Exercise Sheet 1

Problem 1. Show that the definition of the Galois group of an irreducible polynomial $f \in \mathbb{Q}[X]$ presented in Lecture 1, agrees with the definition of the Galois group as the group of automorphisms of L / \mathbb{Q} where L is a splitting field of f.

Problem 2. Provide a rigorous calculation of the Galois group of the polynomial

$$
X^{4}-2 \in \mathbb{Q}[X]
$$

defined as the group of automorphisms of a splitting field.
Problem 3. Let K be a field of characteristic $0, K(t):=\operatorname{Quot}(K[t])$ the field of rational functions, and $K((t)):=\operatorname{Quot}(K[[t]])$ the field of formal Laurent series in t. Here $K[[t]]$ denotes the ring of formal power series in t. Let

$$
\exp (t)=\sum_{n=0}^{\infty} \frac{t^{n}}{n!} \in K[[t]] \subset K((t)) .
$$

Show that there does not exist a polynomial $f(X) \in K(t)[X]$ such that $f(\exp (t))=0$. In other words: The exponential function is transcendental over $K(t)$. Hints:

1. Show that $\exp (t)$ is a solution of the differential equation $y^{\prime}=y$.
2. Show that the differential equation $y^{\prime}=y$ has no nonzero solutions in $K(t)$.
3. Conclude the argument with a proof by contradiction, cancelling the leading term of a potential minimal polynomial of $\exp (t)$ over $K(t)$ with a suitable multiple of its derivative.

Problem 4. Let R be a ring, M a right R-module, N a left R-module, and A an abelian group. A map of sets $\varphi: M \times N \rightarrow A$ is called bilinear if the following hold

1. for $m_{1}, m_{2} \in M, n \in N$, we have $\varphi\left(m_{1}+m_{2}, n\right)=\varphi\left(m_{1}, n\right)+\varphi\left(m_{2}, n\right)$,
2. for $m \in M, n_{1}, n_{2} \in N$, we have $\varphi\left(m, n_{1}+n_{2}\right)=\varphi\left(m, n_{1}\right)+\varphi\left(m, n_{2}\right)$,
3. for $r \in R, m \in M, n \in N$, we have $\varphi(m r, n)=\varphi(m, r n)$.
(1) Explicitly construct an abelian group $M \otimes_{R} N$ equipped with a bilinear map π : $M \times N \rightarrow M \otimes_{R} N$ which is universal in the following sense: For every bilinear map $\varphi: M \times N \rightarrow A$ there exists a unique homomorphism $\bar{\varphi}: M \otimes_{R} N \rightarrow A$ of abelian groups such that the diagram

commutes.
(2) Show that the universal property in (1) uniquely determines the abelian group $M \otimes_{R} N$ up to isomorphism. We call $M \otimes_{R} N$ the tensor product of M and N over R.
(3) Let m, n be integers. Determine the tensor product $\mathbb{Z} / n \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / m \mathbb{Z}$. Compute $\mathbb{Q} \otimes_{\mathbb{Z}}$ $\mathbb{Z} / m \mathbb{Z}$.
