are unfamiliar with the concept of a module over a ring, then read Chapter 12 in Artin's algebra book. Solve 4 problems of your choice.

Problem 2 (4 points). Let F be a ∂-field of characteristic 0 , and let $F \subset E$ be an extension of ∂-fields.

1. The set of constants $K_{F} \subset F$ forms a subfield.
2. Suppose that $x \in E$ is algebraic over K_{F}. Show that $x \in K_{E}$.
3. Suppose that $x \in K_{E}$ is algebraic over F. Show that x algebraic over K_{F}.

Problem 3 (4 points). Let F be a ∂-field.

1. Let $l \in F[\partial]$ be a ∂-operator, and let $M_{l}=F[\partial] / F[\partial] l$ be the corresponding $F[\partial]$ module. Determine the system of 1st order differential equations that corresponds to M_{l} upon choosing an F-basis (there is a "canonical" choice of basis in this case).
2. Let M be an $F[\partial]$-module with $\operatorname{dim}_{F}(M)=n$, let $\left(x_{1}, \ldots, x_{n}\right)$ and $\left(y_{1}, \ldots, y_{n}\right)$ be F-bases of M. Suppose that

$$
\partial\left(x_{1}, \ldots, x_{n}\right)^{\operatorname{tr}}=A\left(x_{1}, \ldots, x_{n}\right)^{\operatorname{tr}}
$$

and

$$
\partial\left(y_{1}, \ldots, y_{n}\right)^{\operatorname{tr}}=B\left(y_{1}, \ldots, y_{n}\right)^{\operatorname{tr}}
$$

with $A, B \in F^{n \times n}$. Show that there exists $C \in \operatorname{GL}(n, F)$ such that

$$
A=C^{-1} B C-C^{-1} \partial(C) .
$$

Problem 4 (4 points). Let F be a ∂-field.

1. Let $A \in F^{n \times n}$ be a matrix and let $Y \in \mathrm{GL}_{n}(F)$ with $\partial(Y)=A Y$. Show that $\partial(\operatorname{det}(Y))=\operatorname{tr}(A) \operatorname{det}(Y)$.
2. Let

$$
l=\partial^{n}+f_{n-1} \partial^{n-1}+\cdots+f_{0} \in F[\partial]
$$

be a ∂-operator and suppose that y_{1}, \ldots, y_{n} is a basis of $\operatorname{Sol}_{F}(l)$. Show that

$$
\partial\left(\operatorname{wr}\left(y_{1}, \ldots, y_{n}\right)\right)=-f_{n-1} \operatorname{wr}\left(y_{1}, \ldots, y_{n}\right)
$$

Problem 5 (*, 4 points). Let F be a ∂-field of characteristic 0 , and let M be an $F[\partial]-$ module with F-basis e_{0}, \ldots, e_{n-1}. Assume that there exists an element $t \in F$ with $\partial(t)=1$. Show that, for all except finitely many constants $\lambda \in K_{F}$, the element

$$
v=\sum_{j=0}^{n-1} \frac{(t-\lambda)^{j}}{j!} \sum_{k=0}^{j}(-1)^{k}\binom{j}{k} \partial^{k}\left(e_{j-k}\right)
$$

generates M as an $F[\partial]$-module, i.e., the elements $v, \partial(v), \ldots, \partial^{n-1}(v)$ form an F-basis of M. Deduce that there exists a differential operator $l \in F[\partial]$ such that M is isomorphic to M_{l} as an $F[\partial]$-module.
*. Hints will be posted in a separate file.

