Abstract

In the classical setting of bivariate extreme value theory, the procedures to estimate the probability of an extreme event are not applicable if the componentwise maxima of the observations are asymptotically independent. To cope with this problem, Ledford and Tawn (1996,1997) proposed a sub-model in which the penultimate dependence is characterized by an additional parameter. We discuss the asymptotic properties of two estimators for this parameter in an extended model. Moreover, we develop an estimator for the probability of an extreme event that works in the case of asymptotic independence and in the case of asymptotic dependence as well, and prove its consistency.

AMS subject classification: primary 62G32; secondary 62H12, 62H15

Keywords and phrases: asymptotic normality; bivariate extreme value distribution; coefficient of tail dependence; copula; failure probability; Hill estimator; moment estimator

Running title: Bivariate tail estimation
1 Introduction

Suppose that \((X_i, Y_i), i = 1, \ldots, n,\) is a sequence of independent and identically distributed random vectors. Given two large threshold values, \(u\) and \(v\), we are interested in estimating probabilities of the type

\[
P(X_i > u \text{ and } Y_i > v). \tag{1.1}
\]

For instance, if \((X_i, Y_i)\) are the levels of two different air pollutants, the exceedance of both at some pre-specified levels may represent a dangerous situation to be avoided. In financial mathematics \((X_i, Y_i)\) may represent the losses suffered in two different investments.

Let \(F\) be the common distribution function of \((X_i, Y_i)\), with marginal distributions \(F_1\) and \(F_2\). Since only large values of \(X_i\) and \(Y_i\) are involved, one would expect multivariate extreme value theory to provide the appropriate framework for systematic estimation of the above probability.

To be more specific, we assume that there exist normalizing constants \(a_n, c_n > 0\) and \(b_n, d_n \in \mathbb{R}\) such that

\[
\lim_{n \to \infty} F^n(a_n x + b_n, c_n y + d_n) = \lim_{n \to \infty} P\left(\frac{\max\{X_1, \ldots, X_n\} - b_n}{a_n} \leq x, \frac{\max\{Y_1, \ldots, Y_n\} - d_n}{c_n} \leq y\right) = G(x, y), \tag{1.2}
\]

in the weak sense where \(G\) is a distribution function with non-degenerate marginals (Resnick 1987, Chapter 5).

We say that the maxima of the \(X_i\) and those of the \(Y_i\) are asymptotically independent if \(G(x, y) = G(x, \infty)G(\infty, y)\), for all \(x\) and \(y\). This is a rather common situation; for instance, it holds for non-degenerate bivariate normal distributions with \(|\rho| < 1\). Unfortunately, in this case the limit assumption (1.2) is of little help to estimate probability (1.1). Note that under the given conditions the marginal distributions \(F_1\) and \(F_2\), converge to the marginals \(G_1\) and \(G_2\), respectively, of the limiting distribution. Taking logarithms in (1.2) one gets

\[
\lim_{n \to \infty} n P\left\{\frac{X - b_n}{a_n} > x \text{ or } \frac{Y - d_n}{c_n} > y\right\} = -\log G(x, y), \tag{1.3}
\]

hence,

\[
\lim_{n \to \infty} n P\left\{\frac{X - b_n}{a_n} > x \text{ and } \frac{Y - d_n}{c_n} > y\right\} = \log G(x, y) - \log G_1(x) - \log G_2(y). \tag{1.4}
\]
Therefore if the marginals of the limiting distribution are independent, that is, \(G(x,y) = G_1(x)G_2(y) \), the right-hand side in (1.4) is identically zero.

In order to overcome this problem, Ledford and Tawn (1996,1997,1998; see also Coles et al. 1999) introduced a sub-model, where the penultimate tail dependence is characterized by a coefficient \(\eta \in (0,1] \). More precisely, they assumed that the function \(t \mapsto P(1 - F_1(X) < t \text{ and } 1 - F_2(Y) < t) \) is regularly varying at 0 with index \(1/\eta \). Then \(\eta = 1 \) in the case of asymptotic dependence, whereas \(\eta < 1 \) implies asymptotic independence. Ledford and Tawn also suggested estimators for the so-called coefficient of tail dependence \(\eta \), but they did not establish their asymptotic properties.

In Section 2 of the present paper, we interpret an extension of Ledford’s and Tawn’s condition as a bivariate second order regular variation condition, thereby generalizing an approach by Peng (1999). Then we prove the asymptotic normality of modified versions of two estimators for \(\eta \) proposed by Ledford and Tawn. In Section 3 a procedure is set up to estimate the probability of a failure set of the type (1.1). Its consistency is established under asymptotic independence and under asymptotic dependence as well. The results of a simulation study are reported in Section 4. Here we compare the performance of both the estimators for \(\eta \) proposed in the present paper and the estimator introduced by Peng (1999). In addition, we examine the small sample behavior of tests for the hypothesis \(\eta = 1 \) which are based on these estimators. Also the behavior of the estimator of a failure probability is studied in a simple situation. In Section 5 we investigate the dependence between still water level, wave heights and wave periods at a particular point of the Dutch coastal protection. Section 6 contains the proofs of the results of Sections 2 and 3.

An extended simulation study and more detailed proofs can be found in the technical report by Draisma et al. (2001).

2 Estimating the coefficient of tail dependence

Let \((X,Y)\) be a random vector whose distribution function \(F\) has continuous marginal distribution functions \(F_1\) and \(F_2\). Our basic assumption is that

\[
\lim_{t \downarrow 0} \left(\frac{P\{1 - F_1(X) < tx \text{ and } 1 - F_2(Y) < ty\}}{q(t)} - c(x,y) \right) / q_1(t) =: c_1(x,y) \tag{2.1}
\]

exists, for all \(x,y \geq 0\) with \(x + y > 0\), and some positive functions \(q\) and \(q_1 \to 0\) as \(t \to 0\) and a function \(c_1\) which is neither constant nor a multiple of \(c\). Moreover we assume that the
convergence is uniform on $\{(x, y) \in [0, \infty)^2 \mid x^2 + y^2 = 1\}$.

Essentially, relation (2.1) is a second order regular variation condition for the function Q defined by $Q(x, y) := P\{1 - F_1(X) < x \text{ and } 1 - F_2(Y) < y\}$. The function $(x, y) \mapsto Q(1 - x, 1 - y)$ is sometimes called copula survivor function. It follows that the function q is regularly varying at zero with index $1/\eta$ for some $\eta \in (0, 1]$ (in the paper by Ledford and Tawn (1996) $q(t)$ equals $t^{1/\eta}$). The function q_1 is also regularly varying at zero with an index $\tau \geq 0$. Without loss of generality we may take $c(1, 1) = 1$ and $q(t) = P\{1 - F_1(X) < t \text{ and } 1 - F_2(Y) < t\}$. For these results and more information about such a second order condition see the Appendices of de Haan and Resnick (1993) and Draisma et al. (2001).

In addition, we assume that $l := \lim_{t \downarrow 0} q(t)/t$ exists. This condition is always satisfied if $\eta < 1$ or $\tau > 0$. Since $F_1(X)$ and $F_2(Y)$ are uniformly distributed, obviously $\limsup q(t)/t \leq 1$. Moreover, $l = 0$ if $\eta < 1$, and $l > 0$ if the marginals are asymptotically dependent.

Our assumptions imply that (2.1) holds locally uniformly on $(0, \infty)^2$. The bivariate normal distribution satisfies these conditions: see the example at the end of this section. Several other examples were given by Ledford and Tawn (1997) and Heffernan (2000).

The function c is homogeneous of order $1/\eta$, i.e., $c(tx, ty) = t^{1/\eta}c(x, y)$. The measure ν defined by $\nu([0, x] \times [0, y]) = c(x, y)$ inherits this homogeneity:

$$\nu(tA) = t^{1/\eta} \nu(A) \quad (2.2)$$

for $t > 0$ and all bounded Borel sets $A \subset [0, \infty)^2$.

The parameter η has the same meaning as in Ledford and Tawn (1996,1997), and condition (2.1) is similar to condition (2.2) in Ledford and Tawn (1997). Under the given assumptions, $l > 0$ implies asymptotic dependence, and $l = 0$ implies asymptotic independence. Hence $\eta < 1$ implies asymptotic independence.

Now we turn to estimators for η, given an i.i.d. sample $\{(X_1, Y_1), (X_2, Y_2), \ldots (X_n, Y_n)\}$. We start with an informal introduction to the estimators of Ledford and Tawn (1996). They proposed first to standardize the marginals to the unit Fréchet distribution, using either the empirical marginal distributions (that is, using the ranks of the components) or extreme value estimators for the marginal tails, and then to estimate η as the shape parameter of the minimum of the components, e.g. by the maximum likelihood estimator or the Hill estimator. However, since these estimators have larger bias for Fréchet distributions than for Pareto distributions (cf., e.g., Drees 1998a,1998b), we prefer to standardize to the unit Pareto distribution using the ranks of the components.
For this consider the random variable
\[T := \frac{1}{1 - F_1(X)} \land \frac{1}{1 - F_2(Y)}. \]
Its distribution function \(F_T \) satisfies \(1 - F_T(t) = q(1/t) \); in particular, \(1 - F_T \) is regularly varying with index \(1/\eta \). Since the marginal d.f.’s \(F_i \) are unknown, we replace them with their empirical counterparts. After a small modification to prevent division by 0, this leads to
\[T^{(n)}_i := \frac{n + 1}{n + 1 - R^X_i} \land \frac{n + 1}{n + 1 - R^Y_i}, \quad i = 1, \ldots, n, \]
with \(R^X_i \) denoting the rank of \(X_i \) among \((X_1, X_2, \ldots, X_n) \) and \(R^Y_i \) that of \(Y_i \) among \((Y_1, Y_2, \ldots, Y_n) \).

Now \(\eta \) can be estimated by the maximum likelihood estimator \(\hat{\eta}_1 \) in a generalized Pareto model, based on the largest \(m + 1 \) order statistics of the \(T^{(n)}_i \) (cf. Drees et al. 2002); here \(m = m(n) \) denotes an intermediate sequence, that is, \(m \to \infty \) and \(m/n \to 0 \). (Smith (1987) defined the maximum likelihood estimator in terms of excesses over a high threshold \(u \); here we use the random threshold \(u = T^{(n)}_{n,n-m} \).)

Alternatively the Hill estimator can be used:
\[\hat{\eta}_2 := \frac{1}{m} \sum_{i=1}^{m} \log \frac{T^{(n)}_{n,n-i+1}}{T^{(n)}_{n,n-m}}. \]
Note that one important advantage of the maximum likelihood estimator over the Hill estimator in the classical i.i.d. setting, namely its location invariance, is not relevant here: there is no shift after standardizing the marginals to unit Pareto (see Lemma 6.2). Since \(\hat{\eta}_2 \) has smaller variance, one might expect \(\hat{\eta}_2 \) to outperform \(\hat{\eta}_1 \).

Theorem 2.1 (Asymptotic normality). Assume that (2.1) holds with a function \(c \) that has first order partial derivatives \(c_x = \frac{\partial}{\partial x} c(x, y) \) and \(c_y = \frac{\partial}{\partial y} c(x, y) \). Suppose that \(m \) is an intermediate sequence such that \(\sqrt{m} q_1(q^{-1}(m/n)) \to 0 \) as \(n \to \infty \). Then \(\sqrt{m} (\hat{\eta}_i - \eta), \ i = 1, 2, \)
are asymptotically normal with mean 0 and variance
\[\sigma^2_1 = (1 + \eta)^2 (1 - l)(1 - 2c_x(1, 1)c_y(1, 1)), \]
\[\sigma^2_2 = \eta^2 (1 - l)(1 - 2c_x(1, 1)c_y(1, 1)), \]
respectively.

Remark 2.1. i. Since \(q_1 \circ q^{-1} \) is \(\eta \tau \)-varying at 0, for \(\tau > 0 \) the condition \(\sqrt{m} q_1(q^{-1}(m/n)) \to 0 \) is satisfied if \(m = O(n^{2\eta/(2\eta+1)-\varepsilon}) \) for some \(\varepsilon > 0 \).
ii. Note that instead of (2.1) the weaker condition \(\lim_{t \to 0} P\{1 - F_1(X) < tx \text{ and } 1 - F_2(Y) < ty\} / q(t) - c(x, y) = O(q_1(t)) \) is sufficient to prove the assertions of Theorem 2.1. However, under (2.1) similar results can be easily deduced if the intermediate sequence \(m \) is such that \(\sqrt{mq_1(q^{-1}(m/n))} \to c \geq 0 \). In that case, usually a non-negligible bias occurs if \(c > 0 \) (and the present results correspond to the simpler case \(c = 0 \)).

In order to construct confidence intervals for \(\eta \) or to test the hypothesis \(\eta = 1 \), we need consistent estimators for the unknown quantities in the asymptotic variances in Theorem 2.1.

Theorem 2.2. Define

\[
\hat{l} := \frac{m}{n} T_{n,n-m}^{(n)}
\]

\[
\hat{c}_x(1, 1) := \frac{k^{5/4}}{n} \left(T_{n,n-m}^{(n,k^{-1/4})} - T_{n,n-m}^{(n)} \right)
\]

with \(k := m/\hat{l} \), and \(T_{n,i}^{(n,u)} \), \(i = 1, \ldots, n \), the order statistics of

\[
T_i^{(n,u)} := \min \left(\frac{n + 1}{n + 1 - R_i^X}(1 + u), \frac{n + 1}{n + 1 - R_i^Y} \right), \quad i = 1, \ldots, n,
\]

and define \(\hat{c}_y(1, 1) \) analogously to \(\hat{c}_x(1, 1) \). If the conditions of Theorem 2.1 hold then

\[
\hat{l} \overset{p}{\to} l.
\]

If, in addition, \(\eta = 1 \) then

\[
\hat{c}_x(1, 1) \overset{p}{\to} c_x(1, 1), \quad \hat{c}_y(1, 1) \overset{p}{\to} c_y(1, 1).
\]

Moreover, let

\[
\hat{\sigma}_1^2 := (1 + \hat{\eta})^2(1 - \hat{l})(1 - 2\hat{l}\hat{c}_x(1, 1)\hat{c}_y(1, 1))
\]

and define \(\hat{\sigma}_2^2 \) likewise. Then \(\hat{\sigma}_i^2, i = 1, 2 \), are consistent estimators of \(\sigma_i^2 \) for all \(\eta \in (0, 1] \).

Remark 2.2. Note that \(c_y(1, 1) \) may also be estimated by \(1 - \hat{c}_x(1, 1) \) if \(\eta = 1 \).

Example 2.1. The bivariate normal distribution with mean 0, variance 1 and correlation coefficient \(\rho \not\in \{1, -1\} \), satisfies (2.1) with

\[
\eta = (1 + \rho)/2, \quad c(x, y) = (xy)^{1/(1+\rho)},
\]

\[
q(t) = k_1(\rho)t^{2/(1+\rho)}(-\log t)^{-\rho/(1+\rho)} \left\{ 1 - k_2(\rho)\frac{\log(-\log t)}{2\log t} \right\},
\]
\[c_1(x, y) = -k_3(\rho) - k_4(x, y, \rho), \quad q_1(t) = \frac{1}{2 \log t}, \]

where

\[
\begin{align*}
 k_1(\rho) &= \frac{(1 - \rho^2)^{3/2}}{(1 - \rho)^2} - (4\pi)^{-\rho/(1+\rho)}, \\
 k_2(\rho) &= \frac{\rho}{1 + \rho}, \\
 k_3(\rho) &= \frac{\rho \log(4\pi) + 2}{1 + \rho} - \frac{(1 + \rho)(2 - \rho)}{1 - \rho}, \\
 k_4(x, y, \rho) &= \log x + \log y + \frac{(\rho - 1)(\log x + \log y) + \rho \log x \log y - \rho (\log^2 x + \log^2 y) / 2}{(1 - \rho^2)}.
\end{align*}
\]

This can be checked using the tail expansion of the bivariate normal distribution by Ruben (1964) as given in Ledford and Tawn (1997), combined with a sufficiently precise expansion of the function \(f \), the inverse function of \(1/(1 - \Phi) \) where \(\Phi \) is the standard univariate normal distribution function:

\[
f^2(t) = 2 \log t - \log(\log t) - \log(4\pi) + \frac{\log(\log t)}{2 \log t} + \frac{\log(4\pi) - 2}{2 \log t} + 1/2 \left(\frac{\log(\log t)}{2 \log t} \right)^2 + o \left(\left(\frac{\log(\log t)}{\log t} \right)^2 \right), \quad \text{as } t \to \infty.
\]

3 Estimation of failure probabilities

Throughout this section we assume that the marginal distribution functions \(F_i \) of \(F \) are continuous and belong to the domain of attraction of a univariate extreme value distribution, and that condition (2.1) holds.

If we want to estimate the probability of an extreme set of the form \(\{X > x \text{ or } Y > y\} \) and we assume that \(F \) belongs to the domain of attraction of a bivariate extreme value distribution, then we can use the approximate equality

\[
P\{1 - F_1(X) < 1 - F_1(x) \text{ or } 1 - F_2(Y) < 1 - F_2(y)\}
\approx t P\{1 - F_1(X) < (1 - F_1(x))/t \text{ or } 1 - F_2(Y) < (1 - F_2(y))/t\} \quad (3.1)
\]

since for small \(t \) the right hand side can be estimated using the empirical distribution function (de Haan and Sinha 1999). However, if the marginals are asymptotically independent and the failure set is e.g. of the form \(\{X > x \text{ and } Y > y\} \) then a different approximation holds under condition (2.1):

\[
P\{1 - F_1(X) < 1 - F_1(x) \text{ and } 1 - F_2(Y) < 1 - F_2(y)\}
\approx t^{1/\eta} P\{1 - F_1(X) < (1 - F_1(x))/t \text{ and } 1 - F_2(Y) < (1 - F_2(y))/t\}. \quad (3.2)
\]
We develop an estimation procedure which works in this situation.

More generally, we aim at the estimation of the failure probability $p_n = P\{(X, Y) \in C_n\}$ for failure regions $C_n \subset [x_n, \infty] \times [y_n, \infty]$ for some $x_n, y_n \in \mathbb{R}$ such that

$$(x, y) \in C_n \implies [x, \infty] \times [y, \infty] \subset C_n.$$ \hfill (3.3)

The latter property means that if an observation (x, y) causes a failure (e.g., the concentrations of two pollutants exceed maximum acceptable levels) then an event with both components larger will do so, too. Asymptotically we let both x_n and y_n converge to the right endpoint of the pertaining marginal distribution to ensure that $p_n \to 0$, i.e., that indeed we are estimating the probability of an extremal event.

The basic idea is to use a generalized version of the scaling property (3.2) to inflate the transformed failure set $(1 - F_1, 1 - F_2)(C_n) := \{(1 - F_1(x), 1 - F_2(y)) \mid (x, y) \in C_n\}$ such that it contains sufficiently many observations and hence the empirical probability gives an accurate estimate. Since the marginal distribution functions F_i are unknown, their tails are estimated by suitable generalized Pareto distributions.

To work out this program, first recall from univariate extreme value theory that there exist normalizing constants $a_i(n/k) > 0$ and $b_i(n/k) \in \mathbb{R}$ such that the following generalized Pareto approximation is valid:

$$1 - F_i(x) \approx \frac{k}{n} \left(1 + \gamma_i \frac{x - b_i(n/k)}{a_i(n/k)}\right)^{-1/\gamma_i} =: \frac{k}{n} (1 - F_{a_i, b_i, \gamma_i}(x)), \quad i = 1, 2,$$ \hfill (3.4)

for x close to the right endpoint $F_i^{-1}(1)$. Here a_i and b_i are abbreviations for $a_i(n/k)$ and $b_i(n/k)$, respectively, and $(1 + \gamma x)^{-1/\gamma}$ is defined as ∞ if $\gamma > 0$ and $x \leq -1/\gamma$, and it is defined as 0 if $\gamma < 0$ and $x \geq -1/\gamma$. Dekkers et al. (1989) proposed and analyzed the following estimators of the parameters a_i, b_i and γ_i. Define

$$M_j(X) := \frac{1}{k} \sum_{i=1}^{k} (\log X_{n,n-i+1} - \log X_{n,n-k})^j, \quad j = 1, 2,$$

$$\hat{\gamma}_1 := M_1(X) + 1 - \frac{1}{2} \left(1 - \frac{(M_1(X))^2}{M_2(X)}\right),$$

$$\hat{b}_1 \left(\frac{n}{k}\right) := X_{n,n-k},$$

$$\hat{a}_1 \left(\frac{n}{k}\right) := \frac{X_{n,n-k} \sqrt{3M_1(X)^2 - M_2(X)}}{\sqrt{(1 - 4\hat{\gamma}_1^{-1})/(1 - \hat{\gamma}_1^{-1})^2(1 - 2\hat{\gamma}_1^{-1})}} \quad \text{with} \quad \hat{\gamma}_1^{-1} := \hat{\gamma}_1 \land 0;$$

for $\hat{\gamma}_2$, \hat{a}_2 and \hat{b}_2 replace X by Y in the previous formulas. The estimator $\hat{\gamma}_i$ for the extreme value index γ_i is often called moment estimator.
Using these definitions, \(\frac{n}{k} (1 - F_i(x)) \) may be estimated by
\[
1 - F_{\hat{a}, \hat{b}, \hat{\gamma}_i}(x) = \left(1 + \frac{\gamma_i}{\hat{a}_i} \left(x - \frac{\hat{b}_i(n/k)}{\hat{a}_i(n/k)} \right) \right)^{-1/\hat{\gamma}_i}.
\]
Write \(1 - F(x, y) \) as a short form for \((1 - F_1(x), 1 - F_2(y)) \), and likewise \(1 - F_{a,b} = (1 - F_{a_1,b_1, \gamma_1}, 1 - F_{a_2,b_2, \gamma_2}) \) and \(1 - F_{\hat{a}, \hat{b}} = (1 - F_{\hat{a}_1, \hat{b}_1, \hat{\gamma}_1}, 1 - F_{\hat{a}_2, \hat{b}_2, \hat{\gamma}_2}) \) are functions from \(\mathbb{R}^2 \) to \([0, \infty]^2 \). Then, in view of (3.4), the transformed failure set \(\frac{n}{k} (1 - F(C_n)) \) can be approximated by
\[
D_n := 1 - F_{a,b}(C_n)
\]
which in turn is estimated by
\[
\hat{D}_n := 1 - F_{\hat{a}, \hat{b}}(C_n).
\]
Now we may argue heuristically as follows, using a generalization of the scaling property (3.2) to inflate the transformed failure set by the factor \(1/c_n \) for some \(c_n \to 0 \) chosen in a suitable way:
\[
\begin{align*}
p_n &= P\{1 - F(X, Y) \in 1 - F(C_n)\} \\
&\approx P\left\{ \frac{n}{k} (1 - F(X, Y)) \in D_n \right\} \\
&\approx c_n^{1/\hat{\gamma}} P\left\{ \frac{n}{k} (1 - F(X, Y)) \in \frac{D_n}{c_n} \right\} \\
&\approx c_n^{1/\hat{\gamma}} P\{ (X, Y) \in B \} |B = F_{\hat{a}, \hat{b}} \left(1 - \frac{\hat{D}_n}{c_n} \right) \\
&\approx c_n^{1/\hat{\gamma}} \frac{1}{n} \sum_{i=1}^{n} 1 \{ (X_i, Y_i) \in F_{\hat{a}, \hat{b}} \left(1 - \frac{\hat{D}_n}{c_n} \right) \} \\
&=: \hat{p}_n
\end{align*}
\]
where \(\hat{\eta} \) denotes one of the estimators for \(\eta \) examined in Section 2.

In the following, we state the exact conditions under which we will prove consistency of the estimator \(\hat{p}_n \), that is, \(\hat{p}_n/p_n \to 1 \) in probability as \(n \to \infty \). In order not to overload the paper, we will not determine the nondegenerate limit distribution of the standardized estimation error. However, employing the ideas of de Haan and Sinha (1999), one may establish asymptotic normality of \(\hat{p}_n \) under more complex conditions.

To study the asymptotic behavior of \(\hat{p}_n \), we have to impose a regularity condition on the sequence of failure sets \(C_n \), or rather on the transformed sets \(D_n \). Note that \(D_n \) shall shrink towards the origin because we are interested in extremal events. We assume that, after a suitable
standardization, D_n converges in the following sense:

(D) There exist a sequence $d_n \to 0$ and a measurable bounded set $A \subset [0, \infty)^2$ with $\nu(A) > 0$ such that for all $\varepsilon > 0$ one has for sufficiently large n

$$A_{-\varepsilon} \subset \frac{D_n}{d_n} \subset A_{+\varepsilon}.$$

Here $A_{+\varepsilon} := \{ x \in [0, \infty)^2 | \inf_{y \in A} \| x - y \| \leq \varepsilon \}$ and $A_{-\varepsilon} := [0, \infty)^2 \setminus (([0, \infty)^2 \setminus A)_{+\varepsilon})$ denote the outer and inner ε–neighborhood of A with respect to the maximum norm $\| x - y \| = |x_1 - y_1| \lor |x_2 - y_2|$, and ν is the measure corresponding to the function c (cf. Section 2).

Note that d_n and A are not determined by this condition as the former may be multiplied by a fixed factor and the latter divided by the same number. Moreover, even for given d_n the set A is determined only up to its boundary.

Condition (3.3) on C_n implies

$$(x, y) \in D_n \implies [0, x] \times [0, y] \subset D_n. \tag{3.8}$$

Example 3.1. For $C_n = [x_n, \infty] \times [y_n, \infty]$ we have $D_n = [0, 1 - F_{a_1, b_1, 1}(x_n)] \times [0, 1 - F_{a_2, b_2, 1}(y_n)]$.

Hence (D) is satisfied with $d_n = 1 - F_{a_1, b_1, 1}(x_n)$ if $(1 - F_{a_2, b_2, 1}(y_n))/(1 - F_{a_1, b_1, 1}(x_n))$ converges in $(0, \infty)$.

This example demonstrates that condition (D) essentially means that the convergence of the failure set in the x- and the y-direction is balanced.

Next we need a certain rate of convergence for the marginal estimators to ensure that the transformation of the failure set does not introduce too big an error. For that purpose note that

$$R_i(t, x) := t(1 - F_i(a_i(t)x + b_i(t))) - (1 + \gamma_i x)^{-1/\gamma_i} \to 0, \quad i = 1, 2,$$

locally uniformly for $x \in (0, \infty)$ as $t \to \infty$, since F_i belongs to the domain of attraction of an extreme value distribution (cf. (3.4)). Here we impose the following slightly stricter condition:

$$R_{x_1, x_2}(t) := \max_{i=1,2} \sup_{x_i < x < 1/((-\gamma_i) \lor 0)} |R_i(t, x)(1 + \gamma_i x)^{1/\gamma_i}| \to 0 \tag{3.9}$$

for some $-1/((\gamma_i) \lor 0) < x_i < 1/((-\gamma_i) \lor 0)$, $i = 1, 2$. Observe that then (3.9) even holds for all such x_i. For example, if F_i satisfies the second order condition

$$R_i(t, x) \to A_i(t) \rightarrow \Psi(x)$$
for some ρ_i-varying function A_i with $\rho_i < 0$ ($i = 1, 2$), then (3.9) holds true with $R_{x_1,x_2}(t) = O(A_1(t) \lor A_2(t))$. In addition, we require that not too many order statistics are used for estimation of the marginal parameters:

$$k^{1/2}R_{x,x}\left(\frac{n}{k}\right) = O(1)$$ (3.10)

for some $x < 0$. Then it follows that the estimators \hat{a}_i, \hat{b}_i and $\hat{\gamma}_i$ are \sqrt{k}-consistent in the following sense:

$$\left| \frac{\hat{a}_i}{a_i} - 1 \right| \lor \left| \frac{\hat{b}_i - b_i}{a_i} \right| \lor |\hat{\gamma}_i - \gamma_i| = O_P(k^{-1/2}), \quad i = 1, 2$$ (3.11)

We will see that using the estimated parameters instead of the unknown true ones for the transformation of the failure sets does not cause problems provided

$$w_{\gamma_1 \lor \gamma_2}(d_n) = o(k^{1/2}) \quad \text{with} \quad w_{\gamma}(x) := -x^{\gamma} \int_x^1 u^{-\gamma - 1} \log u \, du.$$ (3.12)

Check that

$$w_{\gamma}(x) \sim \begin{cases} -\frac{1}{\gamma} \log x, & \gamma > 0 \\ \frac{(\log x)^2}{2}, & \gamma = 0 \\ \frac{x^{\gamma}}{\gamma}, & \gamma < 0, \end{cases}$$

as $x \to 0$. Though, at first glance, (3.12) seems rather strict a condition if one of the extreme value indices is negative, it is indeed a natural one; for without it the difference between the transformed set D_n and its estimate \hat{D}_n would be at least of the same order in probability as the typical elements of D_n, namely at least of the order d_n, which of course would render impossible any further statistical inference on the failure probability.

In addition, the scaling factor c_n chosen by the statistician when applying the estimator \hat{p}_n must be related to the actual scaling factor d_n as follows:

$$d_n = O(c_n), \quad w_{\gamma_1 \lor \gamma_2}\left(\frac{c_n}{d_n}\right) = o(k^{1/2}) \quad \text{and} \quad \left(\frac{c_n}{d_n}\right)^{1/\eta} = o((r(n))^{1/2}),$$ (3.13)

with $r(n) := nq(k/n)$. In particular, (3.13) is satisfied if c_n and d_n are of the same order. Below the choice of c_n is discussed more thoroughly.

Note that the scaling property (3.2) is a consequence of approximation (2.1) and the homogeneity of the measure ν. In order to justify (3.5) in the motivation for \hat{p}_n given above, we need the following condition, which applies to more general sets than just upper quadrants:

$$\sup_{B \in \mathcal{B}_n} \left| \frac{P\{1 - F(X,Y) \in 1 - F(B)\}}{q(k/n)\nu\left(\frac{n}{k}(1 - F(B))\right)} - 1 \right| \rightarrow 0 \quad \text{as} \quad n \rightarrow \infty$$ (3.14)
where
\[B_n := \left\{ F_{\tilde{a}, \tilde{b}} \left(1 - \frac{1 - F_{\tilde{a}, \tilde{b}}(C_n)}{c_n} \right) \right\} \left\| \frac{\tilde{\alpha}}{\alpha} - 1 \right\| \vee \left\| \frac{\tilde{\beta} - \beta}{\alpha} \right\| \vee \left\| \tilde{\gamma} - \gamma \right\| \leq \varepsilon_n \}
\]
for some \(\varepsilon_n \to 0 \) such that \(k^{1/2} \varepsilon_n \to \infty \), and
\[\bar{B}_n := B_n \cup \left\{ C_n, \bigcup_{B \in B_m, m \geq n} B \right\}. \]

It will turn out (see (6.16)) that for sufficiently large \(n \) the denominator in (3.14) is strictly positive.

Notice that the convergence of the absolute value in (3.14) for sets of the type \(1 - F(B) = [0, xk/n] \times [0, yk/n] \) follows from convergence (2.1) with \(t = k/n \).

Finally, to make approximation (3.6) rigorous, we need a kind of uniform law of large numbers. This is provided by the theory of Vapnik-Cervonenkis (VC) classes of sets as outlined, e.g., in the monograph by Pollard (1984, Section II.4). For this we require
\[\mathcal{B} = \bigcup_{n \in \mathbb{N}} B_n \quad \text{is a VC class.} \tag{3.15} \]

Theorem 3.1. Suppose the conditions (D), (3.3) (or (3.8)), (3.9), (3.10) and (3.12)–(3.15) are satisfied. If \(\hat{\eta} - \eta = O_P((r(n))^{-1/2}), \) log \(c_n = o((r(n))^{1/2}), \) and \(k(n)/n \) is almost decreasing, which means \(\sup_{m \geq n} k(m)/m = O(k(n)/n) \), then
\[\frac{\hat{p}_n}{p_n} \to 1 \quad \text{in probability.} \]

Remark 3.1.
(i) In the most important case that \(np_n \) is bounded, the conditions (3.12)–(3.14) can be jointly satisfied only if \(\gamma_1 \wedge \gamma_2 > -1/2 \).

(ii) If the conditions of Theorem 2.1 are satisfied for \(m(n) = \lfloor r(n) \rfloor \), then \(\hat{\eta} - \eta = O_P((r(n))^{-1/2}) \).

(iii) The sequence \(k(n)/n \) is almost decreasing, e.g., if \(k(n) \) is regularly varying with index less than 1 or, more general, has an upper Matuszewska index \(\alpha \leq 1 \) (see Bingham et al. 1987; Theorem 2.2.2).

The scaling factor \(1/c_n \) by which the transformed failure set is inflated determines the number of large observations taken into account for the empirical probability (3.6). More precisely, according to (6.17) in the proof of Lemma 6.6, this number is of the order \(r(n)(d_n/c_n)^{1/\eta} \). Hence if \(d_n \) and \(c_n \) are of the same order and \(\hat{\eta} \) is based on the largest \(m(n) = \lfloor r(n) \rfloor \) order statistics.
of \(T_i^{(n)} \), then the numbers of observations used in both steps of the estimation procedure are of the same order of magnitude, which seems quite natural.

In practice, of course, \(d_n \) and \(r(n) \) are not known. However, conversely one may choose \(c_n \) such that about \(r(n) \) observations lie in the inflated set \(\hat{D}_n/c_n \). To be more concrete, let

\[
c_n(\lambda) := \sup \left\{ c > 0 \mid \sum_{i=1}^{n} 1 \left\{ (X_i, Y_i) \in F_{\hat{a}, \hat{b}}, \left(1 - \frac{\hat{D}_n}{c} \right) \right\} \geq \lambda r(n) \right\}
\]

for some \(\lambda > 0 \) where

\[
r(n) := \sum_{i=1}^{n} 1 \{ X_i > X_{n,n-k} \text{ and } Y_i > Y_{n-k,n} \}.
\]

Following the lines of the proof of Theorem 3.1, one may show that the estimator \(\hat{p}_n \) is consistent for \(p_n \) if one chooses \(c_n = c_n(\lambda) \) and \(m(n) = r(n) \).

Alternatively, one may copy a heuristic approach which is common in univariate extreme value statistics: one plots \(\hat{p}_n \) as a function of \(c_n \) and choose a value \(c_n \) where this graph seems sufficiently stable.

Finally, it is worth mentioning that one may use other estimators for the marginal parameters, like e.g. the maximum likelihood estimator examined by Smith (1987) and Drees et al. (2002), provided these estimators converge with the same rate.

4 Simulations

We examine the small sample behavior of the estimators \(\hat{\eta}_1 \) and \(\hat{\eta}_2 \) for four different distributions:

i. the bivariate Cauchy distribution (\(\eta = 1 \)),

ii. the bivariate extreme value distribution (BEV) with a logistic dependence function, with \(\alpha = 0.75 \) (\(\eta = 1 \)) (Ledford and Tawn 1996,1997),

iii. the bivariate normal distribution with correlation \(\rho = 0.6 \) (\(\eta = 0.8 \)) and

iv. the Morgenstern distribution with \(\alpha = 0.75 \) (\(\eta = 0.5 \)) (Ledford and Tawn 1996,1997).

From each distribution we generated 250 samples of size 1000. All calculations were carried out with the GAUSS package. For comparison we also simulated Peng’s (1999) estimator of \(\eta \):

\[
\hat{\eta}_3 := \log 2 / \log \left(\frac{S_n(m)}{S_n(\lfloor m/2 \rfloor)} \right) \quad \text{with} \quad S_n(k) := \sum_{i=1}^{n} 1 \{ X_i > X_{n,n-k} \text{ and } Y_i > Y_{n-k,n} \}.
\]
Note that here the meaning of m is different from the one in the definitions of $\hat{\eta}_1$ and $\hat{\eta}_2$.

In Table 1 besides the averages, the root mean squared errors and the standard deviations of the estimates, we report the means of two different estimates of the approximate standard deviation obtained in Theorem 2.1 and Theorems 2.1 and 2.2 of Peng (1999). The first estimator, referred to as $\hat{\sigma}_i(\hat{\eta}_i)$, is defined as $\hat{\sigma}_i m^{-1/2}$ with $\hat{\sigma}_i$ defined in Theorem 2.2 for $i = 1, 2$, while for $i = 3$ we use the variance estimator proposed by Peng (1999); the second variance estimator, called $\hat{\sigma}_i(1)$, is defined similarly but the estimator for η is replaced with 1.

These estimators for the standard deviations can be used to construct two different tests for asymptotic dependence (or $\eta = 1$) with nominal size 0.05. More concretely, asymptotic dependence is accepted if $(1 - \hat{\eta}_i)/\hat{\sigma}_i(\hat{\eta}_i) \leq \Phi^{-1}(0.95)$ or, alternatively, if $(1 - \hat{\eta}_i)/\hat{\sigma}_i(1) \leq \Phi^{-1}(0.95)$, with Φ^{-1} denoting the standard normal quantile function. The percentage of simulations in which the hypothesis $\eta = 1$ is accepted is also reported in Table 1. Finally, the number of simulations in which the test statistics could not be calculated is given in the last column. For the maximum likelihood estimator this occurred when no solution of the likelihood equations could be found, for Peng’s estimator $S_n(m)$ may be equal to $S_n(\lfloor m/2 \rfloor)$ and the estimated variance can be negative. The values m were chosen in a range where the overall performance of the tests seem best.

In Figure 1, the averages of the observed $\hat{\eta}_i$ are plotted versus m and also the standard deviations of the three estimators are indicated for the Cauchy and the normal distribution.

The maximum likelihood estimator $\hat{\eta}_1$ exhibits the greatest stability with respect to the choice of m, but it is biased downward for the BEV and the normal distribution. The Hill estimator $\hat{\eta}_2$ is also biased downward for the Cauchy, the BEV and the normal distribution, and the bias increases rapidly with m. Peng’s estimator is nearly unbiased for small values of m, but it shows a growing negative bias in particular for the Cauchy and the BEV distribution. The variance of the estimates is smallest for $\hat{\eta}_2$ and largest for $\hat{\eta}_3$. The estimators for the standard deviations are reasonably accurate.

Table 1 shows that the tests based on the maximum likelihood estimator $\hat{\eta}_1$ perform best. For the Cauchy and the BEV distribution, the smaller variance and the somewhat larger bias of the Hill estimator lead to an empirical size of the test based on this estimator that is much larger than the nominal size. Conversely, the number of simulations in which the test based on Peng’s estimator and $\hat{\sigma}_3(1)$ rejects the hypothesis is quite low for the normal and the Morgenstern distribution, because $\hat{\sigma}_3(1)$ is rather large.
Furthermore we study the finite sample behavior of the proposed estimator of a failure probability. For this we considered failure sets of the type \((a, \infty)^2\) where \(a\) is chosen such that the failure probability \(p_n\) equals \((100n)^{-1} = 10^{-5}\) for the sample size \(n = 1000\). We use the maximum likelihood estimator \(\hat{\eta}_1\) to estimate the coefficient of tail dependence and consider the following three estimators of \(p_n\): \(\hat{p}(\hat{\eta}) = \hat{p}_n\) as defined in (3.7) with \(c_n = c_n(1)\) defined by (3.16), \(\hat{p}(1) = c_n^{1-\eta} \hat{p}_n\) (thus assuming \(\eta = 1\)), and \(\hat{p} = \hat{p}(1)\) or \(\hat{p}(\hat{\eta})\) depending on whether the hypothesis \(\eta = 1\) is accepted or rejected by the test with standard deviation estimated by \(\hat{\sigma}_1(1)\). Table 2 summarizes the main results for the failure probability estimators. The corresponding boxplots are shown in Figure 2.

For the Cauchy distribution we have asymptotic dependence, so \(\hat{p}(1)\) is appropriate. As expected \(\hat{p}(\hat{\eta})\) spreads more widely than \(\hat{p}(1)\) (see Figure 2).

For the normal distribution the main problem is to estimate the marginals. In particular, the estimates for \(\gamma_1\) and \(\gamma_2\) are often negative. This implies a finite right endpoint of the marginal distributions and in quite many simulations the failure area lies outside the support of the distribution, leading to an estimated failure probability equal to 0.

When the marginals are first transformed to the exponential distribution, then the estimators of the marginal parameters are much more accurate with \(\hat{\gamma}_i, i = 1, 2,\) close to 0, and the estimators for \(p_n\) perform much better. Nevertheless, in several simulations \(\hat{p}_n = 0\) when one or both estimates of \(\gamma_i\) are negative. Here the estimator \(\hat{p}(1)\), that assumes \(\eta = 1\), over-estimates the probability, while \(\hat{p}(\hat{\eta})\) under-estimates it.

The Morgenstern distribution has asymptotically independent marginals. The estimator \(\hat{p}(\hat{\eta})\) is slightly biased downward whereas \(\hat{p}(1)\) has a strong positive bias. Estimating the marginals does not cause problems here as the Morgenstern distribution has extreme value (Fréchet) marginals.

5 An application: dependence of sea state parameters

In the course of the Neptune project, financed by the European Union (grant MAS2-CT94-0081) we studied the joint distribution of three sea state variables and its consequences for the seawall at Petten. The dataset, supplied by the Dutch National Institute for Marine and Coastal management, consists of date, time and sea characteristics recorded from 1979 till 1991, at three-hourly intervals at the Eierland station, 20 km off the Dutch coast. To obtain (nearly)
independent observations of wave height \(H_m \), wave period \(T_p \) and still water level \(SWL \), the maximum value of each of these state variables in distinct storm events are considered (see de Valk, 1994, for details). De Haan and Ronde (1998) estimated the failure probability of the ‘Pettemer zeewering’ assuming asymptotic dependence between the variables. Figure 3 shows a scatterplot of \(H_m \) and \(SWL \) and illustrates the estimation of the corresponding coefficient of tail dependence. While the test based on Peng’s estimator and the estimator \(\hat{\sigma}_3(1) \) of the standard deviation accepts the hypothesis of asymptotic dependence at the 5%-level, the maximum likelihood estimator suggests to reject this hypothesis, because for \(m \) between 60 and 160, where the curve of estimates for \(\eta \) is most stable, the estimates lie in the critical region. Also the test based on the Hill estimator rejects the hypothesis for small values of \(m \). In view of the results from the simulation study reported in Section 4, it seems plausible to assume asymptotic independence between the wave heights and the still water level.

6 Proofs for Sections 2 and 3

Define uniformly distributed random variables \(U_i := 1 - F_1(X_i) \) and \(V_i := 1 - F_2(Y_i) \) and denote the pertaining order statistics by \(U_{n,i} \) and \(V_{n,i} \), with the convention \(U_{n,0} = V_{n,0} = 0 \).

We will use the following notation:

\[
S_1(x, y) := \sum_{i=1}^{n} 1\{U_i \leq x \text{ and } V_i \leq y\}, \quad S_2(x, y) := \sum_{i=1}^{n} 1\{U_i \leq x \text{ or } V_i \leq y\}. \quad (6.1)
\]

Let \(W_1(x, y) \) and \(W_2(x, y) \) be Gaussian processes with mean zero and covariance structure given by

\[
E \{W_1(x_1, y_1)W_1(x_2, y_2)\} = c(x_1 \land x_2, y_1 \land y_2) \quad \text{and}
\]

\[
E \{W_2(x_1, y_1)W_2(x_2, y_2)\} = c(x_1 \land x_2 + y_1 \land y_2 - lc(x_1, y_1) - lc(x_2, y_2) + lc(x_1 \lor x_2, y_1 \lor y_2),
\]

respectively. Moreover, let \(k = \lceil nq^{-1}(m/n) \rceil \), so that \(m/k \to l \).

Lemma 6.1. Under the conditions of Theorem 2.1

\[
\sqrt{m} \left(\frac{S_1(U_{n,[kx]}, V_{n,[ky]})}{m} - c(x, y) \right) \xrightarrow{D} W(x, y).
\]

Here, and below, \(\xrightarrow{D} \) denotes convergence in distribution in \(D([0, \infty)^2) \) and \(W(x, y) \) is a Gaussian process with mean zero and covariance structure depending on \(l \):

- in the case \(l = 0 \)

\[
W(x, y) = W_1(x, y);
\]

- in the case \(l \neq 0 \)
in the case \(l > 0 \)

\[
W(x, y) = \frac{1}{\sqrt{l}} (W_2(x, 0) + W_2(0, y) - W_2(x, y)) \\
- \sqrt{l}c_x(x, y)W_2(x, 0) - \sqrt{l}c_y(x, y)W_2(0, y),
\]

where the term in the first line of the right hand side has the same distribution as \(W_1(x, y) \).

Proof. From Peng (1999), Huang (1992) and Einmahl (1997, Theorem 3.1), it follows that

\[
\sqrt{m} \left(S_1 \left(\frac{k}{n} x, \frac{k}{n} y \right) - c(x, y) \right) \xrightarrow{D} W_1(x, y). \tag{6.2}
\]

Similarly one obtains

\[
\sqrt{k} \left(S_2 \left(\frac{k}{n} x, \frac{k}{n} y \right) - (x + y - kc(x, y)) \right) \xrightarrow{D} W_2(x, y). \tag{6.3}
\]

This implies

\[
\sqrt{k} \left(\frac{1}{k} \sum_{i=1}^{n} 1 \{ U_i \leq \frac{k}{n} x \} - x \right) \xrightarrow{D} W_2(x, 0).
\]

Note that the generalized inverse of \(x \mapsto 1/k \sum_{i=1}^{n} 1 \{ U_i \leq k/nx \} \) equals \(x \mapsto (n/k)U_{n, \lfloor kx \rfloor} \).

Vervaat’s (1972) lemma yields

\[
\sqrt{k} \left(\frac{n}{k} U_{n, \lfloor kx \rfloor} - x \right) \xrightarrow{D} -W_2(x, 0) \\
\sqrt{k} \left(\frac{n}{k} V_{n, \lfloor ky \rfloor} - y \right) \xrightarrow{D} -W_2(0, y). \tag{6.4}
\]

For \(l = 0 \), we have \(m = o(k) \) and hence

\[
\sqrt{m} \left(\frac{n}{k} U_{n, \lfloor kx \rfloor} - x \right) \xrightarrow{p} 0 \\
\sqrt{m} \left(\frac{n}{k} V_{n, \lfloor ky \rfloor} - y \right) \xrightarrow{p} 0.
\]

Therefore, the assertion follows from (6.2) and the differentiability of \(c \).

In the case \(m/k \to l > 0 \), one may derive the result in a similar fashion using

\[
S_1(U_{n, \lfloor kx \rfloor}, V_{n, \lfloor ky \rfloor}) = \left\lfloor kx \right\rfloor + \left\lfloor ky \right\rfloor - S_2(U_{n, \lfloor kx \rfloor}, V_{n, \lfloor ky \rfloor})
\]

(cf. Peng 1999). \qed

Denote by \(Q_n \) the tail empirical quantile function pertaining to \(T_i^{(n)} \), \(1 \leq i \leq n \), i.e.

\[
Q_n(t) := T_i^{(n)} \bigg|_{n, n - \lfloor mt \rfloor}, \quad 0 < t < n/m.
\]

The following lemma is central to the proof of the asymptotic normality of estimators for \(\eta \) based on largest order statistics of \(T_i^{(n)} \).
Lemma 6.2. Under the conditions of Theorem 2.2 there exist suitable versions of Q_n, a suitable process \bar{W} equal in distribution to a standard Brownian motion if $l = 0$ and to $x \mapsto W(x, x)$ if $l > 0$ such that for all $t_0, \varepsilon > 0$

$$\sup_{0 < t \leq t_0} t^{\eta + 1/2 + \varepsilon} \left| m^{1/2} \left(\frac{k}{n} Q_n(t) - t^{-\eta} \right) - \eta t^{-(\eta + 1)} \bar{W}(t) \right| = o_P(1).$$

Proof. First check that

$$\sum_{i=1}^{n} \mathbb{1}\{T_i^{(n)} > x\} = \sum_{i=1}^{n} \mathbb{1}\{R_i^X > (n + 1)(1 - 1/x)\}$$

$$= \sum_{i=1}^{n} \mathbb{1}\{U_i < U_n, [(n+1)/x] \text{ and } V_i < V_n, [(n+1)/x] \} \quad \text{a.s.}$$

with the convention $U_{n,n+1} = V_{n,n+1} = 1$. Hence

$$\bar{F}_n(x) := \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\{ \frac{k}{n+1} T_i^{(n)} > x \} = \frac{1}{n} S_1 \left(U_{n,[k/x]} - V_{n,[k/x]} \right)$$

where $f(x-)$ denotes the left-hand limit of f at x. From Lemma 6.1 one readily obtains that

$$m^{1/2} \left(\frac{\bar{F}_n(x)}{q(k/n)} - x^{1-\eta} \right)_{0 < x < \infty} \rightarrow \left(W(1/x, 1/x) \right)_{0 < x < \infty}$$

$$\Rightarrow m^{1/2} \left(\frac{\bar{F}_n(x^{-\eta})}{q(k/n)} - x \right)_{0 < x < \infty} \rightarrow \left(W(x^n, x^n) \right)_{0 < x < \infty} =: \bar{W}$$

$$\Rightarrow m^{1/2} \left(\bar{F}_n^{-1}(q(k/n)t) \right)^{-1/\eta} \rightarrow -\bar{W}$$

weakly in $D(0, \infty)$, where in the last step Vervaat’s (1972) lemma has been used. For this, note that \bar{W} has a.s. continuous sample paths, because by the definition of W it is a Brownian motion for $l = 0$ and it can be represented as a sum of Brownian motions if $l > 0$. Thus the δ-method yields, for suitable versions,

$$\bar{F}_n^{-1}(q(k/n)t) = t^{-\eta} \left(1 + m^{-1/2} \eta t^{-1} \bar{W}(t) + o(m^{-1/2}) \right) \quad \text{a.s.}$$

uniformly on compact intervals bounded away from 0.

Next note that $\bar{F}_n^{-1}(q(k/n)t) = k/nQ_n(t) + O(1/m)$ uniformly and $\sup_{0 < t \leq \vartheta} t^{-1/2 + \varepsilon} |\bar{W}(t)| = o_P(1)$ as $\vartheta \downarrow 0$ by the law of the iterated logarithm and the aforementioned representation of W. Thus it suffices to prove that for all $\delta > 0$

$$\lim_{\vartheta \downarrow 0} \limsup_{n \rightarrow \infty} \left\{ \sup_{0 < t \leq \vartheta} m^{1/2} \left(\frac{k}{n+1} Q_n(t) - t^{-\eta} \right) > \delta \right\} = 0.$$ \hspace{1cm} (6.5)

Here we will only consider

$$P\left\{ \sup_{0 < t \leq \vartheta} m^{1/2} t^{\eta + 1/2 + \varepsilon} \left(\frac{k}{n+1} Q_n(t) - t^{-\eta} \right) > \delta \right\}$$

$$\leq P\left\{ \exists 1 \leq i \leq m\vartheta + 1 : \frac{k}{n+1} T_{i,n} > x_{i,n} \text{ and } x_{i,n} < k \right\}$$ \hspace{1cm} (6.6)
The other inequality can be treated in a similar way.

Let \(T_i := (1/U_i) \wedge (1/V_i) \). Then the right-hand side of (6.6) can be bounded by

\[
P\left\{ \exists 1 \leq i \leq m\theta + 1 : \sum_{j=1}^{n} 1\{T_j > (1/U_{n,[k/x_{i,n}])} \wedge (1/V_{n,[k/x_{i,n}]) \} \geq i \text{ and } x_{i,n} < k \right\}.
\]

Now we distinguish two different ranges of \(i \)-values.

According to Shorack and Wellner (1986, Theorem 10.3.1), for all \(\bar{\varepsilon} > 0 \) there exists \(\bar{\delta} > 0 \) such that eventually with probability greater than 1

\[
1 - \bar{\varepsilon} (1/U_{n,[k/x_{i,n}])} \wedge (1/V_{n,[k/x_{i,n}])} \geq n k x_{i,n} \bar{\delta} \geq \bar{\delta} L k^{-1} m^{-n_1-n_2} (n/i) \eta
\]

for all \(i \leq i_n := \lfloor (\delta m^2/L)^{1/(1/2+\eta)} \rfloor \) with \(x_{i,n} < k \).

Since \(q^{-1} \) is \(\eta \)-varying at 0 and the quantile function \(F_T^{-1} \) of \(T_i \) is \(-\eta\)-varying at 1, in the case \(\eta < 1 \), we have \(k/n = o((m/n)^{\eta+1}) \) and \(F_T^{-1}(1-t) = o(t^{-\eta_1}) \) as \(t \downarrow 0 \) for all \(t > 0 \). Hence the right-hand side of (6.7) is of larger order than \(F_T^{-1}(1-2i/(\delta L n)) \).

If \(\eta = 1 \), in view of (2.1) and Lemma 2.1 of Drees (1998a), we have

\[
\sup_{x \leq 1} |q(tx)/q(t) - x| = o(q_1(t)).
\]

Apply this bound with \(t = k/n \) and \(x = i/(\delta L m) \) to obtain \(1 - F_T(x_{i,n} k/n) \leq 2i/(\delta L n) \), since \(x_{i,n} \geq L m/i \) and \((i/m)^{1-i} q_1(k/n) = o(m^{1/2} q_1(k/n)/m) = o(m) \) uniformly for \(1 \leq i \leq i_n \).

Hence, for all \(\eta \), it follows that

\[
\limsup_{n \to \infty} P\left\{ 1 \leq i \leq i_n : \sum_{j=1}^{n} 1\{T_j > (1/U_{n,[k/x_{i,n}])} \wedge (1/V_{n,[k/x_{i,n}])} \} \geq i \text{ and } x_{i,n} < k \right\}
\]

\[
\leq \limsup_{n \to \infty} P\left\{ 1 \leq i \leq i_n : T_{n,n-i+1} > n k x_{i,n} \bar{\delta} \right\} + \bar{\varepsilon}
\]

\[
\leq \limsup_{n \to \infty} P\left\{ \max_{1 \leq i \leq m+1} \frac{T_{n,n-i+1}}{F_T^{-1}(1-2i/(\delta L n))} > 1 \right\} + \bar{\varepsilon}
\]

\[
< 2\bar{\varepsilon}
\]

for sufficiently large \(L \), where for the last step again Theorem 10.3.1 of Shorack and Wellner (1986) has been used.

Let

\[
y_{i,n} := n k x_{i,n} - \delta n k^{-3/2} x_{i,n}^{3/2+\eta}.
\]
for some $t \in (0, \varepsilon)$ and $\tilde{\delta} > 0$. Using

$$\lim_{\theta \downarrow 0} \limsup_{n \to \infty} P\left\{ \sup_{0 < t \leq \theta} k^{1/2} t^{3/2 + \epsilon} \left| \frac{k}{n U_{n, |kt|}} - t^{-1} \right| > \tilde{\delta} \right\} = 0$$

(Drees 1998a, Theorem 2.1) instead of (6.7), one can conclude by similar arguments as above that

$$\lim_{\theta \downarrow 0} \limsup_{n \to \infty} P\left\{ \exists i_n < i \leq m \vartheta + 1 : \sum_{j=1}^{n} 1\{T_j > (1/U_{n, [k/j,x_{i,n}]}) \wedge (1/V_{n, [k/j,x_{i,n}]}) \} \geq i \right\}$$

$$\leq \lim_{\theta \downarrow 0} \limsup_{n \to \infty} P\left\{ \exists i_n < i \leq m \vartheta + 1 : m^{1/2} \left(\frac{i}{m} \right)^{\eta+1/2+\epsilon} \left(\frac{k}{n} T_{n,n-i+1} - \left(\frac{i}{m} \right)^{-\eta} \right) > \delta/2 \right\}$$

$$= 0. \quad (6.9)$$

In the last step, we have again used Theorem 2.1 of Drees (1998a), where (2.1) implies Condition 1 of that paper and $m^{1/2} q_{1}(k/n) \to 0$ ensures that the bias is asymptotically negligible.

Combining (6.8) and (6.9) one arrives at (6.5).

Proof of Theorem 2.1 (asymptotic normality of $\hat{\eta}_1$ and $\hat{\eta}_2$). Note that this approximation is analogous to the approximation of the tail empirical quantile function established in Drees (1998a) in the classical situation of i.i.d. random variables. Hence the asymptotic normality of $\hat{\eta}_1$ and $\hat{\eta}_2$ follows from Lemma 6.2 exactly as in Drees (1998a, Example 4.1) and Drees (1998b, Example 3.1) using the δ-method. The asymptotic variance is given by

$$\int_0^1 \int_0^1 \text{Cov}(\bar{W}(s), \bar{W}(t))(st)^{-(\eta+1)} \nu_{\eta}(ds) \nu_{\eta}(dt)$$

with $\nu_{\eta}(dt) := (\eta + 1)^2 (t^n - (2\eta + 1)t^{2\eta})/\eta dt + (\eta + 1)\varepsilon_1(dt)$ for the maximum likelihood estimator $\hat{\eta}_1$ and $\nu_{\eta}(dt) := \eta(t^n dt - \varepsilon_1(dt))$ in case of the Hill estimator. (Here ε_1 denotes the Dirac measure at 1.) Now using the homogeneity of order 1 of the covariance function which implies $\int_0^t \text{Cov}(\bar{W}(s), \bar{W}(t))(st)^{-1} ds = \int_0^1 \text{Cov}(\bar{W}(u), \bar{W}(1)) u^{-1} du$, one obtains $(\eta+1)^2 \text{Var}(\bar{W}(1))$ and $\eta^2 \text{Var}(\bar{W}(1))$, respectively, as asymptotic variance and thus the assertion, using $c_x(1,1) + c_y(1,1) = 1/\eta$.

Proof of Theorem 2.2. By Lemma 6.2

$$\hat{i} = \frac{m}{k} \cdot \frac{k}{n} Q_{n}(1) \overset{p}{\to} l$$

and $k/\hat{k} = k/n Q_{n}(1) \to 1$ in probability.

In the same way as in Lemma 6.2, one can prove that

$$\frac{k}{n} T_{n,n-[nt]} = \left(\frac{t}{c(1+u,1)} \right)^{-\eta} + O_P(m^{-1/2}).$$
Hence, if $\eta = 1$ then
\[
\hat{c}_x(1, 1) = \frac{k}{\hat{k}} \left(k^{1/4}(c(1 + k^{-1/4}, 1) - c(1, 1)) + O_P(k^{1/4}m^{-1/2}) \right) \xrightarrow{P} c_x(1, 1).
\]
The consistency of $\hat{c}_y(1, 1)$ can be proved in a similar way, so that the consistency of $\hat{\sigma}^2_i$ follows readily in that case.

Likewise, if $\eta < 1$, we have
\[
\hat{c}_x(1, 1) = \left(\eta c_x(1, 1) + O_P(k^{1/4}m^{-1/2}) \right)(1 + o_P(1))
\]
and thus
\[
\hat{l}^{1/2}\hat{c}_x(1, 1) = o_P(1) + O_P(m^{1/2}k^{-3/4}) = o_P(1).
\]
Together with the analogous result for $\hat{c}_y(1, 1)$ and the consistency of \hat{l} and $\hat{\eta}_i$, this implies $\hat{\sigma}^2_i \rightarrow \sigma^2_i$ in probability.

The proof of Theorem 3.1 will be given in several steps. The following sequence of equalities and asymptotic in probability equivalences provides an overview over the line of reasoning:

\[
p_n = P\{1 - F(X, Y) \in 1 - F(C_n)\}
\]
\[
\xrightarrow{(3.14)} q(\frac{k}{n})\nu(\frac{n}{k}(1 - F(C_n)))
\]
\[
\xrightarrow{\text{Lemma 6.4}} q(\frac{k}{n})\nu(D_n)
\]
\[
\xrightarrow{(2.2)} c_n^{1/\eta} q(\frac{k}{n})\nu\left(\frac{D_n}{c_n} \right)
\]
\[
\xrightarrow{\text{Cor. 6.3}} c_n^{1/\eta} q(\frac{k}{n})\nu\left(1 - F(a, b, \hat{F}(1 - \hat{D}_n/c_n)) \right)
\]
\[
\xrightarrow{\text{Lemma 6.5}} c_n^{1/\eta} q(\frac{k}{n})\nu\left(\frac{n}{k}(1 - F(F_{a, b}, \hat{F}(1 - \hat{D}_n/c_n)) \right)
\]
\[
\xrightarrow{(3.14)} c_n^{1/\eta} P\{1 - F(X, Y) \in 1 - F(B)\} |B = F_{a, b}, \frac{1}{c_n}(1 - \frac{\hat{D}_n}{c_n})
\]
\[
\xrightarrow{\text{Lemma 6.6}} c_n^{1/\eta} \frac{1}{n} \sum_{i=1}^{n} \left\{ (X_i, Y_i) \in F_{a, b}, \frac{1}{c_n}(1 - \frac{\hat{D}_n}{c_n}) \right\}
\]
\[
\sim \hat{p}_n. \quad (6.10)
\]

Lemma 6.3. Let $a = a(n), \tilde{a} > 0, b, \bar{b}, \gamma, \tilde{\gamma} \in \mathbb{R}$ denote sequences such that
\[
\left| \frac{\tilde{a}}{a} - 1 \right| \vee \left| \frac{\tilde{b} - b}{a} \right| \vee \left| \tilde{\gamma} - \gamma \right| = O(\varepsilon_n)
\]
for some \(\varepsilon_n \downarrow 0 \). Suppose that the sequence \(\lambda_n > 0 \) is bounded and satisfies \(\varepsilon_n \log \lambda_n \to 0 \) and \(\varepsilon_n w_\gamma(\lambda_n) \to 0 \) with \(w_\gamma \) defined in (3.12). Then

\[
1 - F_{\tilde a,\tilde b,\tilde \gamma}(F_{a,b,\gamma}^{-1}(1-x)) = x + o(\lambda_n)
\]

uniformly for \(0 \leq x \leq \lambda_n \).

Proof. First note that

\[
T(x) := 1 - F_{\tilde a,\tilde b,\tilde \gamma}(F_{a,b,\gamma}^{-1}(1-x)) = \left[1 + \tilde \gamma \frac{a}{\lambda} \left(\frac{x^{-\gamma} - 1}{\gamma} + \frac{b - \tilde b}{a} \right) \right]^{-1/\tilde \gamma},
\]

where, as usual, \((x^{-\gamma} - 1)/\gamma := -\log x \) if \(\gamma = 0 \). Now we distinguish three cases.

\(\gamma > 0 \) : Then

\[
T(x) = (1 + (1 + O(\varepsilon_n)) (x^{-\gamma} - 1 + O(\varepsilon_n)))^{-1+O(\varepsilon_n))/\gamma}
\]

uniformly for \(0 \leq x \leq \lambda_n \). For \(\lambda_n \varepsilon_n \leq x \leq \lambda_n \)

\[
|\log x| \varepsilon_n \leq (|\log \lambda_n| + |\log \varepsilon_n|) \varepsilon_n \to 0,
\]

and thus \(T(x) = x(1 + o(1)) = x + o(\lambda_n) \) uniformly.

Otherwise, i.e. for \(0 < x < \lambda_n \varepsilon_n \),

\[
T(x) \leq T(\lambda_n \varepsilon_n) = \lambda_n \varepsilon_n (1 + o(1)) = o(\lambda_n) = x + o(\lambda_n)
\]

by the monotonicity of \(T \).

\(\gamma < 0 \) : Choose \(\delta_n \to 0 \) such that \(\varepsilon_n (\lambda_n \delta_n)^\gamma \to 0 \) and hence also \(\varepsilon_n \log \delta_n \to 0 \) (e.g. \(\delta_n = (\varepsilon_n \lambda_n^{-\gamma})^{-1/(2\gamma)} \)). Then uniformly for \(\lambda_n \delta_n \leq x \leq \lambda_n \)

\[
T(x) = x^{1+O(\varepsilon_n)} (1 + O(\varepsilon_n) + O(\varepsilon_n (\lambda_n \delta_n)^\gamma))^{-1+O(\varepsilon_n))/\gamma} = x(1 + o(1))
\]

and again (6.11) follows from the monotonicity of \(T \).

\(\gamma = 0 \) : Note that \(\tilde \gamma |\log x| \to 0 \) uniformly for \(\lambda_n \varepsilon_n \leq x \leq \lambda_n \). Hence a Taylor expansion of \(\log \) yields

\[
T(x) = \exp \left(-\frac{1}{\tilde \gamma} \log \left(1 + \tilde \gamma (1 + O(\varepsilon_n)) (-\log x + O(\varepsilon_n)) \right) \right)
\]

\[
= \exp \left(-\frac{1}{\tilde \gamma} \left[\tilde \gamma (1 + O(\varepsilon_n)) (-\log x + O(\varepsilon_n)) + O(\tilde \gamma^2 (\log x + O(\varepsilon_n))^2) \right] \right)
\]

\[
= x \exp \left(O(\varepsilon_n) \log x + O(\varepsilon_n) + O(\varepsilon_n \log^2 x) \right)
\]

= \(x(1 + o(1)) \)
and thus the assertion follows by the aforementioned arguments.

Remark 6.1. For fixed sequences a, b and γ, assertion (6.11) even holds true uniformly for $(\tilde{a}, \tilde{b}, \tilde{\gamma}) \in M(\varepsilon_n) := \left\{ (\tilde{a}, \tilde{b}, \tilde{\gamma}) \in (0, \infty)^2 \times \mathbb{R}^2 \mid \left| \frac{\tilde{a}}{a} - 1 \right| \lor \left| \frac{\tilde{b} - b}{a} \right| \lor \left| \tilde{\gamma} - \gamma \right| \leq \varepsilon_n \right\}$. (6.12)

Corollary 6.1. If condition (D), (3.8) and (3.11)–(3.12) are satisfied then, for all $\delta > 0$,

$$P\{ A_{-\delta} \subset \frac{\hat{D}_n}{d_n} \subset A_{+\delta} \} \rightarrow 1.$$

Proof. Since the set A is bounded, there exists $L > 0$ such that $D_n \subset [0, d_n L]^2$ for all sufficiently large n. Because of (3.12), one can find a sequence $\varepsilon_n \to 0$ such that $k^{-1/2} = o(\varepsilon_n)$ and the conditions of Lemma 6.3 hold for $\lambda_n = d_n L$. Then $P\{ (\tilde{a}, \tilde{b}, \tilde{\gamma}) \in (M(\varepsilon_n))^2 \} \to 1$ with $M(\varepsilon_n)$ defined in (6.12) and Lemma 6.3 yields

$$\sup_{(x,y) \in D_n} \left\| 1 - \frac{F_{\hat{a}, \hat{b}, \hat{\gamma}}}{F_{a,b}} \left((1 - (x,y)) \right) - (x,y) \right\| \leq \frac{\delta}{2} d_n$$

(6.13)

with probability tending to 1. Thus, in view of $\hat{D}_n = 1 - F_{\hat{a}, \hat{b}, \hat{\gamma}}(F_{a,b}^{-1}(1 - D_n))$ and condition (D),

$$P\{ \frac{\hat{D}_n}{d_n} \subset \left(\frac{D_n}{d_n} \right)^{+\delta/2} \subset A_{+\delta} \} \rightarrow 1.$$

On the other hand, by the definition of the inner neighborhood of a set, $(x,y) \in (D_n/d_n)^{-\delta/2}$ implies $(x + \delta/2, y + \delta/2) \in D_n/d_n$. Since, in view of (6.13),

$$d_n(x,y) \leq 1 - F_{\hat{a}, \hat{b}, \hat{\gamma}}(F_{a,b}^{-1}(1 - d_n(x + \frac{\delta}{2}, y + \frac{\delta}{2})))$$

componentwise, (3.8) shows that $d_n(x,y) \in \hat{D}_n$. Hence, again by condition (D),

$$P\{ A_{-\delta} \subset \left(\frac{D_n}{d_n} \right)^{-\delta/2} \subset \frac{\hat{D}_n}{d_n} \} \rightarrow 1.$$

□

Corollary 6.2. If the conditions of Corollary 6.1 hold and, in addition, (3.13) then, for all $\delta > 0$,

$$P\{ A_{-\delta} \subset \frac{c_n}{d_n} \left(1 - F_{a,b} \left(F_{\hat{a}, \hat{b}, \hat{\gamma}}^{-1}(1 - \frac{\hat{D}_n}{c_n}) \right) \right) \subset A_{+\delta} \} \rightarrow 1.$$
Proof. According to Corollary 6.1, there exists $L > 0$ such that $P\{\hat{D}_n/c_n \subset [0, \lambda_n]^2\} \to 1$ for
$\lambda_n := Ld_n/c_n$. It follows from (3.11) and (3.13) that $\lambda_n^{\hat{i}} = \lambda_n^{\gamma_i}(1 + o_P(1)), i = 1, 2$. Hence one
may apply Lemma 6.3 with $(a, b, \gamma) = (\hat{a}_i, \hat{b}_i, \hat{\gamma}_i)$ and $(\tilde{a}, \tilde{b}, \tilde{\gamma}) = (a_i, b_i, \gamma_i)$ to obtain
$$
\sup_{(x,y) \in D_n/c_n} \left\| 1 - F_{a,b, \gamma}(F_{a,b, \gamma}^{-1}(1 - (x,y))) - (x,y) \right\| \leq \frac{\delta d_n}{2c_n}
$$
with probability tending to 1 for all $\delta > 0$. Now one may conclude the proof following the lines
of the preceding proof.

Corollary 6.3. Under the conditions of Corollary 6.2
$$
\nu\left(1 - F_{a,b, \gamma}(F_{a,b, \gamma}^{-1}(1 - (x,y)))\right) = \nu\left(\frac{D_n}{c_n}\right)(1 + o_P(1)).
$$

Proof. Denote the boundary of the set A by ∂A. Condition (3.8) implies a slightly weaker
version for A, namely $(x,y) \in A \Rightarrow [0,x] \times [0,y] \subset A$. Hence $\lambda \cdot \partial A \subset A$ for all $\lambda \in (0,1)$ and
these sets are pairwise disjoint. Since ν is homogeneous in the sense of (2.2) and $\nu(A) < \infty$ by
the boundedness of A, it follows that $\nu(\partial A) = 0$. Moreover, $A_{+\delta} \setminus A_{-\delta} \downarrow \partial A$ as $\delta \downarrow 0$, so that
$\nu(A_{+\delta} \setminus A_{-\delta}) \to 0$. Thus Corollary 6.2 and condition (D) yield
$$
\nu\left(\frac{c_n}{d_n}(1 - F_{a,b, \gamma}(F_{a,b, \gamma}^{-1}(1 - (x,y))))\right) \to \nu(A)
$$
and $\nu(D_n/d_n) \to \nu(A)$. Now the assertion is an obvious consequence of the homogeneity (2.2).

Lemma 6.4. If condition (D), (3.8) and (3.9) hold, then
$$
\nu(D_n) = \nu\left(\frac{n}{k}(1 - F(C_n))\right)(1 + o(1)).
$$

Proof. There exists $L > 0$ such that $D_n \subset [0, d_nL]^2$ for all sufficiently large n. Choose arbitrary
$-1/\gamma_i \vee 0 < x_i < 1/(-\gamma_i \vee 0), i = 1, 2$. Then, by (3.9), for all $(x,y) \in D_n$
$$
\frac{n}{k}(1 - F(F_{a,b, \gamma}^{-1}(1 - (x,y)))) = (x(1 + \delta_x), y(1 + \delta_y)) \tag{6.14}
$$
with $|\delta_x| \vee |\delta_y| \leq R_{x_1,x_2}(n/k)$ for sufficiently large n. According to (3.8), the left-hand side of
(6.14) is an element of $D_n(1 + R_{x_1,x_2}(n/k))$. Thus, by the definition of D_n,
$$
\frac{n}{k}(1 - F(C_n)) \subset D_n(1 + R_{x_1,x_2}(\frac{n}{k})).
$$
Likewise, (6.14) together with (3.8) implies
$$
D_n(1 - R_{x_1,x_2}(\frac{n}{k})) \subset \frac{n}{k}(1 - F(C_n))
$$
eventually. Now the assertion is obvious from the homogeneity property (2.2).
Lemma 6.5. Under the conditions (D), (3.8), (3.9) and (3.11)–(3.13) one has
\[\nu\left((1 - F_{a,b} \right) \left(1 - \frac{D_n}{cn} \right)) = \nu\left(\frac{n}{k} (1 - F_{\tilde{a},\tilde{b}} \cdot \left(1 - \frac{D_n}{cn} \right)) \right) (1 + o_P(1)). \]

Proof. The proof is very much the same as that for Lemma 6.4 with \(D_n \) replaced by \(1 - F_{a,b} \cdot \left(1 - \frac{D_n}{cn} \right) \). For this note that, by the boundedness of \(d_n/c_n \) and the assertion of Corollary 6.2, this set is eventually bounded. Hence (3.9) is applicable for sufficiently small \(x_1 \) and \(x_2 \).

Lemma 6.6. If the conditions of Theorem 3.1 are satisfied, then
\[\sup_{B \in \mathcal{B}_n} \left| \frac{1}{n} \sum_{i=1}^{n} 1 \{ 1 - F(X_i, Y_i) \in B \} \right| - 1 \to 0 \text{ in probability.} \]

Proof. We will apply Theorem 5.1 of Alexander (1987). To check the conditions of this uniform law of large numbers, first note that every set \(B \in \mathcal{B}_n \) can be represented as
\[B = F_{\tilde{a},\tilde{b}} \cdot \left(1 - \frac{D_n}{cn} \right) \]
with \((\tilde{a}, \tilde{b}, \tilde{\gamma}) \in (M(\varepsilon_n))^2 \) (cf. (6.12)). Therefore the arguments of the proofs for Lemma 6.5 and Corollary 6.3 show that
\[\nu\left(\frac{n}{k} (1 - F(B)) \right) = \nu\left(1 - F_{a,b} \right) (1 + o(1)) = \nu\left(\frac{D_n}{cn} \right) (1 + o(1)) \]
uniformly for \(B \in \mathcal{B}_n \) (cf. Remark 6.1). Now (3.14) leads to
\[P\{ 1 - F(X, Y) \in B \} = q\left(\frac{k}{n} \right) \left(\frac{d_n}{c_n} \right)^{1/\eta} \nu(A)(1 + o(1)) \]
uniformly. In particular, there exists \(n_0 \) such that \(P\{ 1 - F(X, Y) \in B \} < 1/2 \) for all \(n \geq n_0 \) and all \(B \in \mathcal{B}_n \).

Next note that
\[B_t := \bigcup_{B \in \mathcal{B}_n, n \geq n_0, P\{ 1 - F(X, Y) \in 1 - F(B) \} \leq t} B \]
and
\[\mathcal{B}_n := \bigcup_{B \in \mathcal{B}_n, n \geq n_0, P\{ 1 - F(X, Y) \in 1 - F(B) \} \leq 2t} B \quad (6.18) \]
In view of (6.15), one may prove as in Corollary 6.2 that, for all \(\delta > 0 \), eventually \(1 - F_{a,b} \cdot \left(1 - \frac{D_n}{cn} \right) \subset A_{+\delta} \) for all \(B \in \mathcal{B}_n \). Hence it follows as in the proof of Lemma 6.4 that
\[\frac{n}{k} (1 - F(B)) \subset \frac{d_n}{c_n} A_{+\delta}(1 + o(1)) \quad (6.19) \]
uniformly for $B \in \mathcal{B}_n$.

Let $n(t) := \min \{ n \geq n_0 \mid q(k/n)(d_n/c_n)^{1/\eta} \nu(A) \leq 3t \}$, which tends to ∞ as t tends to 0. Combining (6.17)–(6.19), we arrive at

$$1 - F(\bar{B}_t) \subset \bigcup_{n \geq n(t)} \frac{k(n)d_n}{nc_n} A_{+\delta} (1 + o(1)) \subset 2 \sup_{n \geq n(t)} \frac{k(n)d_n}{nc_n} A_{+\delta}$$

for sufficiently small t. By (3.14), the regularity condition on $k(n)$ and the definition of $n(t)$ it follows that

$$P\{1 - F(X, Y) \in \bar{B}_t\} = O\left(q\left(\frac{k(n(t))}{n(t)}\right) \left(\frac{n(t)}{k(n(t))}\right) \sup_{n \geq n(t)} \frac{k(n)d_n}{nc_n}^{1/\eta}\right)$$

Since \mathcal{B}_n is a VC class, Theorem 5.1 of Alexander (1987) yields

$$\sup \left\{ \left| \frac{1}{n} \sum_{i=1}^{n} 1\{1 - F(X_i, Y_i) \in \bar{B}_t\} \right| - 1 \right| \bigg| \begin{array}{c}
B \in \mathcal{B}_n, P\{1 - F(X, Y) \in \bar{B}_t\} \geq \varepsilon_n \\
\end{array} \right. \rightarrow 0,$$

provided $n\varepsilon_n \rightarrow \infty$. Because of (6.17) and the last assumption of (3.13), the choice $\varepsilon_n = q(k/n)(d_n/c_n)^{1/\eta} \nu(A)/2$ leads to the assertion.

Proof of Theorem 3.1. Now the consistency of \hat{p}_n can be proven as shown in (6.10). For this note that, because of (3.11), $F_{\hat{a}, \hat{b}}^{1/\hat{\eta}} (1 - \hat{D}_n/c_n)$ belongs to \mathcal{B}_n with probability tending to 1 and that $\log c_n = o\left((r(n))^{1/2}\right)$ implies $c_n^{1/\hat{\eta}} = c_n^{1/\eta}(1 + o_P(1))$ since $\hat{\eta}$ was assumed $\sqrt{r(n)}$–consistent for η.

Acknowledgments. Holger Drees was partly supported by a Heisenberg fellowship, granted by the DFG. The research of Ana Ferreira and Laurens de Haan was partly supported by FCT/POCTI/FEDER. We are grateful for the comments and suggestions made by an Associate Editor and a referee that helped to improve the presentation of our results.

References

Tables and figures
<table>
<thead>
<tr>
<th>m_n</th>
<th>$\hat{\eta}_i$</th>
<th>$\hat{\eta}_i$</th>
<th>standard deviation</th>
<th>$\eta = 1$ accepted; test</th>
<th>#failed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean</td>
<td>rmse</td>
<td>obs.</td>
<td>$\hat{\sigma}_i(\hat{\eta}_i)$</td>
<td>$\hat{\sigma}_i(1)$</td>
</tr>
<tr>
<td>ML, $\hat{\eta}_1$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cauchy</td>
<td>80</td>
<td>0.98</td>
<td>0.18</td>
<td>0.18</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>160</td>
<td>1.03</td>
<td>0.13</td>
<td>0.13</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>240</td>
<td>1.04</td>
<td>0.10</td>
<td>0.09</td>
<td>0.08</td>
</tr>
<tr>
<td>BEV</td>
<td>80</td>
<td>0.91</td>
<td>0.18</td>
<td>0.16</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>160</td>
<td>0.91</td>
<td>0.15</td>
<td>0.11</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>240</td>
<td>0.90</td>
<td>0.13</td>
<td>0.09</td>
<td>0.07</td>
</tr>
<tr>
<td>Normal</td>
<td>80</td>
<td>0.72</td>
<td>0.18</td>
<td>0.17</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>160</td>
<td>0.74</td>
<td>0.13</td>
<td>0.12</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>240</td>
<td>0.74</td>
<td>0.11</td>
<td>0.09</td>
<td>0.06</td>
</tr>
<tr>
<td>Morgenstern</td>
<td>80</td>
<td>0.47</td>
<td>0.16</td>
<td>0.16</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>160</td>
<td>0.49</td>
<td>0.11</td>
<td>0.11</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>240</td>
<td>0.50</td>
<td>0.08</td>
<td>0.08</td>
<td>0.06</td>
</tr>
<tr>
<td>Hill, $\hat{\eta}_2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cauchy</td>
<td>40</td>
<td>0.93</td>
<td>0.14</td>
<td>0.12</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>0.89</td>
<td>0.14</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>0.84</td>
<td>0.17</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>BEV</td>
<td>40</td>
<td>0.87</td>
<td>0.17</td>
<td>0.11</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>0.84</td>
<td>0.17</td>
<td>0.08</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>0.82</td>
<td>0.19</td>
<td>0.06</td>
<td>0.05</td>
</tr>
<tr>
<td>Normal</td>
<td>40</td>
<td>0.73</td>
<td>0.12</td>
<td>0.10</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>0.74</td>
<td>0.09</td>
<td>0.07</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>0.73</td>
<td>0.08</td>
<td>0.05</td>
<td>0.04</td>
</tr>
<tr>
<td>Morgenstern</td>
<td>40</td>
<td>0.51</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>0.53</td>
<td>0.06</td>
<td>0.05</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>0.54</td>
<td>0.06</td>
<td>0.04</td>
<td>0.03</td>
</tr>
<tr>
<td>Peng, $\hat{\eta}_3$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cauchy</td>
<td>40</td>
<td>1.05</td>
<td>0.37</td>
<td>0.36</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>0.97</td>
<td>0.18</td>
<td>0.18</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>0.88</td>
<td>0.17</td>
<td>0.12</td>
<td>0.11</td>
</tr>
<tr>
<td>BEV</td>
<td>40</td>
<td>0.96</td>
<td>0.23</td>
<td>0.23</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>0.85</td>
<td>0.20</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>0.80</td>
<td>0.21</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>Normal</td>
<td>40</td>
<td>0.78</td>
<td>0.20</td>
<td>0.19</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>0.75</td>
<td>0.10</td>
<td>0.09</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>0.74</td>
<td>0.09</td>
<td>0.07</td>
<td>0.09</td>
</tr>
<tr>
<td>Morgenstern</td>
<td>40</td>
<td>0.55</td>
<td>0.23</td>
<td>0.22</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>0.54</td>
<td>0.11</td>
<td>0.11</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>0.55</td>
<td>0.08</td>
<td>0.07</td>
<td>0.09</td>
</tr>
</tbody>
</table>

Table 1: Mean and root mean squared errors of $\hat{\eta}_i$, observed standard deviation of the estimator, mean of estimates $\hat{\sigma}_i(\hat{\eta}_i)$ and $\hat{\sigma}_i(1)$, proportion of samples in which $\eta = 1$ is accepted by 5%-test, based on $\hat{\sigma}_i(\hat{\eta}_i)$ resp. $\hat{\sigma}_i(1)$. Last column indicates the number of simulations where calculations failed (sample size $n = 1000$, 250 simulations).
ML estimator $\hat{\eta}_1$

Hill estimator $\hat{\eta}_2$

Peng’s estimator $\hat{\eta}_3$

Cauchy
Normal

Figure 1: Estimators of η versus m for bivariate Cauchy (left) and normal distributions (right); average over 250 simulations (solid line) and ± 1.64 standard deviations (dashed lines); horizontal line: true η.
Table 2: Median of $\hat{\gamma}_i$ and of estimated failure probabilities; Exponential/Normal indicates a bivariate normal distribution with marginals standardized to exponential distribution (true failure probability $p_n = 10^{-5}$, sample size $n = 1000$, 250 simulations).
Figure 2: Each panel shows boxplots indicating the 5, 25, 50, 75, 95 percentiles of $\hat{p}(\eta)$ (left) and $\hat{p}(1)$ (right) for different values of k; horizontal line: true failure probability $p_n = 10^{-5}$ (sample size $n = 1000$, 250 simulations).
Figure 3: From top left to bottom right: scatterplot of still water level SWL versus wave height $H_m 0$, the ML-estimator $\hat{\eta}_1$, Hill’s estimator $\hat{\eta}_2$ and Peng’s estimator $\hat{\eta}_3$; $\hat{\eta}_i$ versus m (solid line) and upper boundary of critical region of 5%-test for $\eta = 1$ (dotted line); horizontal line: $\eta = 1$.