Exercise Sheet 2

Bonus-Problem 1 (8 points). If you are unfamiliar with the concept of a module over a ring, then read Chapter 12 in Artin's algebra book. Solve 4 problems of your choice.

Problem 2 (4 points). Let F be a ∂ -field of characteristic 0, and let $F \subset E$ be an extension of ∂ -fields.

- 1. The set of constants $K_F \subset F$ forms a subfield.
- 2. Suppose that $x \in E$ is algebraic over K_F . Show that $x \in K_E$.
- 3. Suppose that $x \in K_E$ is algebraic over F. Show that x algebraic over K_F .

Problem 3 (4 points). Let F be a ∂ -field.

- 1. Let $l \in F[\partial]$ be a ∂ -operator, and let $M_l = F[\partial]/F[\partial]l$ be the corresponding $F[\partial]$ module. Determine the system of 1st order differential equations that corresponds to M_l upon choosing an F-basis (there is a "canonical" choice of basis in this case).
- 2. Let M be an $F[\partial]$ -module with $\dim_F(M) = n$, let (x_1, \ldots, x_n) and (y_1, \ldots, y_n) be F-bases of M. Suppose that

$$\partial(x_1,\ldots,x_n)^{\mathrm{tr}} = A(x_1,\ldots,x_n)^{\mathrm{tr}}$$

and

$$\partial(y_1,\ldots,y_n)^{\mathrm{tr}} = B(y_1,\ldots,y_n)^{\mathrm{tr}}$$

with $A, B \in F^{n \times n}$. Show that there exists $C \in GL(n, F)$ such that

$$A = C^{-1}BC - C^{-1}\partial(C).$$

Problem 4 (4 points). Let F be a ∂ -field.

- 1. Let $A \in F^{n \times n}$ be a matrix and let $Y \in GL_n(F)$ with $\partial(Y) = AY$. Show that $\partial(\det(Y)) = \operatorname{tr}(A) \det(Y)$.
- 2. Let

$$l = \partial^n + f_{n-1}\partial^{n-1} + \dots + f_0 \in F[\partial]$$

be a ∂ -operator and suppose that y_1, \ldots, y_n is a basis of $Sol_F(l)$. Show that

$$\partial(\operatorname{wr}(y_1,\ldots,y_n)) = -f_{n-1}\operatorname{wr}(y_1,\ldots,y_n).$$

Problem 5 (*, 4 points). Let F be a ∂ -field of characteristic 0, and let M be an $F[\partial]$ -module with F-basis e_0, \ldots, e_{n-1} . Assume that there exists an element $t \in F$ with $\partial(t) = 1$. Show that, for all except finitely many constants $\lambda \in K_F$, the element

$$v = \sum_{j=0}^{n-1} \frac{(t-\lambda)^j}{j!} \sum_{k=0}^{j} (-1)^k \binom{j}{k} \partial^k (e_{j-k})$$

generates M as an $F[\partial]$ -module, i.e., the elements $v, \partial(v), \ldots, \partial^{n-1}(v)$ form an F-basis of M. Deduce that there exists a differential operator $l \in F[\partial]$ such that M is isomorphic to M_l as an $F[\partial]$ -module.

*. Hints will be posted in a separate file.