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Abstract

In the classical setting of bivariate extreme value theory, the procedures to estimate

the probability of an extreme event are not applicable if the componentwise maxima of the

observations are asymptotically independent. To cope with this problem, Ledford and Tawn

(1996,1997) proposed a sub-model in which the penultimate dependence is characterized by

an additional parameter. We discuss the asymptotic properties of two estimators for this

parameter in an extended model. Moreover, we develop an estimator for the probability

of an extreme event that works in the case of asymptotic independence and in the case of

asymptotic dependence as well, and prove its consistency.
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1 Introduction

Suppose that (Xi, Yi), i = 1, . . . , n, is a sequence of independent and identically distributed

random vectors. Given two large threshold values, u and v, we are interested in estimating

probabilities of the type

P (Xi > u and Yi > v). (1.1)

For instance, if (Xi, Yi) are the levels of two different air pollutants, the exceedance of both

at some pre-specified levels may represent a dangerous situation to be avoided. In financial

mathematics (Xi, Yi) may represent the losses suffered in two different investments.

Let F be the common distribution function of (Xi, Yi), with marginal distributions F1 and F2.

Since only large values of Xi and Yi are involved, one would expect multivariate extreme value

theory to provide the appropriate framework for systematic estimation of the above probability.

To be more specific, we assume that there exist normalizing constants an, cn > 0 and bn, dn ∈ R
such that

lim
n→∞Fn(anx + bn, cny + dn)

= lim
n→∞P

(
max{X1, . . . , Xn} − bn

an
≤ x,

max{Y1, . . . , Yn} − dn

cn
≤ y

)

= G(x, y), (1.2)

in the weak sense where G is a distribution function with non-degenerate marginals (Resnick

1987, Chapter 5).

We say that the maxima of the Xi and those of the Yi are asymptotically independent if

G(x, y) = G(x,∞)G(∞, y), for all x and y. This is a rather common situation; for instance, it

holds for nondegenerate bivariate normal distributions with |ρ| < 1. Unfortunately, in this case

the limit assumption (1.2) is of little help to estimate probability (1.1). Note that under the

given conditions the marginal distributions F1 and F2, converge to the marginals G1 and G2,

respectively, of the limiting distribution. Taking logarithms in (1.2) one gets

lim
n→∞nP

{X − bn

an
> x or

Y − dn

cn
> y

}
= − log G(x, y), (1.3)

hence,

lim
n→∞nP

{X − bn

an
> x and

Y − dn

cn
> y

}
= log G(x, y)− log G1(x)− log G2(y). (1.4)
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Therefore if the marginals of the limiting distribution are independent, that is, G(x, y) =

G1(x)G2(y), the right-hand side in (1.4) is identically zero.

In order to overcome this problem, Ledford and Tawn (1996,1997,1998; see also Coles et

al. 1999) introduced a sub-model, where the penultimate tail dependence is characterized by

a coefficient η ∈ (0, 1]. More precisely, they assumed that the function t 7→ P (1 − F1(X) <

t and 1 − F2(Y ) < t) is regularly varying at 0 with index 1/η. Then η = 1 in the case of

asymptotic dependence, whereas η < 1 implies asymptotic independence. Ledford and Tawn

also suggested estimators for the so-called coefficient of tail dependence η, but they did not

establish their asymptotic properties.

In Section 2 of the present paper, we interpret an extension of Ledford’s and Tawn’s condition

as a bivariate second order regular variation condition, thereby generalizing an approach by Peng

(1999). Then we prove the asymptotic normality of modified versions of two estimators for η

proposed by Ledford and Tawn. In Section 3 a procedure is set up to estimate the probability

of a failure set of the type (1.1). Its consistency is established under asymptotic independence

and under asymptotic dependence as well. The results of a simulation study are reported in

Section 4. Here we compare the performance of both the estimators for η proposed in the

present paper and the estimator introduced by Peng (1999). In addition, we examine the small

sample behavior of tests for the hypothesis η = 1 which are based on these estimators. Also

the behavior of the estimator of a failure probability is studied in a simple situation. In Section

5 we investigate the dependence between still water level, wave heights and wave periods at a

particular point of the Dutch coastal protection. Section 6 contains the proofs of the results of

Sections 2 and 3.

An extended simulation study and more detailed proofs can be found in the technical report

by Draisma et al. (2001).

2 Estimating the coefficient of tail dependence

Let (X, Y ) be a random vector whose distribution function F has continuous marginal distribu-

tion functions F1 and F2. Our basic assumption is that

lim
t↓0

(P{1− F1(X) < tx and 1− F2(Y ) < ty}
q(t)

− c(x, y)
)/

q1(t) =: c1(x, y) (2.1)

exists, for all x, y ≥ 0 with x + y > 0, and some positive functions q and q1 → 0 as t → 0

and a function c1 which is neither constant nor a multiple of c. Moreover we assume that the
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convergence is uniform on {(x, y) ∈ [0,∞)2 | x2 + y2 = 1}.
Essentially, relation (2.1) is a second order regular variation condition for the function Q

defined by Q(x, y) := P{1−F1(X) < x and 1−F2(Y ) < y}. The function (x, y) 7→ Q(1−x, 1−y)

is sometimes called copula survivor function. It follows that the function q is regularly varying

at zero with index 1/η for some η ∈ (0, 1] (in the paper by Ledford and Tawn (1996) q(t) equals

t1/η). The function q1 is also regularly varying at zero with an index τ ≥ 0. Without loss of

generality we may take c(1, 1) = 1 and q(t) = P{1− F1(X) < t and 1− F2(Y ) < t}. For these

results and more information about such a second order condition see the Appendices of de

Haan and Resnick (1993) and Draisma et al. (2001).

In addition, we assume that l := limt↓0 q(t)/t exists. This condition is always satisfied if

η < 1 or τ > 0. Since F1(X) and F2(Y ) are uniformly distributed, obviously lim sup q(t)/t ≤ 1.

Moreover, l = 0 if η < 1, and l > 0 if the marginals are asymptotically dependent.

Our assumptions imply that (2.1) holds locally uniformly on (0,∞)2. The bivariate normal

distribution satisfies these conditions: see the example at the end of this section. Several other

examples were given by Ledford and Tawn (1997) and Heffernan (2000).

The function c is homogeneous of order 1/η, i.e., c(tx, ty) = t1/ηc(x, y). The measure ν

defined by ν([0, x]×[0, y]) = c(x, y) inherits this homogeneity:

ν(tA) = t1/ην(A) (2.2)

for t > 0 and all bounded Borel sets A ⊂ [0,∞)2.

The parameter η has the same meaning as in Ledford and Tawn (1996,1997), and condition

(2.1) is similar to condition (2.2) in Ledford and Tawn (1997). Under the given assumptions,

l > 0 implies asymptotic dependence, and l = 0 implies asymptotic independence. Hence η < 1

implies asymptotic independence.

Now we turn to estimators for η, given an i.i.d. sample {(X1, Y1), (X2, Y2), . . . (Xn, Yn)}.
We start with an informal introduction to the estimators of Ledford and Tawn (1996). They

proposed first to standardize the marginals to the unit Fréchet distribution, using either the

empirical marginal distributions (that is, using the ranks of the components) or extreme value

estimators for the marginal tails, and then to estimate η as the shape parameter of the minimum

of the components, e.g. by the maximum likelihood estimator or the Hill estimator. However,

since these estimators have larger bias for Fréchet distributions than for Pareto distributions

(cf., e.g., Drees 1998a,1998b), we prefer to standardize to the unit Pareto distribution using the

ranks of the components.
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For this consider the random variable

T :=
1

1− F1(X)
∧ 1

1− F2(Y )
.

Its distribution function FT satisfies 1−FT (t) = q(1/t); in particular, 1−FT is regularly varying

with index 1/η. Since the marginal d.f.’s Fi are unknown, we replace them with their empirical

counterparts. After a small modification to prevent division by 0, this leads to

T
(n)
i :=

n + 1
n + 1−RX

i

∧ n + 1
n + 1−RY

i

, i = 1, . . . , n,

with RX
i denoting the rank of Xi among (X1, X2, . . . , Xn) and RY

i that of Yi among (Y1, Y2, . . . , Yn).

Now η can be estimated by the maximum likelihood estimator η̂1 in a generalized Pareto

model, based on the largest m + 1 order statistics of the T
(n)
i (cf. Drees et al. 2002); here

m = m(n) denotes an intermediate sequence, that is, m → ∞ and m/n → 0. (Smith (1987)

defined the maximum likelihood estimator in terms of excesses over a high threshold u; here we

use the random threshold u = T
(n)
n,n−m.)

Alternatively the Hill estimator can be used:

η̂2 :=
1
m

m∑

i=1

log
T

(n)
n,n−i+1

T
(n)
n,n−m

.

Note that one important advantage of the maximum likelihood estimator over the Hill estimator

in the classical i.i.d. setting, namely its location invariance, is not relevant here: there is no shift

after standardizing the marginals to unit Pareto (see Lemma 6.2). Since η̂2 has smaller variance,

one might expect η̂2 to outperform η̂1.

Theorem 2.1 (Asymptotic normality). Assume that (2.1) holds with a function c that

has first order partial derivatives cx = ∂
∂xc(x, y) and cy = ∂

∂y c(x, y). Suppose that m is an

intermediate sequence such that
√

mq1(q−1(m/n)) → 0 as n →∞. Then
√

m
(
η̂i − η

)
, i = 1, 2,

are asymptotically normal with mean 0 and variance

σ2
1 = (1 + η)2(1− l)(1− 2lcx(1, 1)cy(1, 1)),

σ2
2 = η2(1− l)(1− 2lcx(1, 1)cy(1, 1)),

respectively.

Remark 2.1. i. Since q1◦q−1 is ητ -varying at 0, for τ > 0 the condition
√

mq1(q−1(m/n)) →
0 is satisfied if m = O(n2ητ/(2ητ+1)−ε) for some ε > 0.
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ii. Note that instead of (2.1) the weaker condition limt→0 P{1−F1(X) < tx and 1−F2(Y ) <

ty}/q(t)− c(x, y) = O(q1(t)) is sufficient to prove the assertions of Theorem 2.1. However,

under (2.1) similar results can be easily deduced if the intermediate sequence m is such

that
√

mq1(q−1(m/n)) → c ≥ 0. In that case, usually a non-negligible bias occurs if c > 0

(and the present results correspond to the simpler case c = 0).

In order to construct confidence intervals for η or to test the hypothesis η = 1, we need

consistent estimators for the unknown quantities in the asymptotic variances in Theorem 2.1.

Theorem 2.2. Define

l̂ :=
m

n
T

(n)
n,n−m

ĉx(1, 1) :=
k̂5/4

n

(
T

(n,k̂−1/4)
n,n−m − T

(n)
n,n−m

)

with k̂ := m/l̂, and T
(n,u)
n,i , i = 1, . . . , n, the order statistics of

T
(n,u)
i := min

( n + 1
n + 1−RX

i

(1 + u),
n + 1

n + 1−RY
i

)
, i = 1, . . . , n,

and define ĉy(1, 1) analogously to ĉx(1, 1). If the conditions of Theorem 2.1 hold then

l̂
p−→ l.

If, in addition, η = 1 then

ĉx(1, 1)
p−→ cx(1, 1), ĉy(1, 1)

p−→ cy(1, 1).

Moreover, let

σ̂2
1 := (1 + η̂)2(1− l̂)(1− 2l̂ĉx(1, 1)ĉy(1, 1))

and define σ̂2
2 likewise. Then σ̂2

i , i = 1, 2, are consistent estimators of σ2
i for all η ∈ (0, 1].

Remark 2.2. Note that cy(1, 1) may also be estimated by 1− ĉx(1, 1) if η = 1.

Example 2.1. The bivariate normal distribution with mean 0, variance 1 and correlation coef-

ficient ρ 6∈ {1,−1}, satisfies (2.1) with

η = (1 + ρ)/2, c(x, y) = (xy)1/(1+ρ),

q(t) = k1(ρ)t2/(1+ρ)(− log t)−ρ/(1+ρ)

{
1− k2(ρ)

log(− log t)
2 log t

}
,
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c1(x, y) = −k3(ρ)− k4(x, y, ρ), q1(t) =
1

2 log t
,

where

k1(ρ) =
(1− ρ2)3/2

(1− ρ)2
(4π)−ρ/(1+ρ), k2(ρ) =

ρ

1 + ρ
,

k3(ρ) =
ρ log(4π) + 2

1 + ρ
− (1 + ρ)(2− ρ)

1− ρ
,

k4(x, y, ρ) = log x + log y +
(ρ− 1)(log x + log y) + ρ log x log y − ρ

(
log2 x + log2 y

)
/2

(1− ρ2)
.

This can be checked using the tail expansion of the bivariate normal distribution by Ruben

(1964) as given in Ledford and Tawn (1997), combined with a sufficiently precise expansion of

the function f , the inverse function of 1/(1 − Φ) where Φ is the standard univariate normal

distribution function:

f2(t) = 2 log t− log(log t)− log(4π) +
log(log t)

2 log t
+

log(4π)− 2
2 log t

+
1
2

(
log(log t)

2 log t

)2

+ o

(( log(log t)
log t

)2
)

, as t →∞.

3 Estimation of failure probabilities

Throughout this section we assume that the marginal distribution functions Fi of F are con-

tinuous and belong to the domain of attraction of a univariate extreme value distribution, and

that condition (2.1) holds.

If we want to estimate the probability of an extreme set of the form {X > x or Y > y} and

we assume that F belongs to the domain of attraction of a bivariate extreme value distribution,

then we can use the approximate equality

P{1− F1(X) < 1− F1(x) or 1− F2(Y ) < 1− F2(y)}

≈ tP{1− F1(X) < (1− F1(x))/t or 1− F2(Y ) < (1− F2(y))/t} (3.1)

since for small t the right hand side can be estimated using the empirical distribution function

(de Haan and Sinha 1999). However, if the marginals are asymptotically independent and the

failure set is e.g. of the form {X > x and Y > y} then a different approximation holds under

condition (2.1):

P{1− F1(X) < 1− F1(x) and 1− F2(Y ) < 1− F2(y)}

≈ t1/ηP{1− F1(X) < (1− F1(x))/t and 1− F2(Y ) < (1− F2(y))/t}. (3.2)
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We develop an estimation procedure which works in this situation.

More generally, we aim at the estimation of the failure probability pn = P{(X, Y ) ∈ Cn} for

failure regions Cn ⊂ [xn,∞]×[yn,∞] for some xn, yn ∈ R such that

(x, y) ∈ Cn =⇒ [x,∞]×[y,∞] ⊂ Cn. (3.3)

The latter property means that if an observation (x, y) causes a failure (e.g., the concentrations

of two pollutants exceed maximum acceptable levels) then an event with both components larger

will do so, too. Asymptotically we let both xn and yn converge to the right endpoint of the

pertaining marginal distribution to ensure that pn → 0, i.e., that indeed we are estimating the

probability of an extremal event.

The basic idea is to use a generalized version of the scaling property (3.2) to inflate the

transformed failure set (1 − F1, 1 − F2)(Cn) := {(1 − F1(x), 1 − F2(y)) | (x, y) ∈ Cn} such that

it contains sufficiently many observations and hence the empirical probability gives an accurate

estimate. Since the marginal distribution functions Fi are unknown, their tails are estimated by

suitable generalized Pareto distributions.

To work out this program, first recall from univariate extreme value theory that there exist

normalizing constants ai(n/k) > 0 and bi(n/k) ∈ R such that the following generalized Pareto

approximation is valid:

1− Fi(x) ≈ k

n

(
1 + γi

x− bi(n/k)
ai(n/k)

)−1/γi

=:
k

n
(1− Fai,bi,γi(x)), i = 1, 2, (3.4)

for x close to the right endpoint F−1
i (1). Here ai and bi are abbreviations for ai(n/k) and bi(n/k),

respectively, and (1 + γx)−1/γ is defined as ∞ if γ > 0 and x ≤ −1/γ, and it is defined as 0 if

γ < 0 and x ≥ −1/γ. Dekkers et al. (1989) proposed and analyzed the following estimators of

the parameters ai, bi and γi. Define

Mj(X) :=
1
k

k∑

i=1

(log Xn,n−i+1 − log Xn,n−k)j , j = 1, 2,

γ̂1 := M1(X) + 1− 1
2

/(
1− (M1(X))2

M2(X)

)
,

b̂1

(n

k

)
:= Xn,n−k,

â1

(n

k

)
:=

Xn,n−k

√
3M1(X)2 −M2(X)√

(1− 4γ̂−1 )/((1− γ̂−1 )2(1− 2γ̂−1 ))
with γ̂−1 := γ̂1 ∧ 0;

for γ̂2, â2 and b̂2 replace X by Y in the previous formulas. The estimator γ̂i for the extreme

value index γi is often called moment estimator.
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Using these definitions, n
k (1− Fi(x)) may be estimated by

1− Fâi,b̂i,γ̂i
(x) =

(
1 + γ̂i

x− b̂i(n/k)
âi(n/k)

)−1/γ̂i

.

Write 1 − F (x, y) as a short form for (1 − F1(x), 1 − F2(y)), and likewise 1 − Fa;b; = (1 −
Fa1,b1,γ1 , 1 − Fa2,b2,γ2) and 1 − Fâ;b̂;̂ = (1 − Fâ1,b̂1,γ̂1

, 1 − Fâ2,b̂2,γ̂2
) are functions from R2 to

[0,∞]2. Then, in view of (3.4), the transformed failure set n
k (1− F (Cn)) can be approximated

by

Dn := 1− Fa;b;(Cn)

which in turn is estimated by

D̂n := 1− Fâ;b̂;̂(Cn).

Now we may argue heuristically as follows, using a generalization of the scaling property (3.2)

to inflate the transformed failure set by the factor 1/cn for some cn → 0 chosen in a suitable

way:

pn = P{1− F (X,Y ) ∈ 1− F (Cn)}

≈ P
{n

k

(
1− F (X,Y )

) ∈ Dn

}

≈ c1/η
n P

{n

k

(
1− F (X,Y )

) ∈ Dn

cn

}
(3.5)

≈ c1/η̂
n P{(X,Y ) ∈ B}|B = F�1

â;b̂;̂

(
1− D̂n

cn

)

≈ c1/η̂
n

1
n

n∑

i=1

1
{

(Xi, Yi) ∈ F�1

â;b̂;̂

(
1− D̂n

cn

)}
(3.6)

=: p̂n (3.7)

where η̂ denotes one of the estimators for η examined in Section 2.

In the following, we state the exact conditions under which we will prove consistency of

the estimator p̂n, that is, p̂n/pn → 1 in probability as n → ∞. In order not to overload the

paper, we will not determine the nondegenerate limit distribution of the standardized estimation

error. However, employing the ideas of de Haan and Sinha (1999), one may establish asymptotic

normality of p̂n under more complex conditions.

To study the asymptotic behavior of p̂n, we have to impose a regularity condition on the

sequence of failure sets Cn, or rather on the transformed sets Dn. Note that Dn shall shrink

towards the origin because we are interested in extremal events. We assume that, after a suitable
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standardization, Dn converges in the following sense:

(D) There exist a sequence dn → 0 and a measurable bounded set A ⊂ [0,∞)2 with ν(A) > 0

such that for all ε > 0 one has for sufficiently large n

A−ε ⊂ Dn

dn
⊂ A+ε.

Here A+ε := {x ∈ [0,∞)2 | infy∈A ‖x − y‖ ≤ ε} and A−ε := [0,∞)2 \ (([0,∞)2 \ A)+ε)

denote the outer and inner ε–neighborhood of A with respect to the maximum norm

‖x− y‖ = |x1 − y1| ∨ |x2 − y2|, and ν is the measure corresponding to the function c (cf.

Section 2).
Note that dn and A are not determined by this condition as the former may be multiplied by a

fixed factor and the latter divided by the same number. Moreover, even for given dn the set A

is determined only up to its boundary.

Condition (3.3) on Cn implies

(x, y) ∈ Dn =⇒ [0, x]×[0, y] ⊂ Dn. (3.8)

Example 3.1. For Cn = [xn,∞]×[yn,∞] we have Dn = [0, 1−Fa1,b1,γ1(xn)]×[0, 1−Fa2,b2,γ2(yn)].

Hence (D) is satisfied with dn = 1−Fa1,b1,γ1(xn) if (1−Fa2,b2,γ2(yn))/(1−Fa1,b1,γ1(xn)) converges

in (0,∞).

This example demonstrates that condition (D) essentially means that the convergence of the

failure set in the x- and the y-direction is balanced.

Next we need a certain rate of convergence for the marginal estimators to ensure that the

transformation of the failure set does not introduce too big an error. For that purpose note that

Ri(t, x) := t
(
1− Fi(ai(t)x + bi(t))

)− (1 + γix)−1/γi → 0, i = 1, 2,

locally uniformly for x ∈ (0,∞] as t → ∞, since Fi belongs to the domain of attraction of an

extreme value distribution (cf. (3.4)). Here we impose the following slightly stricter condition:

Rx1,x2(t) := max
i=1,2

sup
xi<x<1/((−γi)∨0)

∣∣∣Ri(t, x)(1 + γix)1/γi

∣∣∣ → 0 (3.9)

for some −1/(γi ∨ 0) < xi < 1/((−γi) ∨ 0), i = 1, 2. Observe that then (3.9) even holds for all

such xi. For example, if Fi satisfies the second order condition

Ri(t, x)
Ai(t)

→ Ψ(x)
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for some ρi–varying function Ai with ρi < 0 (i = 1, 2), then (3.9) holds true with Rx1,x2(t) =

O(A1(t) ∨ A2(t)). In addition, we require that not too many order statistics are used for esti-

mation of the marginal parameters:

k1/2Rx,x

(n

k

)
= O(1) (3.10)

for some x < 0. Then it follows that the estimators âi, b̂i and γ̂i are
√

k–consistent in the

following sense:
∣∣∣ âi

ai
− 1

∣∣∣ ∨
∣∣∣ b̂i − bi

ai

∣∣∣ ∨ |γ̂i − γi| = OP (k−1/2), i = 1, 2 (3.11)

(cf. Dekkers et al. 1989; de Haan and Resnick 1993).

We will see that using the estimated parameters instead of the unknown true ones for the

transformation of the failure sets does not cause problems provided

wγ1∧γ2(dn) = o(k1/2) with wγ(x) := −xγ

∫ 1

x
u−γ−1 log u du. (3.12)

Check that

wγ(x) ∼





− 1
γ log x, γ > 0

(log x)2

2 , γ = 0
xγ

γ2 , γ < 0,

as x → 0. Though, at first glance, (3.12) seems rather strict a condition if one of the extreme

value indices is negative, it is indeed a natural one; for without it the difference between the

transformed set Dn and its estimate D̂n would be at least of the same order in probability as the

typical elements of Dn, namely at least of the order dn, which of course would render impossible

any further statistical inference on the failure probability.

In addition, the scaling factor cn chosen by the statistician when applying the estimator p̂n

must be related to the actual scaling factor dn as follows:

dn = O(cn), wγ1∧γ2

( cn

dn

)
= o(k1/2) and

( cn

dn

)1/η = o
(
(r(n))1/2

)
, (3.13)

with r(n) := nq(k/n). In particular, (3.13) is satisfied if cn and dn are of the same order. Below

the choice of cn is discussed more thoroughly.

Note that the scaling property (3.2) is a consequence of approximation (2.1) and the homo-

geneity of the measure ν. In order to justify (3.5) in the motivation for p̂n given above, we need

the following condition, which applies to more general sets than just upper quadrants:

sup
B∈B̄n

∣∣∣∣
P{1− F (X,Y ) ∈ 1− F (B)}

q(k/n)ν
(

n
k (1− F (B))

) − 1
∣∣∣∣ → 0 as n →∞ (3.14)

11



where

Bn :=
{

F�1

ã;b̃;̃

(
1−

1− Fã;b̃;̃(Cn)

cn

) ∣∣∣
∥∥ ã

a
− 1

∥∥ ∨ ∥∥ b̃− b

a

∥∥ ∨ ‖γ̃ − γ‖ ≤ εn

}

for some εn → 0 such that k1/2εn →∞, and

B̄n := Bn ∪
{

Cn,
⋃

B∈Bm,m≥n

B
}

.

It will turn out (see (6.16)) that for sufficiently large n the denominator in (3.14) is strictly

positive.

Notice that the convergence of the absolute value in (3.14) for sets of the type 1− F (B) =

[0, xk/n]×[0, yk/n] follows from convergence (2.1) with t = k/n.

Finally, to make approximation (3.6) rigorous, we need a kind of uniform law of large num-

bers. This is provided by the theory of Vapnik-Cervonenkis (VC) classes of sets as outlined,

e.g., in the monograph by Pollard (1984, Section II.4). For this we require

B =
⋃

n∈N
Bn is a VC class. (3.15)

Theorem 3.1. Suppose the conditions (D), (3.3) (or (3.8)), (3.9), (3.10) and (3.12)–(3.15) are

satisfied. If η̂ − η = OP ((r(n))−1/2), log cn = o((r(n))1/2), and k(n)/n is almost decreasing,

which means supm≥n k(m)/m = O(k(n)/n), then

p̂n

pn
→ 1 in probability.

Remark 3.1. (i) In the most important case that npn is bounded, the conditions (3.12)–

(3.14) can be jointly satisfied only if γ1 ∧ γ2 > −1/2.

(ii) If the conditions of Theorem 2.1 are satisfied for m(n) = br(n)c, then η̂i−η = OP ((r(n))−1/2).

(iii) The sequence k(n)/n is almost decreasing, e.g., if k(n) is regularly varying with index less

than 1 or, more general, has an upper Matuszewska index α ≤ 1 (see Bingham et al. 1987;

Theorem 2.2.2).

The scaling factor 1/cn by which the transformed failure set is inflated determines the number

of large observations taken into account for the empirical probability (3.6). More precisely,

according to (6.17) in the proof of Lemma 6.6, this number is of the order r(n)(dn/cn)1/η. Hence

if dn and cn are of the same order and η̂ is based on the largest m(n) = br(n)c order statistics

12



of T
(n)
i , then the numbers of observations used in both steps of the estimation procedure are of

the same order of magnitude, which seems quite natural.

In practice, of course, dn and r(n) are not known. However, conversely one may choose cn

such that about r(n) observations lie in the inflated set D̂n/cn. To be more concrete, let

cn(λ) := sup
{

c > 0
∣∣∣

n∑

i=1

1
{
(Xi, Yi) ∈ F�1

â;b̂;̂

(
1− D̂n

c

)} ≥ λr̂(n)
}

(3.16)

for some λ > 0 where

r̂(n) :=
n∑

i=1

1{Xi > Xn,n−k and Yi > Yn−k,n}.

Following the lines of the proof of Theorem 3.1, one may show that the estimator p̂n is consistent

for pn if one chooses cn = cn(λ) and m(n) = r̂(n).

Alternatively, one may copy a heuristic approach which is common in univariate extreme

value statistics: one plots p̂n as a function of cn and choose a value cn where this graph seems

sufficiently stable.

Finally, it is worth mentioning that one may use other estimators for the marginal param-

eters, like e.g. the maximum likelihood estimator examined by Smith(1987) and Drees et al.

(2002), provided these estimators converge with the same rate.

4 Simulations

We examine the small sample behavior of the estimators η̂1 and η̂2 for four different distributions:

i. the bivariate Cauchy distribution (η = 1),

ii. the bivariate extreme value distribution (BEV) with a logistic dependence function, with

α = 0.75 (η = 1) (Ledford and Tawn 1996,1997),

iii. the bivariate normal distribution with correlation ρ = 0.6 (η = 0.8) and

iv. the Morgenstern distribution with α = 0.75 (η = 0.5) (Ledford and Tawn 1996,1997).

From each distribution we generated 250 samples of size 1000. All calculations were carried out

with the Gauss package. For comparison we also simulated Peng’s (1999) estimator of η:

η̂3 := log 2/ log
(

Sn(m)
Sn(bm/2c)

)
with Sn(k) :=

n∑

i=1

1{Xi > Xn,n−k and Yi > Yn−k,n}.

13



Note that here the meaning of m is different from the one in the definitions of η̂1 and η̂2.

In Table 1 besides the averages, the root mean squared errors and the standard deviations

of the estimates, we report the means of two different estimates of the approximate standard

deviation obtained in Theorem 2.1 and Theorems 2.1 and 2.2 of Peng (1999). The first estimator,

referred to as σ̂i(η̂i), is defined as σ̂im
−1/2 with σ̂i defined in Theorem 2.2 for i = 1, 2, while for

i = 3 we use the variance estimator proposed by Peng (1999); the second variance estimator,

called σ̂i(1), is defined similarly but the estimator for η is replaced with 1.

These estimators for the standard deviations can be used to construct two different tests for

asymptotic dependence (or η = 1) with nominal size 0.05. More concretely, asymptotic depen-

dence is accepted if (1− η̂i)/σ̂i(η̂i) ≤ Φ−1(0.95) or, alternatively, if (1− η̂i)/σ̂i(1) ≤ Φ−1(0.95),

with Φ−1 denoting the standard normal quantile function. The percentage of simulations in

which the hypothesis η = 1 is accepted is also reported in Table 1. Finally, the number of sim-

ulations in which the test statistics could not be calculated is given in the last column. For the

maximum likelihood estimator this occurred when no solution of the likelihood equations could

be found, for Peng’s estimator Sn(m) may be equal to Sn(bm/2c) and the estimated variance

can be negative. The values m were chosen in a range where the overall performance of the tests

seem best.

In Figure 1, the averages of the observed η̂i are plotted versus m and also the standard

deviations of the three estimators are indicated for the Cauchy and the normal distribution.

The maximum likelihood estimator η̂1 exhibits the greatest stability with respect to the

choice of m, but it is biased downward for the BEV and the normal distribution. The Hill

estimator η̂2 is also biased downward for the Cauchy, the BEV and the normal distribution, and

the bias increases rapidly with m. Peng’s estimator is nearly unbiased for small values of m, but

it shows a growing negative bias in particular for the Cauchy and the BEV distribution. The

variance of the estimates is smallest for η̂2 and largest for η̂3. The estimators for the standard

deviations are reasonably accurate.

Table 1 shows that the tests based on the maximum likelihood estimator η̂1 perform best.

For the Cauchy and the BEV distribution, the smaller variance and the somewhat larger bias of

the Hill estimator lead to an empirical size of the test based on this estimator that is much larger

than the nominal size. Conversely, the number of simulations in which the test based on Peng’s

estimator and σ̂3(1) rejects the hypothesis is quite low for the normal and the Morgenstern

distribution, because σ̂3(1) is rather large.
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Furthermore we study the finite sample behavior of the proposed estimator of a failure

probability. For this we considered failure sets of the type [a,∞)2 where a is chosen such that

the failure probability pn equals (100n)−1 = 10−5 for the sample size n = 1000. We use the

maximum likelihood estimator η̂1 to estimate the coefficient of tail dependence and consider

the following three estimators of pn: p̂(η̂) = p̂n as defined in (3.7) with cn = cn(1) defined by

(3.16), p̂(1) = c
1−1/η̂
n p̂n (thus assuming η = 1), and p̂ = p̂(1) or p̂(η̂) depending on whether the

hypothesis η = 1 is accepted or rejected by the test with standard deviation estimated by σ̂1(1).

Table 2 summarizes the main results for the failure probability estimators. The corresponding

boxplots are shown in Figure 2.

For the Cauchy distribution we have asymptotic dependence, so p̂(1) is appropriate. As

expected p̂(η̂) spreads more widely than p̂(1) (see Figure 2).

For the normal distribution the main problem is to estimate the marginals. In particular, the

estimates for γ1 and γ2 are often negative. This implies a finite right endpoint of the marginal

distributions and in quite many simulations the failure area lies outside the support of the

distribution, leading to an estimated failure probability equal to 0.

When the marginals are first transformed to the exponential distribution, then the estimators

of the marginal parameters are much more accurate with γ̂i, i = 1, 2, close to 0, and the

estimators for pn perform much better. Nevertheless, in several simulations p̂n = 0 when one or

both estimates of γi are negative. Here the estimator p̂(1), that assumes η = 1, over-estimates

the probability, while p̂(η̂) under-estimates it.

The Morgenstern distribution has asymptotically independent marginals. The estimator

p̂(η̂) is slightly biased downward whereas p̂(1) has a strong positive bias. Estimating the

marginals does not cause problems here as the Morgenstern distribution has extreme value

(Fréchet) marginals.

5 An application: dependence of sea state parameters

In the course of the Neptune project, financed by the European Union (grant MAS2-CT94-0081)

we studied the joint distribution of three sea state variables and its consequences for the sea-

wall at Petten. The dataset, supplied by the Dutch National Institute for Marine and Coastal

management, consists of date, time and sea characteristics recorded from 1979 till 1991, at

three-hourly intervals at the Eierland station, 20 km off the Dutch coast. To obtain (nearly)
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independent observations of wave height Hm0, wave period Tpb and still water level SWL, the

maximum value of each of these state variables in distinct storm events are considered (see de

Valk, 1994, for details). De Haan and Ronde (1998) estimated the failure probability of the

‘Pettemer zeewering’ assuming asymptotic dependence between the variables. Figure 3 shows a

scatterplot of Hm0 and SWL and illustrates the estimation of the corresponding coefficient of tail

dependence. While the test based on Peng’s estimator and the estimator σ̂3(1) of the standard

deviation accepts the hypothesis of asymptotic dependence at the 5%-level, the maximum likeli-

hood estimator suggests to reject this hypothesis, because for m between 60 and 160, where the

curve of estimates for η is most stable, the estimates lie in the critical region. Also the test based

on the Hill estimator rejects the hypothesis for small values of m. In view of the results from the

simulation study reported in Section 4, it seems plausible to assume asymptotic independence

between the wave heights and the still water level.

6 Proofs for Sections 2 and 3

Define uniformly distributed random variables Ui := 1−F1(Xi) and Vi := 1−F2(Yi) and denote

the pertaining order statistics by Un,i and Vn,i, with the convention Un,0 = Vn,0 = 0.

We will use the following notation:

S1(x, y) :=
n∑

i=1

1{Ui ≤ x and Vi ≤ y}, S2(x, y) :=
n∑

i=1

1{Ui ≤ x or Vi ≤ y}. (6.1)

Let W1(x, y) and W2(x, y) be Gaussian processes with mean zero and covariance structure given

by

E {W1(x1, y1)W1(x2, y2)} = c(x1 ∧ x2, y1 ∧ y2) and

E {W2(x1, y1)W2(x2, y2)} = x1 ∧ x2 + y1 ∧ y2 − lc(x1, y1)− lc(x2, y2) + lc(x1 ∨ x2, y1 ∨ y2),

respectively. Moreover, let k = dnq−1(m/n)e, so that m/k → l.

Lemma 6.1. Under the conditions of Theorem 2.1

√
m

(S1(Un,bkxc, Vn,bkyc)
m

− c(x, y)
)

D−→ W (x, y).

Here, and below, D−→ denotes convergence in distribution in D([0,∞)2) and W (x, y) is a Gaussian

process with mean zero and covariance structure depending on l:

in the case l = 0

W (x, y) = W1(x, y);
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in the case l > 0

W (x, y) =
1√
l
(W2(x, 0) + W2(0, y)−W2(x, y))

−
√

lcx(x, y)W2(x, 0)−
√

lcy(x, y)W2(0, y),

where the term in the first line of the right hand side has the same distribution as

W1(x, y).

Proof. From Peng (1999), Huang (1992) and Einmahl (1997, Theorem 3.1), it follows that

√
m

(S1( k
nx, k

ny)
m

− c(x, y)
)

D−→ W1(x, y). (6.2)

Similarly one obtains

√
k
(S2( k

nx, k
ny)

k
− (x + y − lc(x, y))

)
D−→ W2(x, y). (6.3)

This implies

√
k
(1

k

n∑

i=1

1{Ui ≤ k

n
x} − x

)
D−→ W2(x, 0).

Note that the generalized inverse of x 7→ 1/k
∑n

i=1 1{Ui ≤ k/nx} equals x 7→ (n/k)Un,bkxc.

Vervaat’s (1972) lemma yields
√

k
(n

k
Un,bkxc − x

)
D−→ −W2(x, 0)

√
k
(n

k
Vn,bkyc − y

)
D−→ −W2(0, y). (6.4)

For l = 0, we have m = o(k) and hence
√

m
(n

k
Un,bkxc − x

)
p−→ 0

√
m

(n

k
Vn,bkyc − y

)
p−→ 0.

Therefore, the assertion follows from (6.2) and the differentiability of c.

In the case m/k → l with l > 0, one may derive the result in a similar fashion using

S1(Un,bkxc, Vn,bkyc) = bkxc+ bkyc − S2(Un,bkxc, Vn,bkyc)

(cf. Peng 1999).

Denote by Qn the tail empirical quantile function pertaining to T
(n)
i , 1 ≤ i ≤ n, i.e.

Qn(t) := T
(n)
n,n−bmtc, 0 < t < n/m.

The following lemma is central to the proof of the asymptotic normality of estimators for η

based on largest order statistics of T
(n)
i .
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Lemma 6.2. Under the conditions of Theorem 2.2 there exist suitable versions of Qn, a suitable

process W̄ equal in distribution to a standard Brownian motion if l = 0 and to x 7→ W (x, x) if

l > 0 such that for all t0, ε > 0

sup
0<t≤t0

tη+1/2+ε
∣∣∣m1/2

(k

n
Qn(t)− t−η

)
− ηt−(η+1)W̄ (t)

∣∣∣ = oP (1).

Proof. First check that
n∑

i=1

1{T (n)
i > x} =

n∑

i=1

1{RX
i > (n + 1)(1− 1/x) and RY

i > (n + 1)(1− 1/x)}

=
n∑

i=1

1{Ui < Un,d(n+1)/xe and Vi < Vn,d(n+1)/xe} a.s.

with the convention Un,n+1 = Vn,n+1 = 1. Hence

F̄n(x) :=
1
n

n∑

i=1

1{ k

n + 1
T

(n)
i > x} =

1
n

S1

(
Un,dk/xe−, Vn,dk/xe −

)

where f(x−) denotes the left-hand limit of f at x. From Lemma 6.1 one readily obtains that

m1/2
( F̄n(x)

q(k/n)
− x−1/η

)
0<x<∞

−→
(
W (1/x, 1/x)

)
0<x<∞

=⇒ m1/2
( F̄n(x−η)

q(k/n)
− x

)
0<x<∞

−→
(
W (xη, xη)

)
0<x<∞

=: W̄

=⇒ m1/2
((

F̄−1
n (q(k/n)t)

)−1/η
− t

)
0<t<∞

−→ −W̄

weakly in D(0,∞), where in the last step Vervaat’s (1972) lemma has been used. For this, note

that W̄ has a.s. continuous sample paths, because by the definition of W it is a Brownian motion

for l = 0 and it can be represented as a sum of Brownian motions if l > 0. Thus the δ-method

yields, for suitable versions,

F̄−1
n (q(k/n)t) = t−η

(
1 + m−1/2ηt−1W̄ (t) + o(m−1/2)

)
a.s.

uniformly on compact intervals bounded away from 0.

Next note that F̄−1
n (q(k/n)t) = k/nQn(t)+O(1/m) uniformly and sup0<t≤ϑ t−1/2+ε|W̄ (t)| =

oP (1) as ϑ ↓ 0 by the law of the iterated logarithm and the aforementioned representation of

W̄ . Thus it suffices to prove that for all δ > 0

lim
ϑ↓0

lim sup
n→∞

P
{

sup
0<t≤ϑ

m1/2tη+1/2+ε
∣∣∣ k

n + 1
Qn(t)− t−η

∣∣∣ > δ
}

= 0. (6.5)

Here we will only consider

P
{

sup
0<t≤ϑ

m1/2tη+1/2+ε
( k

n + 1
Qn(t)− t−η

)
> δ

}

≤ P
{
∃ 1 ≤ i ≤ mϑ + 1 :

k

n + 1
T

(n)
n,n−i+1 > xi,n and xi,n < k

}
(6.6)
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with

xi,n :=
( i

m

)−η
+ δm−1/2

( i

m

)−(η+1/2+ε)
.

The other inequality can be treated in a similar way.

Let Ti := (1/Ui) ∧ (1/Vi). Then the right-hand side of (6.6) can be bounded by

P
{
∃ 1 ≤ i ≤ mϑ + 1 :

n∑

j=1

1{Tj > (1/Un,dk/xi,ne) ∧ (1/Vn,dk/xi,ne)} ≥ i and xi,n < k
}

.

Now we distinguish two different ranges of i-values.

According to Shorack and Wellner (1986, Theorem 10.3.1), for all ε̄ > 0 there exists δ̄ > 0

such that eventually with probability greater than 1− ε̄

(1/Un,dk/xi,ne ∧ (1/Vn,dk/xi,ne) ≥
n

k
xi,nδ̄ ≥ δ̄Lk−1mηn1−η(n/i)η (6.7)

for all i ≤ in := b(δmε/L)1/(1/2+ε)c with xi,n < k.

Since q−1 is η-varying at 0 and the quantile function F−1
T of Ti is (−η)-varying at 1, in the

case η < 1, we have k/n = o((m/n)η+ι) and F−1
T (1− t) = o(t−(η+ι)) as t ↓ 0 for all ι > 0. Hence

the right-hand side of (6.7) is of larger order than F−1
T (1− 2i/(δ̄Ln)).

If η = 1, in view of (2.1) and Lemma 2.1 of Drees (1998a), we have

sup
x≤1

xι−1
∣∣∣q(tx)

q(t)
− x

∣∣∣ = o(q1(t)).

Apply this bound with t = k/n and x = i/(δ̄Lm) to obtain 1− FT (xi,nδ̄n/k) ≤ 2i/(δ̄Ln), since

xi,n ≥ Lm/i and (i/m)1−ιq1(k/n) = o(m1/2q1(k/n)i/m) = o(i/m) uniformly for 1 ≤ i ≤ in.

Hence, for all η, it follows that

lim sup
n→∞

P
{
∃ 1 ≤ i ≤ in :

n∑

j=1

1{Tj > (1/Un,dk/xi,ne) ∧ (1/Vn,dk/xi,ne)} ≥ i and xi,n < k
}

≤ lim sup
n→∞

P
{
∃ 1 ≤ i ≤ in : Tn,n−i+1 >

n

k
xi,nδ̄

}
+ ε̄

≤ lim sup
n→∞

P
{

max
1≤i≤m+1

Tn,n−i+1

F−1
T (1− 2i/(δ̄Ln))

> 1
}

+ ε̄

< 2ε̄ (6.8)

for sufficiently large L, where for the last step again Theorem 10.3.1 of Shorack and Wellner

(1986) has been used.

Let

yi,n :=
n

k
xi,n − δ̃nk−3/2x

3/2+ι
i,n .
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for some ι ∈ (0, ε) and δ̃ > 0. Using

lim
ϑ↓0

lim sup
n→∞

P
{

sup
0<t≤ϑ

k1/2t3/2+ι
∣∣ k

nUn,dkte
− t−1

∣∣ > δ̃
}

= 0

(Drees 1998a, Theorem 2.1) instead of (6.7), one can conclude by similar arguments as above

that

lim
ϑ↓0

lim sup
n→∞

P{∃ in < i ≤ mϑ + 1 :
n∑

j=1

1{Tj > (1/Un,dk/xi,ne) ∧ (1/Vn,dk/xi,ne)} ≥ i}

≤ lim
ϑ↓0

lim sup
n→∞

P
{
∃ in < i ≤ mϑ + 1 : m1/2

( i

m

)η+1/2+ε(k

n
Tn,n−i+1 −

( i

m

)−η)
> δ/2

}

= 0. (6.9)

In the last step, we have again used Theorem 2.1 of Drees (1998a), where (2.1) implies Condition

1 of that paper and m1/2q1(k/n) → 0 ensures that the bias is asymptotically negligible.

Combining (6.8) and (6.9) one arrives at (6.5).

Proof of Theorem 2.1 (asymptotic normality of η̂1 and η̂2). Note that this approximation is anal-

ogous to the approximation of the tail empirical quantile function established in Drees (1998a)

in the classical situation of i.i.d. random variables. Hence the asymptotic normality of η̂1 and η̂2

follows from Lemma 6.2 exactly as in Drees (1998a, Example 4.1) and Drees (1998b, Example

3.1) using the δ-method. The asymptotic variance is given by
∫ 1

0

∫ 1

0
Cov(W̄ (s), W̄ (t))(st)−(η+1) νη(ds) νη(dt)

with νη(dt) := (η + 1)2(tη − (2η + 1)t2η)/η dt + (η + 1)ε1(dt) for the maximum likelihood es-

timator η̂1 and νη(dt) := η(tηdt − ε1(dt)) in case of the Hill estimator. (Here ε1 denotes the

Dirac measure at 1.) Now using the homogeneity of order 1 of the covariance function which im-

plies
∫ t
0 Cov(W̄ (s), W̄ (t))(st)−1 ds =

∫ 1
0 Cov(W̄ (u), W̄ (1))u−1 du, one obtains (η+1)2Var(W̄ (1))

and η2Var(W̄ (1)), respectively, as asymptotic variance and thus the assertion, using cx(1, 1) +

cy(1, 1) = 1/η.

Proof of Theorem 2.2. By Lemma 6.2

l̂ =
m

k
· k

n
Qn(1)

p−→ l

and k/k̂ = k/nQn(1) → 1 in probability.

In the same way as in Lemma 6.2, one can prove that

k

n
T

(n,u)
n,n−bmtc =

(
t

c(1 + u, 1)

)−η

+ OP (m−1/2).
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Hence, if η = 1 then

ĉx(1, 1) =
k̂

k

(
k̂1/4(c(1 + k−1/4, 1)− c(1, 1)) + OP (k1/4m−1/2)

)
P→ cx(1, 1).

The consistency of ĉy(1, 1) can be proved in a similar way, so that the consistency of σ̂2
i follows

readily in that case.

Likewise, if η < 1, we have

ĉx(1, 1) =
(
ηcx(1, 1) + OP (k1/4m−1/2)

)
(1 + oP (1))

and thus

l̂1/2ĉx(1, 1) = oP (1) + OP (m1/2k−3/4) = oP (1).

Together with the analogous result for ĉy(1, 1) and the consistency of l̂ and η̂i, this implies

σ̂2
i → σ2

i in probability.

The proof of Theorem 3.1 will be given in several steps. The following sequence of equalities

and asymptotic in probability equivalences provides an overview over the line of reasoning:

pn = P{1− F (X,Y ) ∈ 1− F (Cn)}
(3.14)∼ q

(k

n

)
ν
(n

k
(1− F (Cn))

)

Lemma6.4∼ q
(k

n

)
ν(Dn)

(2.2)
= c1/η

n q
(k

n

)
ν
(Dn

cn

)

Cor. 6.3∼ c1/η
n q

(k

n

)
ν
(
1− Fa;b;

(
F�1

â;b̂;̂

(
1− D̂n

cn

)))

Lemma6.5∼ c1/η
n q

(k

n

)
ν
(n

k

(
1− F

(
F�1

â;b̂;̂

(
1− D̂n

cn

)))

(3.14)∼ c1/η
n P{1− F (X, Y ) ∈ 1− F (B)}|B = F�1

â;b̂;̂

(
1− D̂n

cn

)

Lemma6.6∼ c1/η
n

1
n

n∑

i=1

1
{

(Xi, Yi) ∈ F�1

â;b̂;̂

(
1− D̂n

cn

)}

∼ p̂n. (6.10)

Lemma 6.3. Let a = a(n), ã > 0, b, b̃, γ, γ̃ ∈ R denote sequences such that

∣∣ ã
a
− 1

∣∣ ∨ ∣∣ b̃− b

a

∣∣ ∨ |γ̃ − γ| = O(εn)
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for some εn ↓ 0. Suppose that the sequence λn > 0 is bounded and satisfies εn log λn → 0 and

εnwγ(λn) → 0 with wγ defined in (3.12). Then

1− Fã,b̃,γ̃(F−1
a,b,γ(1− x)) = x + o(λn) (6.11)

uniformly for 0 ≤ x ≤ λn.

Proof. First note that

T (x) := 1− Fã,b̃,γ̃(F−1
a,b,γ(1− x)) =

[
1 + γ̃

a

ã

(x−γ − 1
γ

+
b− b̃

a

)]−1/γ̃
,

where, as usual, (x−γ − 1)/γ := − log x if γ = 0. Now we distinguish three cases.

γ > 0 : Then

T (x) =
(
1 + (1 + O(εn))(x−γ − 1 + O(εn))

)−(1+O(εn))/γ

=
(
x−γ(1 + O(εn)) + O(εn)

)−(1+O(εn))/γ

= x exp(O(εn) log x)(1 + o(1))

uniformly for 0 ≤ x ≤ λn. For λnεn ≤ x ≤ λn

| log x|εn ≤
(| log λn|+ | log εn|

)
εn → 0,

and thus T (x) = x(1 + o(1)) = x + o(λn) uniformly.

Otherwise, i.e. for 0 < x < λnεn,

T (x) ≤ T (λnεn) = λnεn(1 + o(1)) = o(λn) = x + o(λn)

by the monotonicity of T .

γ < 0 : Choose δn → 0 such that εn(λnδn)γ → 0 and hence also εn log δn → 0 (e.g. δn =

(εnλγ
n)−1/(2γ)). Then uniformly for λnδn ≤ x ≤ λn

T (x) = x1+O(εn)
(
1 + O(εn) + O(εn(λnδn)γ)

)−(1+O(εn))/γ = x(1 + o(1))

and again (6.11) follows from the monotonicity of T .

γ = 0 : Note that γ̃| log x| → 0 uniformly for λnεn ≤ x ≤ λn. Hence a Taylor expansion of

log yields

T (x) = exp
(
− 1

γ̃
log

(
1 + γ̃(1 + O(εn))(− log x + O(εn))

))

= exp
(
− 1

γ̃

[
γ̃(1 + O(εn)(− log x + O(εn)) + O(γ̃2(log x + O(εn))2)

])

= x exp
(
O(εn) log x + O(εn) + O(εn log2 x)

)

= x(1 + o(1))
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and thus the assertion follows by the aforementioned arguments.

Remark 6.1. For fixed sequences a, b and γ, assertion (6.11) even holds true uniformly for

(ã, b̃, γ̃) ∈ M(εn) :=
{

(ā, b̄, γ̄) ∈ (0,∞)×R2
∣∣∣
∣∣ ā
a
− 1

∣∣ ∨ ∣∣ b̄− b

a

∣∣ ∨ |γ̄ − γ| ≤ εn

}
. (6.12)

Corollary 6.1. If condition (D), (3.8) and (3.11)–(3.12) are satisfied then, for all δ > 0,

P
{
A−δ ⊂ D̂n

dn
⊂ A+δ

} → 1.

Proof. Since the set A is bounded, there exists L > 0 such that Dn ⊂ [0, dnL]2 for all sufficiently

large n. Because of (3.12), one can find a sequence εn → 0 such that k−1/2 = o(εn) and the

conditions of Lemma 6.3 hold for λn = dnL. Then P{(â, b̂, γ̂) ∈ (M(εn))2} → 1 with M(εn)

defined in (6.12) and Lemma 6.3 yields

sup
(x,y)∈Dn

‖1− Fâ;b̂;̂(F
�1
a;b;(1− (x, y)))− (x, y)‖ ≤ δ

2
dn (6.13)

with probability tending to 1. Thus, in view of D̂n = 1− Fâ;b̂;̂(F
�1
a;b;(1−Dn)) and condition

(D),

P
{D̂n

dn
⊂ (Dn

dn

)
+δ/2

⊂ A+δ

} → 1.

On the other hand, by the definition of the inner neighborhood of a set, (x, y) ∈ (Dn/dn)−δ/2

implies (x + δ/2, y + δ/2) ∈ Dn/dn. Since, in view of (6.13),

dn(x, y) ≤ 1− Fâ;b̂;̂

(
F�1
a;b;

(
1− dn

(
x +

δ

2
, y +

δ

2
)))

componentwise, (3.8) shows that dn(x, y) ∈ D̂n. Hence, again by condition (D),

P
{
A−δ ⊂

(Dn

dn

)
−δ/2

⊂ D̂n

dn

} → 1.

Corollary 6.2. If the conditions of Corollary 6.1 hold and, in addition, (3.13) then, for all

δ > 0,

P
{

A−δ ⊂ cn

dn

(
1− Fa;b;

(
F�1

â;b̂;̂

(
1− D̂n

cn

))) ⊂ A+δ

}
→ 1.
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Proof. According to Corollary 6.1, there exists L > 0 such that P{D̂n/cn ⊂ [0, λn]2} → 1 for

λn := Ldn/cn. It follows from (3.11) and (3.13) that λγ̂i
n = λγi

n (1 + oP (1)), i = 1, 2. Hence one

may apply Lemma 6.3 with (a, b, γ) = (âi, b̂i, γ̂i) and (ã, b̃, γ̃) = (ai, bi, γi) to obtain

sup
(x,y)∈D̂n/cn

∥∥1− Fa;b;(F
�1

â;b̂;̂
(1− (x, y)))− (x, y)

∥∥ ≤ δ

2
dn

cn

with probability tending to 1 for all δ > 0. Now one may conclude the proof following the lines

of the preceding proof.

Corollary 6.3. Under the conditions of Corollary 6.2

ν
(
1− Fa;b;

(
F�1

â;b̂;̂

(
1− D̂n

cn

)))
= ν

(Dn

cn

)
(1 + oP (1)).

Proof. Denote the boundary of the set A by ∂A. Condition (3.8) implies a slightly weaker

version for A, namely (x, y) ∈ A ⇒ [0, x)×[0, y) ⊂ A. Hence λ · ∂A ⊂ A for all λ ∈ (0, 1) and

these sets are pairwise disjoint. Since ν is homogeneous in the sense of (2.2) and ν(A) < ∞ by

the boundedness of A, it follows that ν(∂A) = 0. Moreover, A+δ \ A−δ ↓ ∂A as δ ↓ 0, so that

ν(A+δ \A−δ) → 0. Thus Corollary 6.2 and condition (D) yield

ν
( cn

dn

(
1− Fa;b;

(
F�1

â;b̂;̂

(
1− D̂n

cn

)))) → ν(A)

and ν(Dn/dn) → ν(A). Now the assertion is an obvious consequence of the homogeneity (2.2).

Lemma 6.4. If condition (D), (3.8) and (3.9) hold, then

ν(Dn) = ν
(n

k
(1− F (Cn))

)
(1 + o(1)).

Proof. There exists L > 0 such that Dn ⊂ [0, dnL]2 for all sufficiently large n. Choose arbitrary

−1/(γi ∨ 0) < xi < 1/((−γi) ∨ 0), i = 1, 2. Then, by (3.9), for all (x, y) ∈ Dn

n

k
(1− F (F�1

a;b;(1− (x, y)))) = (x(1 + δx), y(1 + δy)) (6.14)

with |δx| ∨ |δy| ≤ Rx1,x2(n/k) for sufficiently large n. According to (3.8), the left-hand side of

(6.14) is an element of Dn(1 + Rx1,x2(n/k)). Thus, by the definition of Dn,

n

k
(1− F (Cn)) ⊂ Dn

(
1 + Rx1,x2

(n

k

))
.

Likewise, (6.14) together with (3.8) implies

Dn

(
1−Rx1,x2

(n

k

)) ⊂ n

k
(1− F (Cn))

eventually. Now the assertion is obvious from the homogeneity property (2.2).
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Lemma 6.5. Under the conditions (D), (3.8), (3.9) and (3.11)–(3.13) one has

ν
((

1− Fa;b;
(
F�1

â;b̂;̂

(
1− D̂n

cn

))))
= ν

(n

k

(
1− F

(
F�1

â;b̂;̂

(
1− D̂n

cn

))))
(1 + oP (1)).

Proof. The proof is very much the same as that for Lemma 6.4 with Dn replaced by 1 −
Fa;b;(F

�1

â;b̂;̂
(1 − D̂n/cn)). For this note that, by the boundedness of dn/cn and the assertion

of Corollary 6.2, this set is eventually bounded. Hence (3.9) is applicable for sufficiently small

x1 and x2.

Lemma 6.6. If the conditions of Theorem 3.1 are satisfied, then

sup
B∈Bn

∣∣∣
1
n

∑n
i=1 1{1− F (Xi, Yi) ∈ 1− F (B)}
P{1− F (X, Y ) ∈ 1− F (B)} − 1

∣∣∣ → 0 in probability.

Proof. We will apply Theorem 5.1 of Alexander (1987). To check the conditions of this uniform

law of large numbers, first note that every set B ∈ Bn can be represented as

B = F�1

ã;b̃;̃

(
1−

1− Fã;b̃;̃(Cn)

cn

)
(6.15)

with (ã, b̃, γ̃) ∈ (M(εn))2 (cf. (6.12)). Therefore the arguments of the proofs for Lemma 6.5

and Corollary 6.3 show that

ν
(n

k
(1− F (B))

)
= ν

(
1− Fa;b;(B))(1 + o(1)) = ν

(Dn

cn

)
(1 + o(1))

=
(dn

cn

)1/η
ν(A)(1 + o(1)) (6.16)

uniformly for B ∈ Bn (cf. Remark 6.1). Now (3.14) leads to

P{1− F (X, Y ) ∈ 1− F (B)} = q
(k

n

)(dn

cn

)1/η
ν(A)(1 + o(1)) (6.17)

uniformly. In particular, there exists n0 such that P{1 − F (X, Y ) ∈ 1 − F (B)} < 1/2 for all

n ≥ n0 and all B ∈ Bn.

Next note that

B̄t :=
⋃

B∈Bn,n≥n0,P{1−F (X,Y )∈1−F (B)}(1−P{1−F (X,Y )∈1−F (B)})≤t

B

⊂
⋃

B∈Bn,n≥n0,P{1−F (X,Y )∈1−F (B)}≤2t

B. (6.18)

In view of (6.15), one may prove as in Corollary 6.2 that, for all δ > 0, eventually 1−Fa;b;(B) ⊂
A+δdn/cn for all B ∈ Bn. Hence it follows as in the proof of Lemma 6.4 that

n

k
(1− F (B)) ⊂ dn

cn
A+δ(1 + o(1)) (6.19)
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uniformly for B ∈ Bn.

Let n(t) := min
{
n ≥ n0 | q(k/n)(dn/cn)1/ην(A) ≤ 3t

}
, which tends to ∞ as t tends to 0.

Combining (6.17)–(6.19), we arrive at

1− F (B̄t) ⊂
⋃

n≥n(t)

k(n)dn

ncn
A+δ(1 + o(1)) ⊂ 2 sup

n≥n(t)

k(n)dn

ncn
A+δ

for sufficiently small t. By (3.14), the regularity condition on k(n) and the definition of n(t) it

follows that

P{1− F (X, Y ) ∈ 1− F (B̄t)} = O
(
q
(k(n(t))

n(t)
)( n(t)

k(n(t))
sup

n≥n(t)

k(n)dn

ncn

)1/η
)

= O
(
q
(k(n(t))

n(t)
)(dn

cn

)1/η
)

= O(t).

Since Bn is a VC class, Theorem 5.1 of Alexander (1987) yields

sup
{∣∣∣

1
n

∑n
i=1 1{1− F (Xi, Yi) ∈ 1− F (B)}
P{1− F (X,Y ) ∈ 1− F (B)} − 1

∣∣∣
∣∣

B ∈ Bn, P{1− F (X, Y ) ∈ 1− F (B)} ≥ εn

}
→ 0,

provided nεn → ∞. Because of (6.17) and the last assumption of (3.13), the choice εn =

q(k/n)(dn/cn)1/ην(A)/2 leads to the assertion.

Proof of Theorem 3.1. Now the consistency of p̂n can be proven as shown in (6.10). For this

note that, because of (3.11), F�1

â;b̂;̂
(1− D̂n/cn) belongs to Bn with probability tending to 1 and

that log cn = o((r(n))1/2) implies c
1/η̂
n = c

1/η
n (1 + oP (1)) since η̂ was assumed

√
r(n)–consistent

for η.
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η̂i standard deviation η = 1 accepted; test
mn mean rmse obs. σ̂i(η̂i) σ̂i(1) with σ̂i(η̂i) with σ̂i(1) #failed

ML, η̂1

Cauchy 80 0.98 0.18 0.18 0.17 0.17 0.89 0.92 0
160 1.03 0.13 0.13 0.11 0.11 0.93 0.95 0
240 1.04 0.10 0.09 0.08 0.08 0.95 0.94 4

BEV 80 0.91 0.18 0.16 0.15 0.15 0.81 0.86 0
160 0.91 0.15 0.11 0.09 0.10 0.68 0.72 0
240 0.90 0.13 0.09 0.07 0.07 0.55 0.58 0

Normal 80 0.72 0.18 0.17 0.13 0.15 0.36 0.38 0
160 0.74 0.13 0.12 0.08 0.09 0.16 0.18 0
240 0.74 0.11 0.09 0.06 0.07 0.04 0.05 0

Morgenstern 80 0.47 0.16 0.16 0.12 0.17 0.05 0.06 0
160 0.49 0.11 0.11 0.08 0.10 0.00 0.00 0
240 0.50 0.08 0.08 0.06 0.08 0.00 0.00 0

Hill, η̂2

Cauchy 40 0.93 0.14 0.12 0.11 0.12 0.81 0.88 0
80 0.89 0.14 0.08 0.08 0.09 0.57 0.63 0

120 0.84 0.17 0.06 0.06 0.07 0.15 0.22 0
BEV 40 0.87 0.17 0.11 0.10 0.11 0.60 0.71 0

80 0.84 0.17 0.08 0.06 0.08 0.29 0.34 0
120 0.82 0.19 0.06 0.05 0.06 0.05 0.08 0

Normal 40 0.73 0.12 0.10 0.08 0.11 0.12 0.18 0
80 0.74 0.09 0.07 0.05 0.07 0.01 0.01 0

120 0.73 0.08 0.05 0.04 0.06 0.00 0.00 0
Morgenstern 40 0.51 0.07 0.07 0.07 0.13 0.00 0.00 0

80 0.53 0.06 0.05 0.04 0.08 0.00 0.00 0
120 0.54 0.06 0.04 0.03 0.06 0.00 0.00 0

Peng, η̂3

Cauchy 40 1.05 0.37 0.36 0.23 0.25 0.92 1.00 6
80 0.97 0.18 0.18 0.16 0.18 0.88 1.00 1

120 0.88 0.17 0.12 0.11 0.14 0.67 0.97 1
BEV 40 0.96 0.23 0.23 0.20 0.23 0.90 1.00 5

80 0.85 0.20 0.12 0.12 0.17 0.60 0.97 2
120 0.80 0.21 0.09 0.09 0.14 0.28 0.67 0

Normal 40 0.78 0.20 0.19 0.18 0.30 0.60 1.00 2
80 0.75 0.10 0.09 0.12 0.19 0.27 0.94 0

120 0.74 0.09 0.07 0.09 0.14 0.05 0.27 0
Morgenstern 40 0.55 0.23 0.22 0.24 0.74 0.32 1.00 10

80 0.54 0.11 0.11 0.12 0.37 0.03 1.00 0
120 0.55 0.08 0.07 0.09 0.25 0.00 0.10 0

Table 1: Mean and root mean squared errors of η̂i, observed standard deviation of the estimator,
mean of estimates σ̂i(η̂i) and σ̂i(1), proportion of samples in which η = 1 is accepted by 5%-test,
based on σ̂i(η̂i) resp. σ̂i(1). Last column indicates the number of simulations where calculations
failed (sample size n = 1000, 250 simulations).
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ML estimator η̂1

Hill estimator η̂2

Peng’s estimator η̂3

Cauchy Normal

Figure 1: Estimators of η versus m for bivariate Cauchy (left) and normal distributions (right);

average over 250 simulations (solid line) and± 1.64 standard deviations (dashed lines); horizontal

line: true η.
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k γ̂1 γ̂2 η p̂(η̂) p̂(1) p̂

Cauchy 1 1 1 ×10−5

40 0.89 0.95 0.91 0.1310 0.2996 0.2914

80 0.98 1.02 0.99 0.3738 0.5056 0.4810

160 0.91 0.96 1.03 1.0815 0.7973 0.7973

240 1.00 1.04 1.04 1.6677 1.1440 1.1285

Morgenstern 1 1 0.5 ×10−5

40 0.96 0.99 0.44 0.3277 11.7065 0.3277

80 1.01 1.03 0.46 0.3754 27.0215 0.3754

160 0.94 0.97 0.48 0.6287 57.5168 0.6287

240 1.00 1.02 0.50 0.7640 83.7799 0.7640

Normal 0 0 0.8 ×10−5

40 -0.13 -0.15 0.68 0.0000 0.0600 0.0000

80 -0.17 -0.20 0.71 0.0000 0.0024 0.0000

160 -0.13 -0.13 0.73 0.0000 0.0000 0.0000

240 -0.17 -0.20 0.75 0.0000 0.0000 0.0000

Exponential/Normal 0 0 0.8 ×10−5

40 -0.00 0.02 0.68 0.0054 0.8557 0.0212

80 0.04 0.06 0.71 0.0723 2.2344 0.0975

160 0.01 0.04 0.73 0.2384 3.7091 0.2467

240 0.04 0.06 0.75 0.3623 6.1357 0.3623

Table 2: Median of γ̂i and of estimated failure probabilities; Exponential/Normal indicates

a bivariate normal distribution with marginals standardized to exponential distribution (true

failure probability pn = 10−5, sample size n = 1000, 250 simulations).
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Cauchy Morgenstern

Normal Exponential/Normal

Figure 2: Each panel shows boxplots indicating the 5, 25, 50, 75, 95 percentiles of p̂(η̂) (left) and

p̂(1) (right) for different values of k; horizontal line: true failure probability pn = 10−5 (sample

size n = 1000, 250 simulations).
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Figure 3: From top left to bottom right: scatterplot of still water level SWL versus wave

height Hm0, the ML-estimator η̂1, Hill’s estimator η̂2 and Peng’s estimator η̂3; η̂i versus m

(solid line) and upper boundary of critical region of 5%-test for η = 1 (dotted line); horizontal

line: η = 1.
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