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Abstract

Given a function f : N → R, call an n-vertex graph f-connected if
separating off k vertices requires the deletion of at least f(k) vertices
whenever k ≤ (n− f(k))/2. This is a common generalization of vertex
connectivity (when f is constant) and expansion (when f is linear).
We show that an f -connected graph contains a cycle of length linear
in n if f is any linear function, contains a 1-factor and a 2-factor if
f(k) ≥ 2k + 1, and contains a Hamilton cycle if f(k) ≥ 2(k + 1)2. We
conjecture that linear growth of f suffices to imply hamiltonicity.

1 Introduction: the notion of f-connectedness

In his survey on tree-width, tangles and graph minors, Reed [21] starts out
by considering the global connectivity properties of a hexagonal grid: he
observes that, although any such grid is barely 2-connected, the number of
vertices needed to disconnect a large part from the rest is large: it grows
at least as

√
k with the size k of that part. Our aim in this paper is to

define this notion of global connectivity more formally, to see how it relates
to other graph invariants, and in particular to ask what ‘richness’ properties
(such as hamiltonicity, or the existence of other global substructures) it can
imply.

Given a graph G, let us call a pair (A, B) of proper subsets of V (G) a
separation of G if A ∪ B = V (G) and G has no edge between A \ B and
B \ A. Let f : N \ {0} → R be a function (usually non-decreasing).
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Definition 1.1 G is called f -connected if every separation (A, B) of G with
|A \ B| ≤ |B \ A| satisfies |A ∩ B| ≥ f(|A \ B|).
Thus, for small k, splitting off k vertices requires a separator of size at
least f(k).

For constant functions f : k �→ c ∈ N, f -connectedness reduces to the
traditional notion of c-connectedness. Complete graphs are f -connected for
every f (because they have no separations), and grids are f -connected for
f : k �→

√
2k (see [6, 22]).

An obvious equivalent way to view f -connectedness is as an expansion
property, ie. in terms of an isoperimetric inequality (such as (1) below).
Isoperimetric inequalities have been investigated mainly for specific classes
of graphs (such as higher-dimensional grids and cubes; see e.g. [6], and [9]
for references), while the focus in the study of expanders has largely been
to construct (sparse) expanders with certain desired properties [9, 15].

Our aim here differs from both these: rather than trying to determine for
which f some specific graphs are f -connected, or to construct f -connected
graphs for certain specific f , we shall think of f as given but arbitrary, and
then try to relate the corresponding property of f -connectedness to other
graph invariants. This has two aspects:

• What properties or substructures of a graph G can we force by assum-
ing that G is f -connected?

• What assumptions will force a graph G to be f -connected or to have
an f -connected subgraph (or minor etc)?

We will mainly be concerned here with the first of these aspects and only
touch briefly on the second. The second aspect has been studied in more
depth by Rempel [22], who investigated for which functions f the assumption
of high average degree or chromatic number can force G to have large f -
connected subgraphs.

Our graph-theoretical notation is that of [12]. In particular, if S is a set
of vertices in a graph G = (V, E), we denote by NG(S) = N(S) the set of
neighbours in G − S of vertices in S. Initial, middle and final segments of
a path P are denoted as Py, xPy and xP , respectively, if they start at x
and/or end at y. Unless otherwise stated, f will always denote an arbitrary
non-decreasing function N \ {0} → R.

Throughout the paper, we shall use freely the following two reformula-
tions of f -connectedness as an expansion property. For

S := V \ (S ∪ N(S)) ,
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clearly G is f -connected if and only if

|N(S)| ≥ f(|S|) for every S ⊆ V with 0 < |S| ≤ |S| .

(Rephrased like this, f-edge-connectedness could be defined correspondingly
in terms of edge boundaries.)

Put another way, if |G| =: n and G is f -connected, then a non-empty
set S ⊆ V can satisfy |N(S)| < f(|S|) only if |S| > |S| = n − |N(S)| − |S|,
or equivalently if |N(S)| > n − 2|S|. Thus, G is f -connected if and only if
every S ⊆ V satisfies

|N(S)| ≥ min
{
f(|S|) , n − 2|S| + 1

}
. (1)

Our paper is organized as follows. We start out in Section 2 with our
main results, establishing upper bounds on the growth rate of f needed to
force a Hamilton cycle or other long cycle in a given graph. In Section 3 we do
the same for 1-factors and 2-factors. Section 4 gives some brief indications
of the kind of growth rate of f that can be expected to force standard
substructures (such as given subgraphs or minors), and suggests some open
problems. In Section 5 we relate f -connectedness for regular graphs and
linear f to the traditional concept of an (n, d, c)-expander, and note a lower
bound in terms of eigenvalues. As an application of our main results we
deduce the existence of long cycles and factors in Ramanujan graphs.

2 Forcing long cycles

It is well known that random graphs contain long cycles, indeed Hamilton
cycles, even when they are relatively sparse. On the other hand, they are
well-expanding. Our aim in this section is to relate these two properties
directly: we shall prove that linear f -connectedness always forces a cycle of
length linear in the order of the graph, and that quadratic f -connectedness
can force it to be hamiltonian.

Theorem 2.1 If f(k) ≥ 2(k + 1)2 for all k ∈ N, then every f-connected
graph of order n ≥ 3 is hamiltonian.

We do not believe that quadratic growth of f is needed in Theorem 2.1,
but expect that some linear growth will do:

Conjecture 2.2 There exists a function f(k) = O(k) such that every f-
connected graph of order n ≥ 3 is hamiltonian.
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We shall see later (Section 4) that Conjecture 2.2 follows from Chvátal’s
toughness conjecture [10].

Since bipartite graphs Kn,n−1 are not hamiltonian but f -connected for
f : k �→ 2k when n is odd, the strongest possible version of Conjecture 2.2
would be the following:

Conjecture 2.3 If f(k) ≥ 2k + 1 for all k ∈ N, then every f-connected
graph of order n ≥ 3 is hamiltonian.

Although we cannot prove either of these conjectures, we can show that
an f -connected graph with f(k) ≥ 2k contains a cycle of length at least
3n/4. This is the case c = 2 of the following more general result:

Theorem 2.4 Let f(k) ≥ ck for some real number c ≥ 2 and all k ∈ N,
and let G be an f-connected graph of order n ≥ 3. Then G has a cycle of
length at least c+1

c+2 n.

For c = 2, this improves the lower bound of 5n/9 obtained by Rempel [22].

We shall prove Theorems 2.1 and 2.4 by the same method. This method
does not allow an extension of Theorem 2.4 to c < 2. For c < 2 we can still
show that f -connected graphs have cycles of linear length, but only with a
smaller multiplicative constant:

Theorem 2.5 Let f(k) ≥ ck for some real number c ∈ (0, 2) and all k ∈ N,
and let G be an f-connected graph of order n > 1 + 3

c . Then G has a cycle
of length at least ( c

c+2)2n.

We remark that the lower bound on n in Theorem 2.5 is necessary: there
can be trees of order up to 1 + 3

c that are f -connected with f(k) = ck. See
the remark following Lemma 2.10.

In our proofs we shall use the following tool due to Pósa [20]. Let P be
a path in a graph G, say from u and v. Given a vertex x ∈ P , we write
x− for the vertex preceding x on P , and x+ for the vertex following x on P
(whenever these exist). Similarly for X ⊆ V (P ) we put

X− := {x− | x ∈ X} and X+ := {x+ | x ∈ X}.

If x ∈ P −u is a neighbour of u in G, then P −xx−+ux (which is a path in G
with vertex set V (P )) is said to have been obtained from P by an elementary
exchange fixing v (Fig. 1). A path obtained from P by a (possibly empty)
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sequence of elementary exchanges fixing v is a path derived from P . The
set of starting vertices of paths derived from P , including u, will be denoted
by S(P ). As all paths derived from P have the same vertex set as P , we
have S(P ) ⊆ V (P ).

vu
P

x x−

Figure 1: An elementary exchange applied to the path P

The following lemma is a one-sided variant of Pósa’s Lemma [20]; see
also [7, Lemma 6.3].

Lemma 2.6 Let G be a graph, let P = u . . . v be a longest path in G, and
put S := S(P ). Then NG(S) ⊆ S− ∪ S+.

Proof. Let x ∈ S and y ∈ N(x) be given; we show that y ∈ S−∪S∪S+. As
x ∈ S there is a path Q = x . . . v derived from P . Then y ∈ V (Q) = V (P ),
because Q (like P ) is a longest path; let z denote the predecessor of y on Q.

Suppose that y /∈ S− ∪ S ∪ S+. Then each of the (one or two) edges
e ∈ P at y lies on every path derived from P (and in particular on Q),
because in any elementary exchange in which e is first deleted, its two ends
(including y) would have become members of S and of S−∪S+, respectively.
Hence z ∈ {y−, y+}. But Q + xy − yz is obtained from Q by an elementary
exchange, which puts z in S and y in S− ∪ S+. �

Lemma 2.7 Let G be a graph, let P = u . . . v be a longest path in G, and
put S := S(P ). Then G has a cycle containing S ∪ N(S).

Proof. Let y be the last vertex of P in N(S). Then all the vertices from
S ∪ N(S) lie on Py, because any vertex of yP in S would differ from v
and hence have its successor on P in N(S). Let x ∈ S be a neighbour
of y in G, and let Q = x . . . v be derived from P . As in the proof of
Lemma 2.6, all the edges of yP are still edges of Q, so yQ = yP . Thus
S ∪ N(S) ⊆ V (Py) = V (Qy), and Qyx is a cycle in G. �
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Proof of Theorem 2.4.

Let P = u . . . v be a longest path in G, and put S := S(P ).
Suppose first that |S| ≤ n/(c + 2). Then

|N(S)| ≥
(1)

min{c |S| , n − 2|S| + 1} ≥ c |S| ,

which by Lemma 2.6 implies the contradiction of

3|S| − 1 ≥ |S+ ∪ S ∪ S−| ≥ |S ∪ N(S)| ≥ |S| + c |S| ≥ 3|S|.

(The −1 comes from the fact that u ∈ S while u− does not exist.)
We may therefore assume that |S| > n/(c + 2). Choose a subset S′ ⊆ S

with

|S′| =
⌈

n

c + 2

⌉
.

Then

|S′ ∪ N(S′)| ≥
(1)

min{(c + 1)|S′| , n − |S′| + 1} ≥ c + 1
c + 2

n .

Now the cycle from Lemma 2.7, which contains S ∪ N(S) ⊇ S′ ∪N(S′), has
the desired length. �

Proof of Theorem 2.1.

Let G be an f -connected graph with |G| =: n ≥ 3 and f(k) ≥ 2(k + 1)2 for
all k ∈ N. We first show that G contains a longest path P = u . . . v with

√
2n − 2 < d(u) ≤ d(v). (2)

Choose P = u . . . v among all the longest paths in G with d(u) ≤ d(v) so that
d(u) is maximum, and subject to this with d(v) maximum. Put S := S(P ).
By Lemma 2.6 and (1), we have

2|S| ≥ |S− ∪ S+| ≥ |N(S)| ≥ min
{
2(|S| + 1)2 , n − 2|S| + 1

}
and hence 2|S| ≥ n − 2|S| + 1, giving

|S| ≥ �(n + 1)/4� ≥ 
√

n/2� .

Consider a subset S′ ⊆ S with |S′| = 
√

n/2�. By (1), we have

|N(S′)| ≥ min
{
2(|S′| + 1)2 , n − 2|S′| + 1

}
.
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As 2(|S′| + 1)2 > n by the choice of S′, this yields

|N(S′)| ≥ n − 2|S′| + 1 > n −
√

2n ,

so some vertex s ∈ S′ has degree at least

|N(S′)|
|S′| >

n −
√

2n√
n/2

=
√

2n − 2 .

As s ∈ S, there is a longest path Q = s . . . v in G. Thus if (2) fails and
hence d(u) < d(s), then the existence of Q contradicts the choice of P . This
completes the proof that P satisfies (2).

We next show that G contains a cycle C with V (C) = V (P ). Since G is
connected and P is a longest path, this cycle must then be a Hamilton cycle.
If uv ∈ E(G) then C := Pvu will do, so let us assume that uv /∈ E(G).

Let w be the first vertex on P such that some x ∈ {u, v} has at least
half its neighbours on Pw. Put P1 := Pw and N1 := N(x)∩ V (P1), and let
S1 := N−

1 . Note that u /∈ N1 since uv /∈ E(G), so

|S1| = |N1| ≥ d(x)/2 >
√

n/2 − 1

by (2). Now let y be such that {x, y} = {u, v}, put P2 := wP and N2 :=
N(y) ∩ V (P2), and let S2 := N+

2 . Note that, by the choice of w, at least
half the neighbours of y lie in N2. Thus as before, uv /∈ E(G) and (2) imply
that

|S2| = |N2| ≥ d(y)/2 >
√

n/2 − 1 .

For i = 1, 2 we have

|N(Si)| ≥ min
{
2(|Si| + 1)2 , n − 2|Si| + 1

}

by (1). Since 2(|Si|+1)2 > n, this means that |N(Si)| > n−2|Si|. Applying
this with Si denoting the smaller of the sets S1 and S2, we obtain

|N(Si)| > n − 2|Si| ≥ n − (|S1| + |S2|) .

So this Si must have a neighbour in the other Sj , ie. G contains an edge e
between S1 and S2. Figure 2 shows how this edge can be used to obtain the
desired cycle C in each of the two cases of either x = u and y = v or x = v
and y = u. �
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x = u

y = u

= S1 = S2

w

w

e

e

v = x

v = y

Figure 2: Finding the cycle C in the proof of Theorem 2.1

We finally turn to the proof of Theorem 2.5. We start with another
Lemma.

Lemma 2.8 Let T be a tree of order at least 3, and r ∈ T a vertex. Then
T contains a path P = r . . . s where s is not a leaf, such that V (T − P ) is a
union of two disjoint sets A and B, possibly empty, whose sizes differ by at
most 1 and which are not joined by an edge of T .

Proof. Let P = r . . . s and A, B be as above ignoring the size condition,
but with |A| and |B| as equal as possible. Suppose that |A| ≤ |B|−2. If s is
adjacent to a leaf in B, then moving this leaf to A decreases the difference
between |A| and |B|, a contradiction. If s has a neighbour t ∈ B that is
not a leaf, the extended path Pst with V (T − Pst) split into A and B \ {t}
yields a contradiction. So s has no neighbour in B. Then s �= r, and if
P = rs then r is not a leaf. So P ′ := P − s is a path not ending in a leaf,
and V (T − P ′) splits into the sets A ∪ {s} and B (a contradiction). �

Lemma 2.9 Suppose that f(k) ≥ ck for some real number c > 0 and all
k ∈ N, and let G be an f-connected graph of order n ≥ 3. Then G contains
a path of order at least c

c+2 n.

Proof. As f(k) > 0 for all k > 0, we know that G is connected. Let
T ⊆ G be a DFS-tree (a normal spanning tree in [12]), with root r say. By
Lemma 2.8 there is a path P = r . . . s in T such that s is not a leaf and
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V (T −P ) is a union of disjoint sets A, B that are not joined by an edge of T
and whose sizes |A| ≤ |B| differ by at most 1. Since T is normal in G, we
have NG(A) ⊆ V (P ): as P is down-closed in the tree-order of T associated
with r, every component of T−P and hence A is up-closed, so any neighbour
outside A of a vertex a ∈ A lies below a and therefore not in B (since B too
is up-closed).

As s is not a leaf, P is not a longest path in G. Thus if p denotes the
order of a longest path in G, then

|A| ≥ 1
2

(
n − |P | − 1

)
≥ 1

2

(
n − (p − 1) − 1

)
= 1

2(n − p) .

Since N(A) ⊆ V (P ), this implies

p > |P | ≥ |N(A)| ≥ c|A| ≥ 1
2c(n − p) ,

giving p > c
c+2 n as desired. �

Lemma 2.10 Suppose that f(k) ≥ ck for some real number c > 0 and all
k ∈ N, and let G be an f-connected graph of order n > 1+ 3

c . If n ≥ 3, then
G contains a cycle.

Proof. As f(k) > 0 for all k > 0, we know that G is connected. Suppose the
lemma fails, ie. that G is a tree. Orient every edge of G towards where more
vertices of G lie, breaking ties arbitrarily, and let v be a sink. We claim that
V (G− v) is a union of disjoint sets A and B such that 1

3(n−1) ≤ |A| ≤ |B|.
To show this, let us collect components of G − v greedily (large sizes

first) until we have collected at least 1
3(n − 1) vertices, and call this set of

vertices C. Then 1
3(n− 1) ≤ |C| < 2

3(n− 1), and we let A be the smaller of
the sets C and V (G − v) \ C, and B the larger.

Now |N(A)| = |{v}| = 1, so for k := |A| we have ck ≤ f(k) ≤ 1 and
hence 1

3(n − 1) ≤ k ≤ 1/c. Thus n ≤ 1 + 3
c , contrary to our assumption.

�

We remark that the requirement of n > 1 + 3
c in Lemma 2.10 is indeed

necessary if we want linear f -connectedness to force the existence of a cycle.
Indeed, for every c > 0 with 1/c integral there is a tree of order n = 1 + 3

c
that is f -connected with f(k) = ck: take any tree with a vertex of degree 3
whose deletion yields three subtrees of order 1/c.

Lemma 2.11 Suppose that f(k) ≥ ck for some real number c > 0 and all
k ∈ N, and let G be an f-connected graph of order n > 1 + 3

c . Let p denote
the order of a longest path in G. If n ≥ 3, then G contains a cycle of length
at least c

c+2 p.
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Proof. Let P be a longest path in G. Let S1 denote the set of the first
 p

c+2 + 1� vertices of P , let S2 denote the set of its last  p
c+2 + 1� vertices,

and put P ′ := P − S1 − S2.
If P ′ = ∅, then p ≤ 2 p

c+2 + 1� ≤ 2p
c+2 + 2, and hence c

c+2 p ≤ 2. So
the length condition on our desired cycle is void, and an arbitrary cycle is
provided by Lemma 2.10.

We may therefore assume that |P ′| ≥ 1; then S1 ∩ S2 = ∅. If G contains
an S1–S2 path Q = s1 . . . s2 avoiding P ′, then s1Ps2Qs1 is a cycle of length
at least

|P ′| + 2 = p − 2
⌊

p

c + 2
+ 1

⌋
+ 2 ≥ p − 2p

c + 2
=

c

c + 2
p .

If there is no such path Q then V (P ′) separates S1 from S2, so G has a
separation (A, B) with S1 ⊆ A \B and S2 ⊆ B \A and V (P ′) = A∩B. But
if |A \ B| ≤ |B \ A|, say, then the fact that

|A \ B| ≥ |S1| >
p

c + 2

while

|A ∩ B| = |P ′| = p − 2
⌊

p

c + 2
+ 1

⌋
< p − 2p

c + 2
= c

p

c + 2

contradicts the f -connectedness of G with f(k) ≥ ck. �

Now we are ready to complete the proof of Theorem 2.5.

Proof of Theorem 2.5.
Our assumptions about c and n imply that n ≥ 3. By Lemma 2.9, the graph
G contains a path of order at least c

c+2n. By Lemma 2.11, this implies the
existence of a cycle in G of length at least ( c

c+2)2n. �

3 Forcing factors

We have shown that graphs satisfying the premise of Conjecture 2.3 contain
if not a Hamilton cycle then at least a very long cycle. Another way to relax
the statement of Conjecture 2.3 is to ask for a 2-factor instead of a Hamilton
cycle (which is just a connected 2-factor).

It turns out that the bound of Conjecture 2.3 does indeed imply the
existence of a 2-factor:
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Theorem 3.1 If f(k) ≥ 2k +1 for all k ∈ N, then every f-connected graph
G of order at least 3 has a 2-factor.

Slightly smaller f -connectedness still forces a 1-factor:

Theorem 3.2 If f(k) ≥ 2k for all k ∈ N, then every f-connected graph G
of even order contains a 1-factor.

In contrast to our results for cycles, these two statements are easily seen
to be best possible. Indeed, Kn,n−1 has no 2-factor but is f -connected for
f : k �→ 2k when n is odd, while Kn,n−2 has no 1-factor but has even order
and is f -connected for f : k �→ 2k − 1 when n is odd.

Proof of Theorem 3.2.
If G has no 1-factor then, by Tutte’s 1-factor theorem [12], G has a set S
of vertices such that |S| < k for the number k of odd components of G− S.
Since G has even order, k and |S| have the same parity, so k ≥ |S| + 2.

Let A be the union of the vertex sets of the k/2� smallest odd compo-
nents of G−S, and let B be the set of all the other vertices of G−S. Then
|A| ≤ |B| but

|S| ≤ k − 2 < 2k/2� ≤ 2|A| ,
contradicting the f -connectedness assumed for G. �

For 2-factors we use Tutte’s f -factor theorem [23, 24] instead of his
1-factor theorem. (Readable secondary sources for the f -factor theorem
include [5] and [18].)

Proof of Theorem 3.1.
By Tutte’s f -factor theorem, G = (V, E) has a 2-factor if and only if for all
disjoint subsets A, B ⊆ V

ΘG(A, B) := 2|A| +
∑
v∈B

dG−A(v) − 2|B| − oddG(A, B) ≥ 0.

Here, oddG(A, B) denotes the number of odd components with respect to
(A, B), which are those components D of G − A − B such that G has an
odd number of edges between B and D.

Let G be a counterexample to the theorem with as many edges as possi-
ble. Since ΘG(A, B) is clearly always even, there are disjoint A, B ⊆ V such
that

ΘG(A, B) ≤ −2 . (3)
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Put C := G − A − B.
If b ∈ B is adjacent to some other vertex in B, then ΘG(A, B \ {b}) ≤

ΘG(A, B). Replacing B with a subset if necessary, we may therefore assume
that B is an independent set of vertices.

Let us call a component of C even if it is not odd with respect to (A, B).
Adding an edge between a vertex in A and any other vertex, or inside a
component of C, or between two even components, or between an odd and
an even component, or between B and an even component will not affect
Θ(A, B). By maximality of G it follows that every vertex a ∈ A is adjacent
to every vertex v �= a of G, that all the components of C are complete, that
there is at most one even component, that there is no even component if
there is an odd component, and that B is completely joined to every even
component.

Let us assume first that there is no odd component. Then two vertices
x, y ∈ V are adjacent if and only if {x, y} �⊆ B, so by (3) we have

2|B| ≥ 2 |A| + 2 + p ,

where p denotes the number of edges between B and C. If |B| ≤ 1 then this
gives |A| = p = 0 and hence |G| ≤ 1, contrary to our assumption. If |B| ≥ 2
then p ≥ 2 |C|, and hence

|B| ≥ |A| + 1 + |C| = |V \ B| + 1 .

Choose a set X ⊆ B of size
⌊
|B|/2

⌋
. Then

|N(X)| = |V \ B| ≤ |B| − 1 ≤ 2 |X| ,

contradicting our assumption that G is f -connected with f(k) ≥ 2k + 1.
We may therefore assume that there is at least one odd component and

hence no even component. Let us inductively mark some edges between B
and C, two at a time, according to the following rules:

(1) As often as possible, mark two edges that are both unmarked and have
a common end in C. These pairs of edges will be called ∨-pairs.

(2) Then, as often as possible, mark any two unmarked edges whose ends
in C lie in the same component of C.

Then for each component D of C exactly one B–D edge remains unmarked.
Thus if p denotes the number of marked pairs, (3) translates to

|B| ≥ |A| + 1 + p . (4)
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Write B as a union of two disjoint subsets B1 and B2, of sizes |B1| ≤ |B2|
as equal as possible. Consider a vertex x ∈ C. Since step (1) of our marking
algorithm was performed as often as possible, x has at most one neighbour
y ∈ B such that the edge xy lies in no ∨-pair. For every component D of C,
let D1 denote the set of all x ∈ D for which such a neighbour y exists and
lies in B1, and define D2 correspondingly. Then

D1 ∩ D2 = ∅ and |D1 ∪ D2| = 2q + 1 ,

where q denotes the number of pairs of B–D edges marked in (2). (The +1
comes from the unmarked B–D edge.) Thus, |D1| �= |D2|.

Let us define a partial colouring of V , as follows. Begin by giving the
vertices in B1 colour 1, and those in B2 colour 2. Now consider separately
all the components D of C.

Suppose first that |D1| ≥ |D2|; then |D2| ≤ q. Colour with colour 1 all
the vertices in D1 that are not adjacent to B2. Then any vertex in D that
remains uncoloured either lies in D2 or is a vertex x ∈ D1 with a neighbour
y ∈ B2, in which case xy lies in some ∨-pair (because x ∈ D1). So the
number of vertices in D that remain uncoloured is at most the total number
of marked pairs of B–D edges. On the other hand if |D1| < |D2|, colour
with colour 2 all the vertices in D2 that are not adjacent to B1. As before,
the number of vertices in D that remain uncoloured is at most the total
number of marked pairs of B–D edges. In total, at most |A| + p vertices
in V remain uncoloured, and vertices of distinct colours are nonadjacent.

Let V1, V2 ⊆ V be the two colour classes, assume that |V1| ≤ |V2|, and
let U be the set of uncoloured vertices. Then |V1| ≥

⌊
|B|/2

⌋
(because V1

contains either B1 or B2), and U separates V1 from V2 in G. So by f -
connectedness we have

|A| + p ≥ |U | ≥ 2 |V1| + 1 ≥ |B| ,

contradicting (4). �

4 Other substructures forced by f-connectedness

In this section we list some preliminary observations on what kind of sub-
structures other than long cycles and factors an assumption of f -connected-
ness might force in a graph, together with some open problems that might
point towards possible further research.
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Since the idea behind the concept of f -connectedness is that it should
be a global property, we may ask in particular to what extent it can force
substructures that may also occur as global phenomena, such as high chro-
matic number or large complete minors. As for chromatic number, the only
general bound we get follows at once from the fact that f -connected graphs
for fast growing f cannot have large independent sets of vertices, because
dividing such a set into two halves defines a separation. The proof of that
bound in fact uses the f -connectedness only for one value of k:

Proposition 4.1 Let t ∈ N, and let G be an f-connected graph of order n.
If f(k) ≥ 2t(k + 1) for k :=  n

2(t+1)�, then χ(G) ≥ t + 2.

Proof. Assume that χ(G) ≤ t + 1. Any (t + 1)-colouring of G has a colour
class S with at least n

t+1 ≥ 2k vertices. Choose S′ ⊆ S with |S′| = k. Then
N(S′) ⊆ V (G) \ S, so

|N(S′)| ≤ (1 − 1
t + 1

)n = 2t
n

2(t + 1)
< 2t(k + 1).

This contradicts the f -connectedness of G, because S \ S′ ⊆ S′ and hence
|S′| ≤ |S \ S′| ≤ |S′|. �

In the absence of any restrictions on the graphs considered, Proposi-
tion 4.1 cannot be much improved, since the complete (t + 1)-partite graph
with odd partition sets, say of size 2s + 1, is f -connected with f(k) =
t(2k + 1). An assumption of large girth may help to force the chromatic
number up, but since there are bipartite expanders of order n and girth
Θ(log n) [19], this will still require that f grows linearly.

Friedman and Pippenger [16] proved (a result implying) that, given d, t ∈
N, every graph satisfying |N(S)| ≥ (d + 1)|S| for all sets S of at most 2t− 2
vertices contains every tree of maximum degree at most d and order at most t
as a subgraph. In terms of f -connectedness, this implies the following:

Proposition 4.2 Let d ∈ N, and let G be an f-connected graph or order n
with f(k) ≥ (d+1)k for all k ∈ N. Then G contains every tree of maximum
degree at most d and order t ≤ n

2d+6 + 1.

Proof. By Friedman and Pippenger’s theorem, it suffices to show that
|N(S)| ≥ (d + 1)|S| for all S ⊆ V (G) with

|S| ≤ 2t − 2 ≤ n

d + 3
. (5)
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By (1), the inequality |N(S)| ≥ (d + 1)|S| can fail only if

|N(S)| ≥ n − 2 |S| + 1 ≥
(5)

(d + 1)|S| + 1 ,

so it holds for every S as in (5). �

The occurrence of a given subgraph will hardly count as a global phe-
nomenon. But for the record let us estimate the growth rate of f needed
to force a Kr subgraph by f -connectedness. Splitting a largest independent
set in half as in Proposition 4.1, we can apply Ramsey’s theorem to obtain
a trivial upper bound in terms of R(r, s), the smallest integer n such that
every graph of order n contains either a Kr or s independent vertices:

Lemma 4.3 If f satisfies f(k) ≥ R(r, 2k+2)−2k for all k ∈ N, then every
f-connected graph has a Kr subgraph.

Proof. Let G be an f -connected Kr-free graph. Let S be a largest inde-
pendent set of vertices and put |S| =: α. Pick S′ ⊆ S with |S′| = α

2 � =: k.
Then

f(k) ≤ |N(S′)| ≤ n − 2k < R(r, 2k + 2) − 2k ,

since G is Kr-free with independence number α ≤ 2k + 1. �

With the Erdős-Szekeres bound [14] of

R(r, s) = R(s, r) ≤
(

s + r − 2
s − 1

)

for R(r, s), Lemma 4.3 for s = 2k + 2 implies that polynomial growth of f
suffices to force a Kr subgraph for fixed r:

Proposition 4.3 For every r ∈ N there is a polynomial pr(k) = O(kr−1)
such that every pr-connected graph has a Kr subgraph. �

For r = 3 we can do a little better by Kim’s theorem [17], which implies that
p3(k) = O(k2/ log k). But note that even this bound for p3 is hardly smaller
than 2(k + 1)2, which by Theorem 2.1 already forces a Hamilton cycle.

In contrast to complete subgraphs, dense minors can occur in sparse
graphs as a global phenomenon. It would thus seem that forcing large com-
plete minors (say) might be a likely feat of f -connectedness which other
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invariants cannot as easily achieve. However, this is not the case. As grids
are about

√
-connected but have no K5 minor, no function

f(k) = o(k1/2)

could achieve this. On the other hand, Alon, Seymour and Thomas [2]
proved that every n-vertex graph G without a Kr minor has a separation
(A, B) with |A ∩ B| ≤ r3/2n1/2 and |A \ B| ≤ |B \ A| ≤ 2n/3. Then
|A \ B| ≥ n − r3/2n1/2 − 2n/3 ≥ n/4 if n is large enough, in which case G
will not be f -connected for any f with f(�n/4�) > r3/2n1/2.

Thus if H is any fixed graph and

f(k) = ω(k1/2) ,

then all large enough f -connected graphs have an H minor. The problem
that remains is the following:

Problem 4.4 Is there a function f(k) = O(k1/2) such that, given any
graph H, every large enough f-connected graph has an H minor?

We expect the answer to be negative, ie. that for every c ∈ R there exist an
r ∈ N and arbitrarily large c

√
-connected graphs that have no Kr minor.

More positively, one might speculate whether all graphs that are about√
-connected look like grids:

Problem 4.5 Given constants 0 < c < d and s ∈ N, is every c
√

-connected
graph that has no d

√
-connected subgraph of order at least s grid-like in some

well-specified sense (depending on c, d and s)?

See [13] for some ideas on how grid-likeness might be specified.

A graph that is highly connected in some global sense ought to have large
tree-width. Our next observation confirms this for f -connectedness: any
reasonable bound g(n) on the tree-width of an n-vertex graph is exceeded by
the tree-width of every large enough f -connected graph, as soon as f = ω(g).

We begin with a technical lemma that uses a standard technique to
obtain a lower tree-width bound:

Lemma 4.6 If f, g are non-decreasing R
+ → R functions and n ∈ N is

such that f(1
3(n − g(n))) > g(n), then every f-connected graph of order n

has tree-width at least g(n).
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Proof. Let G be a graph of order n with a tree-decomposition D of width
less than g(n), ie. into parts of size at most g(n). Assume without loss
of generality that no part of D contains any other part. We show that G
cannot be f -connected.

Every edge e of the decomposition tree T of D induces a separation
of G. We orient e towards the larger side of that separation, breaking ties
arbitrarily. Then a sink node t of T corresponds to a part Vt of D such that
either G − Vt has a component C of order at least 1

3 |G − Vt| (but no bigger
than |G − C − N(C)|), or else there is a suitable union C of components of
G − Vt such that

1
3 |G − Vt| ≤ |C| ≤ 1

2 |G − Vt| .
As |Vt| ≤ g(n), we thus have 1

3(n − g(n)) ≤ |C|. As N(C) ⊆ Vt, this yields

|N(C)| ≤ g(n) < f(1
3(n − g(n))) ≤ f(|C|) .

Therefore G is not f -connected. �

Lemma 4.6 can be applied as follows. Consider any ‘reasonable’ bound
g(n) on the tree-width of an n-vertex graph G. Normally, we will have
g(n) = o(n), and may therefore expect g to be concave, ie. to satisfy

g(x + λ(y − x)) ≥ g(x) + λ(g(y) − g(x))

whenever x < y and λ ∈ (0, 1).

Proposition 4.6 Let f, g be two non-decreasing R
+ → R functions such

that f = ω(g) and g(n) = o(n). If g is concave, then every f-connected
graph of large enough order n has tree-width at least g(n).

Proof. Since g(n) = o(n), we have 1
3(n − g(n)) > n/4 for n large enough.

In order to deduce the assertion from Lemma 4.6, it thus suffices to show
that f(n/4) > g(n) for n large.

It is not difficult to show that, since g is concave, g(n) = o(n) implies
that g(n) < 4g(n/4) for all sufficienly large n. Hence for n large,

g(n)/4
f(n/4)

<
g(n/4)
f(n/4)

<
1
4

because f = ω(g), and hence g(n) < f(n/4) as desired. �
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A graph G is called t-tough if for every separating set S ⊆ V (G) the
graph G − S has at most |S|/t components. While it is easy to see that a
graph with a Hamilton cycle is 1-tough, Chvátal [10] conjectured that there
is a constant t such that every t-tough graph is hamiltonian. It is known [4]
that t cannot be less than 9/4.

Our next result implies that if Chvátal’s conjecture is true, with t = t0
say, then every f -connected graph with f(k) ≥ 2t0(k + 1) is hamiltonian.
(Our Conjecture 2.2 can thus be viewed as a relaxation of Chvátal’s conjec-
ture.)

Proposition 4.7 Let t ∈ N. If f(k) ≥ 2t(k + 1) for all k ∈ N, then every
f-connected graph is t-tough.

Proof. Suppose G is not t-tough, and let S be a separating set of k vertices
whose deletion results in more than k/t components. Let A be the union
of S and the smallest k/2t� of those components. Then taking B to be
the union of S and the other components makes (A, B) into a separation in
which A is the smaller side and |A \ B| ≥ k/2t�. Since f(k/2t�) > k, the
fact that |A ∩ B| = |S| = k means that G is not f -connected. �

Thus, suitable linear f -connectedness implies any constant toughness.
The converse, of course, is far from true: identifying two large complete
graphs Kr in 2t vertices yields a t-tough graph that will not be f -connected
for any given f → ∞ if r is large enough.

5 Expanding graphs and f-connectedness

The expansion of a graph can be estimated in terms of the eigenvalues
of certain matrices associated with this graph. In this section we relate f -
connectedness for a linear function f to expansion and we determine a linear
lower bound for the function f for a regular graph in terms of the eigenvalues
of its adjacency matrix. Combined with our results from Sections 2 and 3
this will be applied to show the existence of cycles and factors in so-called
Ramanujan graphs.

There are several concepts measuring the expansion of a graph. One of
the earliest of them is that of an (n, d, c)-expander. Let G = (V, E) be a d-
regular graph of order n, and let c ∈ (0, 1]. G is called an (n, d, c)-expander [3]
if for every set X ⊆ V (G) with |X| ≤ n

2 we have |N(X)| ≥ c|X|. Since
|A| ≤ n

2 if |A| ≤ |A|, every (n, d, c)-expander is f -connected for f(k) = ck.
Conversely, we have the following:
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Proposition 5.1 If G is f-connected with f(k) ≥ ck, then G is an (n, d, c′)-
expander with c′ = c

c+1 .

Proof. Let A ⊆ V (G) with |A| ≤ n
2 be given. If |A| ≤ |A|, then |N(A)| ≥

c|A| ≥ c′|A| as required. If not, then |A| < |A| and hence |N(A)| ≥ c|A|.
Since N(A) ⊆ N(A) and n − |A| ≥ |A|, we obtain

|N(A)| ≥ |N(A)| ≥ c|A| = c
(
n − |A| − |N(A)|

)
≥ c

(
|A| − |N(A)|

)
and hence |N(A)| ≥ c

c+1 |A| = c′|A|. �

Let d = λ1 ≥ λ2 ≥ . . . ≥ λn be the spectrum of the adjacency matrix
of G, and let

λ := max{|λ2|, |λn|}

be the largest absolute value of an eigenvalue other than λ1.

Lemma 5.2 Every d-regular graph G is f-connected with f(k) ≥ ( d
λ − 1)k.

In our proof of Lemma 5.2 we will use the following inequality for d-
regular graphs [3, Theorem 9.2.4]: for all S ⊆ V and s := |S|,

∑
v∈V

(
|N(v) ∩ S| − ds

n

)2

≤ λ2 s(n − s)
n

. (6)

Proof of Lemma 5.2.
Choose a set S ⊆ V with s := |S| ≤ |S| =: s such that

c :=
|N(S)|
|S|

is minimum. Then G is f -connected with f(k) = ck, so all we have to show
is that c ≥ d

λ − 1. Note that

n − s

s
=

|N(S)|
|S|

+ 1 ≤ |N(S)|
|S| + 1 = c + 1 =

|S| + |N(S)|
|S| =

n − s

s
. (7)

By definition of S we have N(v)∩S = ∅ for every v ∈ S. Double counting
gives

∑
v∈V \S

|N(v) ∩ S| = 2|E(G[S])| + |E(S, N(S))| =
∑
v∈S

d(v) = ds .
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Thus,

∑
v∈V

(
|N(v) ∩ S| − ds

n

)2

=
∑
v∈S

(
|N(v) ∩ S| − ds

n

)2

+
∑

v∈V \S

(
|N(v) ∩ S| − ds

n

)2

≥ s

(
ds

n

)2

+ (n − s)
(

ds

n − s
− ds

n

)2

=
(

ds

n

)2 ns

n − s
,

where the inequality follows from the fact that a sum of squares of terms
with constant sum is minimized if all summands are equal. Combining this
with (6) and using (7) we obtain

(
d

λ

)2

≤ n − s

s
· n − s

s
≤ (c + 1)2

and hence c ≥ d
λ − 1, as desired. �

Recall that the eigenvalues λi of a d-regular graph satisfy

d = λ1 ≥ . . . ≥ λn ≥ −d .

The graph is bipartite if and only if λn = −d; it is connected if and only if
d = λ1 > λ2 (see eg. [11]). The expansion of a graph is frequently estimated
in terms of λ2 or the value λ = max{|λ2|, |λn|} considered above. Alon and
Boppana (see Alon [1]) observed that for every infinite family G1, G2, . . . of
d-regular graphs the second-largest eigenvalues satisfy

lim inf λ2(Gi) ≥ 2
√

d − 1 . (8)

Although relatively sparse random graphs are well-expanding, the ex-
plicit construction of infinite sequences of sparse expanding graphs turned
out to be difficult. Lubotzky, Phillips and Sarnak [19] achieved a break-
through by constructing, for infinitely many values of d, infinite sequences
of connected d-regular graphs that satisfy |λi| ≤ 2

√
d − 1 for all i with

λi �= ±d, which is best possible by (8). They called graphs with this prop-
erty Ramanujan graphs, because the algebraic construction of these graphs
is related to a Ramanujan conjecture. Some of the sequences of Ramanujan
graphs that they constructed are bipartite (thus λn = −d) and some are
non-bipartite. The latter graphs satisfy λ ≤ 2

√
d − 1 and hence they are

f -connected for a linear function f by Lemma 5.2.
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Lubotzky, Phillips and Sarnak [19] observed that the graphs that they
constructed have large girth and small independence number compared with
the order of the graph. Combining Lemma 5.2 with Theorems 2.4 and 2.5
we get that non-bipartite Ramanujan graphs with d ≥ 3 have a cycle of
length linear in n. For larger d they even have factors and cycles of length
close to n.

Corollary 5.3 Let G be a non-bipartite d-regular Ramanujan graph of or-
der n. If d ≥ 35, then G contains a 1-factor (if n is even), a 2-factor, and
a cycle of length at least d

d+2
√

d−1
n > 3

4n. If Conjecture 2.3 is true, then G

is hamiltonian.

Proof. Since G is connected and non-bipartite we have λ < d, and hence
λ ≤ 2

√
d − 1 as G is a Ramanujan graph. For d ≥ 35 this implies d/λ ≥

d/(2
√

d − 1) > 3. By Lemma 5.2, therefore, G is f -connected with f(k) ≥
�( d

λ − 1)k� ≥ 2k + 1. The assertions now follow from our Theorems 3.2, 3.1
and 2.4. �
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