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Abstract. We introduce a comprehensive data structure, tangle structure
trees, which simultaneously displays all the F-tangles of an abstract separation
system for very general obstruction sets F . It simultaneously also displays
certificates σ ∈ F for any non-existence of such tangles, or for the non-extend-
ability of low-order tangles to higher-order ones.

Our theorem can be applied to produce the structures of the classical tree-
of-tangles and tangle-tree duality theorems, both for graph tangles and for
their known generalizations to more general separation systems. It extends
those theorems to obstruction sets F that need not define profiles (as they
must in trees of tangles) or consist of stars of separations (as they must in
tangle-tree duality).

Our existence proof for these structure trees is constructive. The con-
struction has been implemented in open-source software available for tangle
detection and further analysis.

1. Introduction

The notion of ‘tangles’ was originally introduced by Robertson and Seymour [20]
as an abstract concept of high local connectivity in graphs, one that unifies several
more concrete such notions, such as highly connected subgraphs or minors. What
all these notions have in common is that, given any low-order separation of the
graph, any highly cohesive substructure must lie mostly on one of its two sides:
since the separation has low order, it cannot split it into two roughly equal halves.
A tangle remembers only how all the low-order separations are oriented in this way,
each towards that highly cohesive substructure: the collection of all these oriented
separations is called a tangle. See [9] for a precise definition and basic facts about
graph tangles.

Tangles have since been generalized to more general settings than graphs. In the
setting of set partitions, they offer a precise theoretical basis for ‘fuzzy’ real-world
problems such as clustering in large datasets [8]. All these, including graphs, are
special cases of so-called abstract separation systems [7]: an axiomatic setting that
assumes only the most basic properties of graph separations. This is the setting in
which tangles are most easily and comprehensively treated, and we shall use this
framework also in this paper.

There are two fundamental theorems about tangles, which both have their origins
in [20] and are also treated in [9]. The tree-of-tangles theorem exposes a tree-like
structure in the graph or dataset whose tangles we consider, which ‘distinguishes’
the tangles in that they are shown to ‘live in’ different areas of this tree-like struc-
ture. The other is the tangle-tree duality theorem, which certifies the non-existence
of a tangle by exposing another tree-like structure in the graph or dataset, one
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whose existence clearly precludes the existence of a tangle.1 This is the more fun-
damental of the two theorems, in the sense that the other can be reduced to its
abstract version (see below) but not vice versa [17] .

Both the above theorems have been generalized to F-tangles of abstract separa-
tion systems, ways of simultaneously orienting the ‘separations’ of a given structure
in such a way that no three of those oriented separations form an element of F .2

This collection F has to satisfy some constraints that depend on which of the two
theorems we are considering.

For the tree-of-tangles theorem, which displays all the F-tangles of a separation
system simultaneously, F has to include triples of oriented separations that are
reminiscent of ultrafilters. If our separations are bipartitions of a fixed set V, for
example, then F must contain all triples of the form {A,B,A ∩B}: if A and B are
subsets of V deemed ‘large’ (in that the F-tangle orients those partitions towards
them), then the complement of A ∩ B cannot also be ‘large’. Such F-tangles are
called profiles, and all existing tree-of-tangle theorems for F-tangles assume that
these are profiles [1–4,6, 11, 12,18].

For the tangle-tree duality theorem, F has to satisfy another constraint: its
elements have to be stars, nested sets of oriented separations pointing towards each
other [7]. The tree-like structures by which tangle-tree duality theorems certify
the non-existence of F-tangles require that F consist of stars: if it does not, these
structures cannot be tree-like.

This state of the art leaves F-tangles that are not profiles without any known
way of displaying all those tangles simultaneously. And if F does not consist of
stars, it leaves separation systems that have no F-tangles without any known way
of organizing the elements of F into a data structure that displays them as easily
checkable certificates for the non-existence of such tangles.

The structure trees whose existence we prove in this paper do both these things:
they display all the F-tangles of a separation system even when they are not profiles,
and for those orientations of the separation system that are not F-tangles they
display certificates in F that show why they are not.3

Tangle structure trees display all this information in a single, comprehensive,
data structure, which is maximally efficient in the following, structural, sense.
A single tangle is most efficiently displayed by listing just those of its elements
that are minimal in the poset of oriented separations that comes with a separation
system. Indeed, all these are needed to determine the tangle, but any other ele-
ments can be deduced from them. Our structure trees display all the F-tangles of a
separation system S simultaneously by listing only the oriented separations that are
minimal in one of those tangles, including the tangles of subsystems consisting of
separations of lower order. And for orientations of S that are not F-tangles it dis-
plays certificates from F inside those same minimal subsets of oriented separations,
in a way readily accessible in the structure tree.

1In a graph, this would be a tree-decomposition into parts too small for a tangle to live in.
2In the case of graph tangles, F consists of the sets of up to three oriented separations of the

graph such that the union of the ‘back’ sides of these three separations covers the entire graph [9].
3In a follow-up paper [13] we show that if F does consist of stars, our duality theorem implies

the same tangle-tree dichotomy as the classical one. And we show how our structure trees give
rise to trees of tangles if the F-tangles happen to be profiles. Our main result thus includes the
structures of both classical tangle theorems as special cases.
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Our paper is organized as follows. In Section 2 we provide the necessary back-
ground for tangles in abstract separation systems, the framework in which we shall
construct our structure trees and prove their existence.

In Section 3 we introduce basic tangle structure trees. In Section 4 we prove their
existence, and in Section 5 we show how to make them efficient. In Section 6 we col-
lect all this information together to prove our main results, the ‘F-tangle structure
theorems’. In Theorem 6.4 we note specifically how the main structure theorem
provides certificates from F for the non-existence of F-tangles if there are none.

In Section 7, finally, we apply our results to three particular types of F-tangles.
The first two of these include F-tangles in graphs: those induced by k-blocks, and
those that are profiles. In neither of these does the defining set F consist of stars.
As the third application we include F-tangles that encode clusters in large datasets.
These are neither profiles nor do their obstruction sets F consist of stars.

2. Tangles basics

In this section we give precise definitions and notation for abstract tangles,
largely following [7] and indicating any deviations.4

Tangles of graphs are ways of orienting their separations, each towards one of its
two sides. Abstract tangles are designed to work in scenarios where there need not
be anything to ‘separate’. In order to retain our intuition from graphs, however,
we continue to refer to the things of which our abstract tangles pick one of two
variants (which they will indeed do) as ‘separations’. These are defined by noting
some key properties of graph separations and making them into axioms, as follows.

A separation system (
→
S,󰃑,∗ ) is a set

→
S , whose elements we call oriented separa-

tions, that comes with a partial ordering 󰃑 on
→
S and an order-reversing involution

∗ :
→
S →

→
S . Thus, for any two elements5

→
r , →s of

→
S with

→
r 󰃑 →s we have

→
r ∗ 󰃍 →s ∗.

We write →s ∗ =: ←s, and call ←s the inverse of →s . While we allow formally that →s = ←s,
in which case we call →s and s degenerate, this does not happen often in practice.6

If a separation system 󰂓U happens to be a lattice, that is, if there is a supremum
→
r ∨→s and an infimum

→
r ∧→s in 󰂓U for every two elements

→
r , →s ∈ 󰂓U , we call 󰂓U a uni-

verse of separations. It is distributive if it is distributive as a lattice. A separation
system

→
S ⊆ 󰂓U is submodular if for every two elements of

→
S either their infimum or

their supremum in 󰂓U also lies in
→
S .

Very rarely we may have separations →s ≤ ←s; then →s is small and ←s is large.7

We say that →s is trivial (and ←s is co-trivial) in
→
S if there exists a pair of inverse

→
r ,

←
r < →s in

→
S . Trivial separations are clearly large, so co-trivial ones are small,

but the converse need not hold. See [7] for more on these technicalities if desired.
The set of unoriented separations in (

→
S,≤,∗ ) is

S := {{→s ,←s} : →s ∈
→
S}.

4The most important difference is that, for historical reasons, the partial ordering on
→
S used

in [7] is the inverse of ours. So terms like ‘large’ and ‘small’, infima and suprema etc, are reversed.
5We often denote the elements of

→
S by letters with an arrow, in either direction, precisely in

order to have a simple way to refer to their dual elements: by reversing the arrow. But the arrow

directions have no meaning: an arbitrary element of
→
S could be denoted equally as →s or as ←s .

6The only degenerate separation of a graph G = (V,E), for example, is (V, V ).
7The small separations of a graph G are those of the form (V,A) with A ⊆ V = V (G).
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We call the elements →s ,←s of s its orientations. An orientation of S is a set τ ⊆
→
S

that contains exactly one orientation of every s ∈ S. For s ∈ S we then denote by
τ(s) the unique orientation of s contained in τ . An orientation of a subset of S is
a partial orientation of S.

If
→
r 󰃍 →s we say that

→
r points towards s (and that

←
r points away from s). We

say that
→
r points towards an oriented separation →s whenever it points towards s,

i.e., if
→
r 󰃍 →s or

→
r 󰃍 ←s, and similarly for ‘points away from’. A star is a set σ of

non-degenerate oriented separations that point towards each other. As is easy to
check, this happens if and only if

→
r 󰃍 ←s (and hence →s 󰃍 ←

r ) for all distinct
→
r , →s ∈ σ.

Figure 1. Nested separations r = {A,B} and s = {C,D} of a graph.
Their orientations →r = (A,B) and ←s = (D,C) point towards each other,
since →r ≥ →s (as B ⊇ D) and ←s ≥ ←r (as C ⊇ A).

Two separations s, r ∈ S are nested if they have orientations that are comparable
under 󰃑. Oriented separations are nested if their underlying unoriented separations
are nested. A subset of

→
S is nested if its elements are pairwise nested.

A subset of
→
S is consistent if no pair of its elements

→
r , →s with r ∕= s point away

from each other. Stars are examples of consistent nested sets of oriented separations.
If σ ⊆

→
S is consistent, we say that →s ∈

→
S is required by σ if →s /∈ σ and σ ∪ {←s}

is inconsistent. We shall see in Lemma 2.2 that, pathological cases aside, σ ∪ {→s }
will then be consistent. The closure of σ is

⌊σ⌋ := σ ∪ {→s ∈
→
S : →s is required by σ}.

Note that σ requires →s /∈ σ if and only if there exists an
→
r ∈ σ such that r ∕= s and

→s >
→
r . Thus

⌊σ⌋ = σ ∪ { →s ∈
→
S : ∃→

r ∈ σ such that r ∕= s and →s >
→
r },

which motivates the notation of ⌊σ⌋. In particular, ⌊⌊σ⌋⌋ = ⌊σ⌋, which justifies the
term (upward) ‘closure’.

If σ contains no small separations, the expression above simplifies to

⌊σ⌋ = { →s ∈
→
S : ∃→

r ∈ σ such that
→
r ≤ →s }.

Indeed, any →s in this latter set either lies in σ or there is some
→
r ∈ σ such that

→
r < →s ; in that case r ∕= s, since otherwise ←s =

→
r < →s , making

→
r ∈ σ is small.

Lemma 2.1. Let σ ⊆ τ ⊆
→
S be consistent sets. Then ⌊σ⌋ ⊆ ⌊τ⌋. If τ is an

orientation of all of S, then ⌊τ⌋ = τ .

Proof. If →s is required by σ, then σ ∪ {←s} is inconsistent. Since σ ⊆ τ , it follows
that τ ∪ {←s} is also inconsistent; hence →s is either an element of or required by τ .
Thus every element of ⌊σ⌋ lies in ⌊τ⌋, proving the first claim.

If τ is an orientation of all of S then ⌊τ⌋ = τ , since for any →s ∈ ⌊τ⌋ \ τ the set
τ ∪ {←s} = τ would be inconsistent. □
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Consistent orientations of S can contain small separations. But examples are
rare and can be counter-intuitive, so we often exclude them. Co-trivial separations
cannot occur in consistent orientations of S. Indeed if ←s is co-trivial, witnessed
by r ∈ S, then every orientation of S will have to orient r too. But it cannot do so
consistently with ←s, since both

→
r and

←
r are inconsistent with ←s. Similarly, ⌊{←s}⌋ is

then inconsistent, since it contains
→
r and

←
r , which are both inconsistent with ←s.

Lemma 2.2. Let τ ⊆
→
S be consistent, and suppose that τ has no elements that are

co-trivial in
→
S . Then ⌊τ⌋ is consistent, and ⌊τ⌋\τ contains at most one orientation

of any s ∈ S.

Proof. If ⌊τ⌋ is inconsistent, it contains orientations
→
r , →s of distinct r, s ∈ S with

→s <
←
r . Since τ is consistent, at least one of

→
r , →s is not in τ . Without loss of

generality assume
→
r /∈ τ : Then

→
r ∈ ⌊τ⌋ \ τ , so

→
r is required by τ (by definition

of ⌊τ⌋), which means that τ∪{←
r} is inconsistent. Thus there exists →

t ∈ τ with t ∕= r
and

←
r <

←
t . We thus have →s <

←
r <

←
t , that is →s and

→
t point away from each other.

If →s =
→
t , the above inequality yields

→
r ,

←
r <

←
t , which makes

→
t ∈ τ co-trivial,

contradicting our assumptions. Hence →s ∕= →
t as well as →s ∕= ←

t , giving s ∕= t. The
fact that →s and

→
t ∈ τ point away from each other thus implies that {→s ,

→
t } is

inconsistent, so →s /∈ τ as well as
→
r /∈ τ .

As earlier with
→
r , the fact that →s ∈ ⌊τ⌋ now implies that

→
r < ←s <

←
t′ for some

→
t′ ∈ τ . The two inequalities together now give

→
t′ <

←
r <

←
t , so

→
t′ and

→
t point away

from each other. As τ is consistent and contains both, this means that t′ = t. As
→
t′ <

←
t , we thus have

→
t′ =

→
t . But now

→
r <

←
t′ =

←
t as well as

←
r <

←
t . This makes

→
t ∈ τ co-trivial in

→
S , contradicting our assumptions. This proves the first assertion.

For the second, note that τ requires any →s ∈ ⌊τ⌋ \ τ , by definition of ⌊τ⌋. This
means that τ ∪ {←s} is inconsistent, so ←s /∈ ⌊τ⌋ since ⌊τ⌋ is consistent. □

An order function on S is any map S → R. Unless otherwise mentioned, we
denote such order functions as s 󰀁→ |s|. We extend them to

→
S by letting |→s | :=

|←s| := |s|. Given an order function on S and k ∈ R, let
→
Sk := {→s ∈

→
S : |s| < k};

this is again a separation system.
We sometimes require that the orientations of S shall not have certain subsets.

We typically collect those together in some set F , whose elements we call forbidden
subsets. Formally, if F is any set, we say that a subset of

→
S avoids F if it has no

subset in F , i.e., which is an element of F .

Definition 2.3. An F-tangle of S is an F-avoiding consistent orientation of S.
The F-tangles of the subsets Sk of S are the F-tangles in

→
S .

3. Tangle structure trees

We adopt the graph-theoretic terminology of [9]. A tree is a connected acyclic
graph. Given nodes t, t′ of a tree T we write tT t′ for the unique t–t′ path in T .
A rooted tree is a tree with a distinguished node called its root. Given a tree T with
root r, we define a partial order 󰃑r on V (T ) by declaring x 󰃑r y if x lies on the
path in T from r to y. Maximal elements, including the root if |T | = 1, are called
leaves. Any direct successors of a node in <r are its children. We write Ev ⊆ E(T )
for the set of edges from v to its children.
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Let (
→
S,≤,∗ ) be a separation system, and let F be any set.

Definition 3.1. A separation tree (T, r,β) on
→
S consists of a rooted tree (T, r)

together with an edge labeling β : E(T ) →
→
S such that for every non-leaf v ∈ V (T )

there exists a separation sv ∈ S such that β restricts to a bijection Ev → {→sv,
←
sv}

and su ∕= sv whenever u <r v.

Thus, every non-leaf node v of a separation tree has either one or two children.
If there is no need to refer to r or β explicitly, we usually abbreviate (T, r,β) to T.
For every node v, we write βv for the set β

󰀃
E(rTv)

󰀄
of edge labels on the path rTv.

Lemma 3.2. Let (T, r,β) be a separation tree on
→
S . Every orientation τ of S

contains βℓ as a subset for some unique leaf ℓ ∈ V (T ).

Proof. Since βr = ∅ ⊆ τ , there exists a node v ∈ V (T ) that is maximal with respect
to󰃑r subject to βv ⊆ τ . If v is not a leaf, let v′ be its child with β(vv′) = τ(sv) =: →s .
As βv ⊆ τ , and →s ∈ τ \βv since su ∕= sv for all u < v, we see that βv′ = βv∪{→s } ⊆ τ
contradicts the maximality of v. Hence v =: ℓ is our desired leaf.

For a proof that ℓ is unique, let ℓ′ be another leaf and let v be the greatest common
ancestor of ℓ and ℓ′. Then v has distinct children w and w′ with β(vw) ∈ βℓ and
β(vw′) ∈ βℓ′ . Since β(vw) ∕= β(vw′), they cannot both lie in τ . As β(vw) ∈ βℓ ⊆ τ
we must have β(vw′) /∈ τ , and hence βℓ′ ∕⊆ τ . □

A separation tree T is consistent if βv ⊆
→
S is consistent for every node v ∈ T .

Lemma 3.3. Let (T, r,β) be a consistent separation tree on
→
S , and let v be a

non-leaf node of T . Then →sv and
←
sv are ≤-minimal in βv ∪ {→sv} and in βv ∪ {←

sv},
respectively.

Proof. Suppose not. Without loss of generality assume there exists →s ∈ βv with
→s < →sv. Let w be the child of v with β(vw) =

←
sv. Then {→s ,

←
sv} ⊆ βw is inconsistent,

contradicting the consistency of (T, r,β). □

Corollary 3.4. For every consistent separation tree and non-leaf node v we have
{→sv,

←
sv} ∩ ⌊βv⌋ = ∅. That is, sv is not oriented by ⌊βv⌋.

Proof. Suppose, say, that →sv ∈ ⌊βv⌋. Since su ∕= sv for all nodes u < v, we know that
→sv /∈ βv. Our assumption that →sv ∈ ⌊βv⌋ thus means that →sv is required by βv. Hence
there exists

→
r ∈ βv such that

→
r < →sv (and r ∕= sv). This contradicts Lemma 3.3. □

Lemma 3.3 and Corollary 3.4 imply that consistent separation trees offer an
efficient data structure for storing consistent orientations of S, in particular, F-
tangles. Indeed, any such orientation τ labels the tree’s edges between the root and
some leaf ℓ, but this βℓ is only a small subset of τ : elements →s of τ required by βℓ

for some v < ℓ will not appear in βℓ \ βv. But they can be reconstructed from βv

by the consistency of τ .
By definition of separation trees, the separations labelling their edges do not

repeat along any root-to-leaf path: if u < v then su ∕= sv. Hence the length of
any path from the root to a leaf is at most |S|. Since every node has at most two
children, this bounds the size of the tree:

Corollary 3.5. Separation trees on
→
S have at most 2|S| leaves and fewer than

2|S|+1 nodes. □
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A leaf ℓ of a consistent separation tree on
→
S is an F-tangle leaf if the closure

⌊βℓ⌋ of βℓ is an F-tangle of S. A leaf ℓ is forbidden (by F) if βℓ contains a member
of F as a subset. Note that F-tangle leaves are never forbidden.

Definition 3.6. An F-tangle structure tree of
→
S is a consistent separation tree

on
→
S in which every leaf is either an F-tangle leaf or forbidden, and for every

non-leaf v the set βv has no subset in F .

Every F-tangle structure tree of
→
S displays all the F-tangles of S, not just some

of them:

Theorem 3.7. Let
→
S be a separation system, let F be any set, and let T be any

F-tangle structure tree of
→
S .

(i) For every F-tangle τ of S there is a leaf ℓ of T such that ⌊βℓ⌋ = τ .

(ii) If all the leaves of T are forbidden, then S has no F-tangle.

Proof. (i) By Lemma 3.2 there exists a leaf ℓ with βℓ ⊆ τ . This leaf is not forbidden,
since βℓ ⊆ τ has no subset in F . As T is an F-tangle structure tree, this means
that ℓ is an F-tangle leaf: that ⌊βℓ⌋ is an F-tangle of S. As ⌊βℓ⌋ ⊆ τ , this tangle
can only be τ .

(ii) is immediate from (i). □

In the next section we shall determine the sets F for which S admits an F-tangle
structure tree whose tree-order is compatible with a given order function on S, in
that lower-order separations label edges further down on the tree. As we shall see
in Theorem 6.3, such trees display not only all the tangles of the entire set S, as
all F-tangle structure trees do by Theorem 3.7, but all the F-tangles in

→
S : the

F-tangles of the sets Sk = {s ∈ S : |s| < k} with k ∈ N.

4. Existence of tangle structure trees

Let
→
S be a separation system with an order function | | on S. Let F be any set.

We shall need two conditions on F to ensure that
→
S has an F-tangle structure tree.

The first is that {←s} ∈ F for every →s ∈
→
S that is trivial in

→
S . This holds for

all sets F of interest, and if it does we call F standard for
→
S . Intuitively, co-trivial

separations ←s point to places in our graph or structure that are tiny – too small to
house any tangle. More formally, we already saw in Section 2 that no consistent
orientation of S can contain co-trivial separations. Assuming that F is standard
for

→
S therefore places no restrictions on the F-tangles of S.
The second condition has more substance. If T is any separation tree on

→
S then,

by Lemma 3.2, every orientation τ of S contains βℓ for a unique leaf ℓ. If τ is
consistent and ⌊βℓ⌋ orients all of S, then ⌊βℓ⌋ = τ by Lemma 2.1. If τ is not an
F-tangle, then τ = ⌊βℓ⌋ has a subset σ in F that witnesses this. If T is in fact
an F-tangle structure tree, we know that our consistent orientation τ of S is an
F-tangle (without having to assume that ⌊βℓ⌋ orients all of S) unless it contains
such a set σ ∈ F not only in ⌊βℓ⌋ but even in βℓ: among the edge labels of T .

In order for this to be possible, we therefore need to make some ‘richness’ assump-
tion about F : an assumption which, in our example, ensures that F has enough
elements to contain a subset also of βℓ as soon as it contains a subset of ⌊βℓ⌋.

We shall identify an essentially weakest-possible such richness condition below, in
Definition 4.3. This will need some more preparation. For motivation, readers are
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invited to peek at Lemma 4.4 and the definition preceding it now. That definition
clearly implies that F contains a subset of βℓ whenever it contains a subset of ⌊βℓ⌋.
The notion of richness from Definition 4.3 will still imply this, but is weaker.

A separation tree T on
→
S with an order function | | on S is ordered if |sv| ≤ |sw|

whenever v and w are non-leaves of T with v ≤ w. It is thoroughly ordered (in
→
S)

if, for every non-leaf node v, the separation sv is not oriented by ⌊βv⌋8 and has
minimum order among the separations in S not oriented by ⌊βv⌋.

Lemma 4.1. Every thoroughly ordered separation tree is ordered.

Proof. Let T be a thoroughly ordered separation tree on
→
S . If it is not ordered,

it has nodes v, w with v < w such that |sv| > |sw|. Since sw is not oriented by
⌊βv⌋ ⊆ ⌊βw⌋, this contradicts the requirement that sv have minimum order among
the separations not oriented by ⌊βv⌋. □

We say that →s ∈
→
S is weakly eclipsed by

→
r ∈

→
S if

→
r < →s and |r| ≤ |s|, and

eclipsed by
→
r if

→
r < →s and |r| < |s|. Given any set τ ⊆

→
S , a subset σ ⊆ τ

is efficient (in τ) if no element of σ is eclipsed by any other element of τ . It is
strongly efficient if no element of σ is weakly eclipsed by any other element of τ .
Note that if the order function on S is injective and τ is a partial orientation of S,
then every efficient subset of τ is strongly efficient in τ .9

Lemma 4.2. Let v be a node of a thoroughly ordered separation tree T on
→
S . Then

(i) every strongly efficient subset of ⌊βv⌋ is contained in βv;

(ii) if βv is consistent, it is efficient in any partial orientation τ of S that
includes ⌊βv⌋.

Proof. (i) Let σ be any strongly efficient subset of ⌊βv⌋, and let →s ∈ σ be given.
Suppose that →s /∈ βv. Then

→s ∈ ⌊βv⌋ \ βv is required by βv, so there exists
→
r ∈ βv

with
→
r < →s (and r ∕= s). As

→
r ∈ βv, we have r = su for some u < v. Choose such

an
→
r with u minimal in <r.
Our aim is to show that |r| ≤ |s|: then

→
r ∈ ⌊βv⌋ eclipses →s ∈ σ weakly,

contradicting the strong efficiency of σ as a subset of ⌊βv⌋. Since T is thoroughly
ordered, we shall have |r| ≤ |s| as desired if ⌊βu⌋ does not orient s: this would
make s a candidate for su, so |r| > |s| would contradict the fact that r = su.

So let us show that neither →s nor ←s lies in ⌊βu⌋. For →s /∈ ⌊βu⌋, recall first that
→s /∈ βv ⊇ βu. Hence if →s ∈ ⌊βu⌋, there exists an

→
r′ ∈ βu such that

→
r′ < →s . This

satisfies r′ = su′ for some u′ <r u, so
→
r′ < →s contradicts our original choice of

→
r

given →s . Hence →s /∈ ⌊βu⌋ as desired. Suppose now that ←s ∈ ⌊βu⌋. As →s >
→
r , any

→
r′ 󰃑 ←s in βu satisfies

→
r′ 󰃑 ←s <

←
r . So r was already oriented by ⌊βu⌋, contradicting

the fact that r = su. Hence neither →s nor ←s lies in ⌊βu⌋, as desired.
(ii) Suppose not; then some

→
r ∈ τ eclipses some →s ∈ βv. Let u < v be such that

s = su. As |r| < |s| and T is thoroughly ordered, we know that ⌊βu⌋ orients r.
Since τ is a partial orientation of S containing

→
r , it cannot also contain

←
r . We

thus cannot have
←
r ∈ ⌊βu⌋, since ⌊βu⌋ ⊆ ⌊βv⌋ ⊆ τ by Lemma 2.1. So

→
r ∈ ⌊βu⌋.

As
→
r < →s , this implies →s ∈ ⌊βu⌋ unless

→
r = ←s ∈ βu. Both these contradict the

fact that s = su. □

8If T is consistent, then this holds by Corollary 3.4.
9We need the assumption on τ , since →s eclipses ←s weakly if →s < ←s . So we do not want →s ,←s ∈ τ .
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A typical application of Lemma 4.2 (ii) is that βv is efficient in any tangle
of S that contains it. Such a tangle will be consistent and hence include ⌊βv⌋
by Lemma 2.1.

A typical application of Lemma 4.2 (i) will be that witnesses σ ∈ F to the fact
that some ⌊βv⌋ fails to extend to an F-tangle can be found not only in ⌊βv⌋ but
in βv itself. Then our structure trees will display such witnesses σ ∈ F in the label
sets βℓ of their forbidden leaves ℓ. For this to work with the help of Lemma 4.2, we
need F to contain witnesses that are strongly efficient in their ⌊βv⌋.

This motivates our formal richness condition on F :

Definition 4.3. A set F is rich for
→
S if every consistent orientation of S that has

a subset in F also has a strongly efficient10 subset in F .

The assumption that F is rich will be central to our results. It is needed to
ensure that our F-tangle structure trees exist, and we shall see after Lemma 4.7
that no weaker condition on F will ensure the same.

Although it may look a bit technical at first glance, this ‘richness’ requirement
on F is quite natural, given the role of these F in tangle theory. For example,
given a consistent orientation τ of S that has a subset σ ∈ F , we can often obtain
a strongly efficient subset σ′ ∈ F of τ simply by replacing every element →s of σ by
some

→
s′ ≤ →s that is minimal in τ . One still has to check then that σ′ is indeed in F .

But as the idea behind those forbidden triples in F is that they identify areas in
our graph or other structure that are ‘too small to be home to a tangle’, it is not
unnatural for this particular σ′ to be in F if σ was.

Let us cast this example in the form of a lemma. Let us call a set F closed under
minimization in

→
S if it contains every set σ′ ⊆

→
S obtained from some σ ⊆

→
S in F

by replacing every →s ∈ σ with some
→
s′ ≤ →s .

Lemma 4.4. If F is closed under minimization in
→
S , then F is rich for

→
S .

Proof. Let τ be any consistent orientation of S that has a subset σ in F . We have
to find a set σ′ ⊆ τ in F that is strongly efficient in τ .

Let σ′ be obtained from σ by replacing every →s ∈ σ by some
→
s′ ≤ →s that is

minimal in τ . The set σ′ is strongly efficient in τ , since any
→
r <

→
s′ ∈ σ′ in τ

contradicts the minimal choice of
→
s′ ≤ →s . Since F is closed under minimization, we

have σ′ ∈ F as required. □

Lemma 4.5. Let F be rich and standard for
→
S . Let T be a thoroughly ordered

separation tree on
→
S , and let v ∈ V (T ). Assume that βv is consistent and avoids F ,

and that ⌊βv⌋ orients all of S. Then ⌊βv⌋ is an F-tangle of S.

Proof. As βv avoids F , which is standard, βv has no element that is co-trivial in
→
S .

As βv is consistent, ⌊βv⌋ is consistent by Lemma 2.2. Since ⌊βv⌋ orients all of S,
it can thus only fail to be an F-tangle of S if it has a subset σ in F . As F is
rich for

→
S , we can choose σ to be strongly efficient as a subset of ⌊βv⌋.11 Then

even σ ⊆ βv by Lemma 4.2 (i), which contradicts our assumption that βv avoids F .
Hence ⌊βv⌋ is an F-tangle of S. □

10in this orientation of S
11If ⌊βv⌋ contains both orientations of some s ∈ S, delete one of them to obtain a consistent

orientation of S as required in the definition of ‘rich’ for F .
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Theorem 4.6. Let
→
S be a separation system equipped with an order function on S,

and let F be a set that is rich and standard for
→
S . Then there exists a thoroughly

ordered F-tangle structure tree of
→
S .

Proof. Start with the one-node tree T0 = {r} and let β0 = ∅. We iteratively
build trees T0 ⊊ T1 ⊊ . . . with maps βi so that each (Ti, r,β

i) is consistent and
thoroughly ordered, and none of their sets βi

v with v a non-leaf node will have a
subset in F . Note that T0 has all these properties. The last of those trees will be
our desired F-tangle structure tree.

If for some n the tree (Tn, r,β
n) is already an F-tangle structure tree, we are

done. Otherwise Tn has a leaf v which is neither an F-tangle leaf nor forbidden.
By Lemma 4.5, ⌊βn

v ⌋ does not orient all of S; let s ∈ S be a separation of minimum
order not oriented by ⌊βn

v ⌋.
Form Tn+1 by adding two children v1, v2 at v. Let βn+1 agree with βn on the

edges of Tn, and pick orientations →s =: βn+1(vv1) and ←s =: βn+1(vv2) of s; then
s = sv in Tn+1. By construction, (Tn+1, r,β

n+1) is a thoroughly ordered separation
tree. It is consistent, because Tn was and neither orientation of s lies in ⌊βn+1

v ⌋.
Its only non-leaf node v that was not already a non-leaf node in Tn is v. Since v
was not forbidden as a leaf of Tn, the set βn+1

v = βn
v has no subset in F .

This process strictly increases |V (Tn)| at each step, but by Corollary 3.5 there
is an upper bound on the size of any consistent separation tree in terms of |S|.
Hence the process terminates after finitely many steps with a thoroughly ordered
F-tangle structure tree. □

If our order function is injective, Theorem 4.6 has a converse, which shows that
our requirement of richness for F is weakest possible to ensure the existence of an
F-tangle structure tree. This is established by our next lemma:

Lemma 4.7. Let
→
S be a separation system with an injective order function on S,

and let F be any set. If there exists a thoroughly ordered F-tangle structure tree T
of

→
S , then F is rich for

→
S .

Proof. Let τ be any consistent orientation of
→
S that has a subset in F . We shall

find an efficient subset σ ∈ F of τ , which will even be strongly efficient since our
order function is injective. By Lemma 3.2, T has a leaf ℓ with βℓ ⊆ τ . In particular,
βℓ is consistent, so ⌊βℓ⌋ ⊆ τ by Lemma 2.1.

Since T is an F-tangle structure tree, ℓ is either an F-tangle leaf or forbidden.
If ℓ is an F-tangle leaf then ⌊βℓ⌋ is an F-tangle of all of S. But then ⌊βℓ⌋ = τ ,
which contradicts the fact that τ has a subset in F .

Thus ℓ is forbidden, so βℓ has a subset σ in F . By Lemma 4.2 (ii) this σ is
efficient in τ , as desired. □

Note that if our order function on S is not injective, the proof of Lemma 4.7
still goes through as stated except for one aspect: the efficient subset σ ∈ F of τ it
finds may not be strongly efficient in τ (as our definition of ‘rich’ requires).

If our order function is injective, the sets F for which
→
S admits a thoroughly

ordered F-tangle structure tree are thus precisely the rich ones:

Theorem 4.8. Let
→
S be a separation system with an injective order function on S,

and let F be a set that is standard for
→
S . There exists a thoroughly ordered F-tangle

structure tree of
→
S if and only if F is rich for

→
S .
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Proof. Immediate from Theorem 4.6 and Lemma 4.7. □

In Section 5 we shall prove that our F-tangle structure trees can be improved
further, without any additional requirements on F , by contracting ‘inessential’
edges: edges whose label →s is neither needed in any sets σ ∈ F witnessing that a
leaf is forbidden, nor needed to determine any tangles.

Unfortunately, this contraction process can cause our structure trees to lose their
property of being thoroughly ordered. We shall therefore extract from this property
its essence, a slightly weaker property to be called ‘efficiency’, which is still strong
enough to make the branches rT ℓ and their label sets βℓ as efficient for displaying
the tangles ⌊βℓ⌋ as they are in thoroughly ordered structure trees, but weak enough
to survive the contraction process we envisage for Section 5.

Given a separation system
→
S with an order function on S, we call a separation

tree (T, r,β) efficient if for every leaf ℓ the set βℓ is efficient in ⌊βℓ⌋.

Lemma 4.9. Let
→
S be a separation system with an order function on S. Then

every thoroughly ordered separation tree (T, r0,β) on
→
S is efficient.

Proof. Consider any leaf ℓ of T . If βℓ is not efficient in ⌊βℓ⌋ as claimed, then some
→s ∈ βℓ is eclipsed by some

→
r ∈ ⌊βℓ⌋. Let v, w < ℓ be such that →s = →sv and

→
r ≥ →sw ∈ βℓ.

12

As
→
r eclipses →s , we have

→
r < →s and |r| < |s|; in particular, r ∕= s = sv. The

fact that T is thoroughly ordered thus implies that r is already oriented by ⌊βv⌋.
We cannot have

→
r ∈ ⌊βv⌋, since this would place →sv = →s >

→
r or

←
sv in ⌊βv⌋ too,13

which would contradict the fact that T is thoroughly ordered. Thus,
←
r ∈ ⌊βv⌋; let

u < v be such that
←
r ≥ →su ∈ βv.

If u = w, then →su = →sw ≤ →
r < →s and hence →sv = →s ∈ ⌊βv⌋ or

←
sv ∈ βv,

13 both of
which contradict the fact that T is thoroughly ordered.

If u < w, then
←
sw ≥ ←

r ≥ →su ∈ βw. Then
←
sw ∈ ⌊βw⌋ unless →sw ∈ βw,

13 which
both contradict the fact that T is thoroughly ordered.

If w < u, finally, then
←
su ≥ →

r ≥ →sw ∈ βu, so
←
su ∈ ⌊βu⌋ unless →su ∈ βu,

13 which
both contradict the fact that T is thoroughly ordered. □

5. Irreducible and efficient tangle structure trees

Let (T, r,β) be a separation tree on a separation system
→
S . Let v be a node

of T with a child w. Define (T, r,β)w→v := (Tw→v, rw→v, βw→v), where Tw→v is
obtained from T by contracting the edge vw of T and deleting any other child of v
together with its subtree.

We continue to use ‘w’ for the new node constructed from the edge vw, and
thus think of V (Tw→v) as a subset of V (T ). Similarly, we think of E(Tw→v) as a
subset of E(T ) and continue to use ‘β’ to denote its labelling βw→v. If v = r we
set rw→v := w; otherwise we keep rw→v := r.

Note that Tw→v inherits the sets Eu from T for its nodes u. In particular, the
separations su remain unchanged for all u ∈ V (Tw→v) ⊆ V (T ). Thus, Tw→v is still

12Recall that our arrow notation for oriented separations is never fixed. We are thus free to
use forward arrows to denote the orientations of sv and sw that lie in βℓ.

13By the definition of ⌊ ⌋, the assumption of →s > →r ∈ ⌊βv⌋ implies →s ∈ ⌊βv⌋ only if ←s /∈ βv .
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ordered if T was. However, Tw→v may no longer be thoroughly ordered in
→
S even

if T was.
The sets βu remain unchanged for all u ≱ w, while for all u ≥ w the sets βu

in Tw→u arise from βu in T by deleting β(vw) from it. (Recall that β was injective
on E(rTu), by Definition 3.1.) In particular, Tw→v is consistent if T was.

We say that →s ∈
→
S is necessary for an F-tangle leaf ℓ if it is a ≤-minimal element

of βℓ. We say that →s ∈
→
S is necessary for a forbidden leaf ℓ if every subset of βℓ

in F contains →s .

Lemma 5.1. Let
→
S be a separation system, and let F be any set. Let (T, r0,β) be

an F-tangle structure tree of
→
S , and let ℓ be a leaf of T . A separation →s ∈

→
S is

necessary for ℓ if and only if βℓ \ {→s } has no subset in F and ⌊βℓ \ {→s }⌋ is not an
F-tangle of S.

Proof. Suppose first that →s is necessary for ℓ, and that ℓ is an F-tangle leaf. Then
⌊βℓ⌋ is an F-tangle of S, so βℓ \ {→s } has no subset in F .

For a proof that ⌊βℓ \ {→s }⌋ is not an F-tangle of S, we show that it contains
neither →s nor ←s. To see →s /∈ ⌊βℓ \ {→s }⌋, note that any

→
r ∈ βℓ \ {→s } with

→
r ≤ →s

would satisfy
→
r < →s , since also →s ∈ βℓ and hence r ∕= s by Definition 3.1. Then →s

would not be minimal in βℓ, which it is by assumption. And ←s /∈ ⌊βℓ \ {→s }⌋, since
⌊βℓ⌋ is a tangle of S containing →s . Thus, ⌊βℓ \ {→s }⌋ does not orient s, so it is not
an F-tangle of S.

Suppose, second, that →s is necessary for ℓ, and that ℓ is a forbidden leaf. Then
βℓ \ {→s } has no subset in F . Suppose ⌊βℓ \ {→s }⌋ is an F-tangle of S. This tangle
cannot contain →s : it would then contain the entire set βℓ, but this has a subset
in F since ℓ is a forbidden leaf. But neither can ⌊βℓ \{→s }⌋ contain ←s: then βℓ \{→s }
would contain some

→
r 󰃑 ←s, which would contradict the consistency of βℓ, since

r ∕= s by Definition 3.1, and so →s ∈ βℓ would point away from
→
r ∈ βℓ.

Suppose, third, that →s is not necessary for ℓ and that ℓ is an F-tangle leaf. Then
⌊βℓ⌋ is an F-tangle and →s is not a minimal element of βℓ. We complete our proof
in this case by showing that ⌊βℓ \ {→s }⌋ = ⌊βℓ⌋. If →s /∈ βℓ this holds trivially. If →s
lies in βℓ but is not minimal in it, then there exists some

→
r ∈ βℓ with

→
r < →s . This

implies →s ∈ ⌊βℓ \ {→s }⌋, and hence

⌊βℓ⌋ = ⌊βℓ \ {→s }⌋ ∪ ⌊{→s }⌋ ⊆ ⌊⌊βℓ \ {→s }⌋⌋ = ⌊βℓ \ {→s }⌋
as desired, unless ←s ∈ ⌊βℓ \ {→s }⌋. But in that case the tangle ⌊βℓ⌋ contains both →s
and ←s, which it cannot.

Suppose finally that →s is not necessary for ℓ and that ℓ is a forbidden leaf. Then
βℓ \ {→s } has a subset in F , as desired. □

A node v is called necessary in T if for every child w of v there exists a leaf
ℓ 󰃍 w such that β(vw) is necessary for ℓ.

Lemma 5.2. Let
→
S be a separation system, and let F be any set. Let (T, r,β) be an

F-tangle structure tree of
→
S , and let v be a node of T . Then v has a child w such that

(T, r,β)w→v is an F-tangle structure tree of
→
S if and only if v is not necessary in T.

Proof. Suppose first that v is necessary in T . If v has no children, the intended
implication holds. If v does have a child, w say, there is a leaf ℓ ≥ w such that
→s := β(vw) is necessary for ℓ. Then ℓ is a leaf both of T and of Tw→v. By
Lemma 5.1, however, ℓ is neither an F-tangle leaf nor a forbidden leaf of Tw→v.
Hence Tw→v is not an F-tangle structure tree of

→
S .
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Conversely, suppose v is not necessary in T . Then it has a child w such that
β(vw) is not necessary for any leaf ℓ 󰃍 w in T . By Lemma 5.1, Tw→v is an F-tangle
structure tree of

→
S . □

A tangle structure tree (T, r,β) is called irreducible if every node of T is necessary.

Theorem 5.3. Let
→
S be a separation system, and let F be any set. For every

F-tangle structure tree T of
→
S there exists an irreducible F-tangle structure tree T ′

of
→
S obtained from T by a sequence T = T 1, . . . , Tn = T ′ with T i+1 = T i

w→v for
suitable nodes v, w of T i.

The tree T ′ imposes the same partial ordering on its node as T does. In partic-
ular, T ′ is ordered if T is. Its leaves ℓ are also leaves of T, and their incident edges
in T are still edges of T ′. Every leaf ℓ of T ′ is forbidden in T ′ if and only if it is
forbidden in T .

Proof. If T i is not irreducible, pick a node v ∈ T i that is not necessary. By
Lemma 5.2 it has a child w for which T i

w→v is an F-tangle structure tree. Let
T i+1 := T i

w→v. For the second paragraph of the theorem, note that separations of
the form β(vℓ), with ℓ a leaf, are necessary in every F-tangle structure tree: by
Corollary 3.4 if ℓ is an F-tangle leaf, and by Definition 3.6 if ℓ is forbidden. □

If F is standard, the F-tangle structure trees we considered in Section 4 were
all efficient, because they were thoroughly ordered (Lemma 4.9). The irreducible
structure trees we obtained from them in Theorem 5.3 may no longer be thoroughly
ordered: as noted before, this property can get lost in the contraction process. But
the efficiency of the original structure trees is maintained:

Lemma 5.4. If T ′ is obtained from an efficient F-tangle structure tree T as in
Theorem 5.3, then T ′ too is efficient.

Proof. Consider T i+1 = T i
w→v as in Theorem 5.3 for i = 1, . . . , n − 1 in turn.

Assuming that T i is efficient, we have to show that so is T i+1. Write βi+1 := βi
w→v,

where βi is the edge labelling of T i. Given any leaf ℓ of T i+1, we have to show that
βi+1
ℓ is efficient in ⌊βi+1

ℓ ⌋. This follows from the fact that ℓ is also a leaf of T i, the
assumed efficiency of T i, and the fact that βi+1

ℓ ⊆ βi
ℓ. □

6. The F-tangle structure theorems

In this section we summarize what we have shown so far, in a few, concise,
statements that we think of as the main results of this paper.

The first of these tells us when F-tangle structure trees exist:

Theorem 6.1. Let
→
S be a separation system with an order function on S. If a

set F is standard and rich for
→
S , then

→
S has an efficient and irreducible ordered

F-tangle structure tree.

Proof. By Theorem 4.6,
→
S has a thoroughly ordered F-tangle structure tree (T, r,β).

By Lemma 4.9 it is efficient. The desired structure tree can be obtained from
(T, r,β) by Theorem 5.3; it is efficient by Lemma 5.4. □

The F-tangle structure trees constructed for the proof of Theorem 6.1 have a
host of properties designed to help with the tangle analysis of a given separation
system. It might have been natural to list these properties as part of Theorem 6.1.
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However, since the latter is an existence theorem, this would have allowed us to
establish these properties just for the structure tree we constructed in its proof.

We would like to stress the fact that those properties are common to all efficient
and irreducible ordered F-tangle structure trees: these terms were designed to
encode precisely those properties. Let us show this next:

Theorem 6.2. Let
→
S be a separation system with an order function. Every efficient

ordered F-tangle structure tree (T, r,β) for
→
S has the following properties.

(i) For every leaf ℓ of T , the set βℓ is consistent in S. If βℓ has no subset in F ,
then ⌊βℓ⌋ is an F-tangle of S, and every F-tangle of S arises in this way.

(ii) For every non-leaf node v of T, the set βv has no subset in F, and sv is not
oriented by ⌊βv⌋. Both its orientations →s ∈ {←

sv,
→sv} are minimal in βv∪{→s }

in the partial ordering of
→
S . Its order |s| is maximal in { |su| : u ≤r v}.

(iii) For every orientation τ of S there is a unique leaf ℓ of T such that βℓ ⊆ τ .
If τ is consistent, then ⌊βℓ⌋ ⊆ τ and βℓ is efficient in τ .

(iv) For every F-tangle τ of S there is a unique leaf ℓ of T such that βℓ ⊆ τ .
Then τ = ⌊βℓ⌋, and βℓ is efficient in the tangle τ .

(v) For every consistent orientation τ of S that is not an F-tangle, the set βℓ

in (iii) has a subset σ in F . Every such σ is efficient in τ .

Proof. (i) The first two statements are immediate from Definition 3.6: F-tangle
structure trees are consistent, and leaves that are not forbidden are tangle leaves.
The third assertion is part of (iv) and will be proved there.

(ii) The first assertion is again part of Definition 3.6. The second is Corollary 3.4.
The minimality assertion is Lemma 3.3. The maximality assertion holds, because
(T, r,β) is ordered.

(iii) By Lemma 3.2, T has a unique leaf ℓ such that βℓ ⊆ τ . If τ is consistent,
then ⌊βℓ⌋ ⊆ τ by Lemma 2.1. The claim now follows by Lemma 4.2 (ii).

(iv) We have to show that the leaf ℓ from (iii) satisfies the inclusion ⌊βℓ⌋ ⊆ τ
provided there with equality. As τ has no subset in F , the leaf ℓ is not forbidden.
It is therefore a tangle leaf, which means that ⌊βℓ⌋ is a tangle of S. Since distinct
tangles of S cannot contain one another, this tangle can only be τ .

(v) Consider the leaf ℓ provided for τ by (iii). If τ is not an F-tangle, then
neither is ⌊βℓ⌋ ⊆ τ : if it was, then ⌊βℓ⌋ and τ would both be orientations of S,
implying ⌊βℓ⌋ = τ with a contradiction. Hence βℓ has a subset in F , by (i). The
efficiency claim follows from (iii), since all subsets of βℓ are efficient in τ if βℓ is. □

Let us briefly address the question of how efficient our structure trees are in dis-
playing the F-tangles of S, as well as certificates from F for consistent orientations
of S that are not F-tangles.

There is a unique way to encode a single tangle τ efficiently: we have to know its
minimal elements, but only these, since the orientations of all the other separations
in S are then determined by consistency of τ .14 The structure tree from Theorem 6.1
does not achieve this for all the tangles of S simultaneously. Indeed, one only needs
two separations in S to see that no structure tree can in general display only the
minimal elements of all its F-tangles.15

14Apply Lemma 2.2 to the set σ of its minimal elements to reobtain the entire tangle as τ = ⌊σ⌋.
15For example, let S consist of just two nested separations, r and s. Let F = ∅, so that all

three consistent orientations of S are F-tangles. The orientations →r of r and ←s of s that point
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However, since our structure tree T in Theorem 6.1 is irreducible, it does the
next best thing. By Theorem 6.2 (iv), the minimal elements of every F-tangle τ
of S are displayed as labels along the path rT ℓ, where ℓ is the tangle leaf with
τ = ⌊βℓ⌋. Conversely, every label →sv of an edge of T is minimal in some F-tangle
of S (with a tangle leaf ℓ > v), or indispensable as an element of the subsets σ ∈ F
of βℓ that certify that ⌊βℓ⌋ is not an F-tangle, for some forbidden leaf ℓ > v.

Theorem 6.1 is best possible in another sense too. Its characterizing condition
for the existence of F-tangle structure trees is, essentially, that F must be rich.
This cannot be weakened: if our order function is injective, which in real-world
applications is the rule rather than the exception, then by Lemma 4.7 the existence
of any ordered F-tangle structure tree (efficient and irreducible or not) implies that
F is rich. The richness condition on F , thus, captures precisely what we need for
an F-tangle structure tree to exist.

If F is rich not only for
→
S but also for some (or all)

→
Sk, Theorem 6.1 applied

in
→
Sk says that there exist efficient and irreducible ordered F-tangle structures trees

of all these
→
Sk. But we do not have to obtain these by independent applications of

Theorem 6.1, separately for each k: we can find them all in the original F-tangle
structure tree T for

→
S provided by Theorem 4.6, before we applied Theorem 5.3 to

‘reduce’ it. Let us now see how.
Given an ordered separation tree (T, r,β) on

→
S and k ∈ R, let

(T, r,β)|k = (T |k, r,β|k)
be defined as follows. Since T is ordered, its edges e with |β(e)| < k form a subtree
of T rooted at r, which we take as T |k. As its edge labelling β|k we take the
restriction of β to these edges.

Theorem 6.3. If (T, r,β) is an efficient and thoroughly ordered F-tangle structure
tree of

→
S and F is rich for

→
Sk, then (T, r,β)|k is an efficient and thoroughly ordered

F-tangle structure tree of
→
Sk.

Proof. It is clear from the definition of T |k that it inherits from T all the properties
it needs for being an efficient, thoroughly ordered, and consistent separation tree
on

→
Sk; in particular, if βℓ is efficient in its closure ⌊βℓ⌋ taken in

→
S , then its sub-

sets βv = (β|k)v with v < ℓ a leaf of T |k are efficient in their (smaller) closure ⌊βv⌋k
taken in

→
Sk. Moreover, non-leaf nodes v of T |k are non-leaf nodes also of T , so

⌊βv⌋k ⊆ ⌊βv⌋ has no subset in F .
For a proof that T |k is an F-tangle structure tree it remains to show that every

leaf v of T |k is either a tangle leaf or a forbidden leaf of T |k. If it is neither, then
by Lemma 4.5 applied in

→
Sk the set ⌊βv⌋k does not orient all of Sk.

Such a node v cannot be a leaf of T . Indeed, since βv has no subset in F , it would
be a tangle leaf of T , so ⌊βv⌋ would be an F-tangle of S, and ⌊βv⌋ ∩

→
Sk = ⌊βv⌋k

would be an F-tangle of Sk (contrary to our assumption). So there exists an sv ∈ S
whose orientations label the edges e and e′ from v to its children in T .

to each other then form a tangle in which they are both minimal, so they must both label an
edge of T . Now if we flip either one of them, we obtain a tangle in which the other is still an
element, but no longer minimal. If |r| < |s|, say, then {→r , →s } would be such a tangle which our
structure tree displays by using both →r and →s as labels of a path from the root to a tangle leaf,
although →s alone already determines this tangle. The tangle {←r ,←s} would be displayed by the
same tree more efficiently, with ←r labelling an edge from the root to a leaf ℓ, with βℓ = {←r } and
⌊βℓ⌋ = {←r ,←s}.
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Since T is thoroughly ordered and there exists a separation in Sk not oriented
by ⌊βv⌋k = ⌊βv⌋ ∩

→
Sk, we know that |sv| < k. But this means that e and e′ are

edges of T |k, contradicting the fact that v is a leaf of T |k. □
Note that the structure trees T |k found inside T by Theorem 6.3 are nested: for

i < j we have T |i ⊆ T |j , indeed T |i = (T |j)|i. This hierarchy of structure trees
commutes with the following well-known hierarchy of tangles. For all integers i < j,
every F-tangle τj of Sj induces an F-tangle τi of Si, as τi = τj ∩

→
Si. Now every

F-tangle in
→
S , say τk of order k, corresponds to a tangle leaf ℓ(τk) of T |k in that

τk = ⌊βℓ(τk)⌋k. All these ℓ(τk) are nodes of T .
Conversely, if our order function on S is injective, then every non-leaf node v

of T is such a tangle leaf ℓ(τk) of T |k for some F-tangle τk in
→
S , since βv has no

subset in F by Theorem 6.2 (ii). And the positions of these nodes in T commute
with the relationship of their tangles: if τj induces τi for i ≤ j, then ℓ(τi) ≤r ℓ(τj)
in the tree-order of T .

In the proof of Theorem 6.3 we made use of the assumption that T is thoroughly
ordered. This holds for the F-tangle structure trees provided by Theorem 4.6, and
these are already efficient by Lemma 4.9. But while their efficiency is maintained
when we apply Theorem 5.3 to ‘reduce’ them, as in the proof of Theorem 6.1, the
property of being thoroughly ordered is lost. For the trees T |k in Theorem 6.3 to
be F-tangle structure trees, however, it is essential that T is thoroughly ordered.16

But the F-tangle structure trees of
→
Sk that Theorem 6.3 finds in T can be reduced

afterwards: we simply apply Theorem 5.3 to those T |k. This yields irreducible,
efficient, ordered F-tangle structure trees for all the

→
Sk, the same that Theorem 6.1

would give us if we applied it directly in
→
Sk.

Finally, let us apply Theorem 6.1 to the special case that S has no F-tangles.
In this case it is desirable to be able to certify this efficiently.

In the special case that F consists of stars (of oriented separations; see Section 2),
such certificates are known: they are the S-trees over F from [15], which generalize
the branch-decompositions introduced by Robertson and Seymour [20] for graph
tangles to F-tangles in abstract separation systems.

Our structure trees from Theorem 6.1 provide maximally efficient certificates
for the non-existence of F-tangles for general F , not necessarily consisting of stars,
when all their leaves are forbidden. Let us call such F-tangle structure trees F-trees.

Theorem 6.4. Let
→
S be a separation system, and let F be any set that is standard

and rich for
→
S . Then exactly one of the following assertions holds:

(i) there exists an F-tangle of S;

(ii) there exists an F-tree of
→
S .

In the case of (ii), the F-tree can be chosen to be irreducible, efficient, and ordered
with respect to any order function on S.

Proof. By Theorem 3.7 (ii), any F-tree of S precludes the existence of an F-tangle
of

→
S , so we cannot have both (i) and (ii).

16In the reduction process we contracted or deleted edges whose label was ‘unnecessary’ for T
to display the F-tangles of S and any certificates in F of their non-existence. But such edges may
have been necessary for T |k to display the F-tangles of Sk. As an extreme example, take F = ∅
and assume that all the oriented separations that are ≤-minimal in tangles of S have order k.
While S may have elements of lower order that can be oriented to form lower-order tangles, those

tangles will not be visible in T , since β(E(T )) ∩ →
Sk = ∅.
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For a proof that (i) or (ii) holds, let any order function on S be given. By
Theorem 6.1,

→
S has an efficient and irreducible ordered F-tangle structure tree T .

If (i) fails, then T has no F-tangle leaf. Then all its leaves are forbidden, so T is
an F-tree. □

7. Applications: blocks, profiles, and cluster tangles

Graph tangles can be expressed as F-tangles in the universe of all separations
of a graph G: take as F the set T of triples { (Ai, Bi) | i = 1, 2, 3 } of oriented
separations such that G[A1] ∪ G[A2] ∪ G[A3] = G. These are not stars. But it is
not hard to show [11] that the T -tangles of a graph are precisely its T ∗-tangles,
where T ∗ consists of the sets in T that are stars.

Expressed as F-tangles in this way, graph tangles form a special case of certain
T -tangles in any abstract separation systems

→
S that lives in some universe 󰂓U of

separations, where, unlike in the case of graphs, the triples in T are described purely
in terms of 󰂓U [7, Section 5]. If

→
S is submodular, has no degenerate elements, and

󰂓U is distributive, the T -tangles of
→
S are again precisely its T ∗-tangles, where T ∗

is the set of stars in T [11, Lemma 17].
Due to this history, F-tangles have so far been studied mostly when F consisted

of stars of separations. Such F-tangles already allow for vast generalizations of the
original tangles of graphs. However, there are contexts in which F-tangles occur
naturally and F does not consist of stars. Three of these are:

• blocks in graphs, more precisely: k-blocks for all k ∈ N;
• profiles: the most comprehensive generalization of graph tangles that still
admits a tree-of-tangles structure theorem;

• cluster tangles in large datasets.

We shall apply our results to all these in this section, giving a minimum of back-
ground for context in each case.

Common to all tangle contexts are two fundamental theorems about tangles in
graphs, which both go back to the original paper of Robertson and Seymour [20]
in which tangles were first introduced. These have become known [9] as

• the tree-of-tangles theorem; and

• the tangle-tree duality theorem.

The tree-of-tangles theorem, in its simplest form, says that all the maximal
tangles in a graph can be distinguished17 by a nested set T of separations, one that
can be represented as the set of separations associated with a tree-decomposition of
the graph. The separations in T can be chosen to distinguish the tangles efficiently ,
which means that they have minimum order for any separation that distinguishes
a given pair of tangles, and canonically , which means that T is invariant under all
the automorphisms of the graph [9]. These enhanced tree-of-tangle theorems have
been further generalized to abstract separation systems [6, 11, 12].

The tangle-tree duality theorem, in its simplest form, says that if a graph has no
tangle of some given order k then it has a nested set T of separations of order < k
that witnesses the non-existence of those tangles: any orientation τ of the graph’s
separations of order < k will in particular orient T , and thereby the edges of the

17A separation distinguishes two tangles if they orient it differently.
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decomposition tree associated with T , and following those oriented edges will take
us to a node whose incident edges correspond to a set in T ∗; thus, τ is not a tangle.
The tangle-tree duality theorem, too, has been generalized to abstract separation
systems [11,15]. There are also unifications of both theorems into one [1, 2, 18].

The certificates for the non-existence of an F-tangle offered by the tangle-tree
duality theorems require that F consist of stars. Indeed, since T is nested, the
edges at any node of the decomposition tree that represents T will map to a nested
set of separations too, and orienting them towards that node will yield a star of
separations. Hence if we look for certificates for the non-existence of F-tangles
when F does not consist of stars, we need a fresh start. Our Theorem 6.4 offers
such an alternative.

For our first application, let us now look at blocks. For any k ∈ N, a k-block in
a graph is any maximal set of at least k vertices no two of which can be separated
by < k vertices. Every k-block X in a graph G defines an Bk-tangle of Sk for

Bk :=
󰁱
σ ⊆

→
S :

󰀏󰀏󰀏
󰁟

{B | (A,B) ∈ σ}
󰀏󰀏󰀏 < k

󰁲
,

where S is the set of all separations of G: just orient every separation in Sk to-
wards X. Conversely, given any Bk-tangle τ of Sk in G, the set

󰁗
{B | (A,B) ∈ τ}

is a k-block in G, which in turn defines τ as indicated.
One of the earliest applications of what later became F-tangles was that finite

graphs have canonical tree-decompositions that distinguish all their k-blocks effi-
ciently [5]. This extended a classical decomposition theorem of Tutte for 2-blocks.
The proof in [5] was not based on the tangle techniques from [20], which could not
deliver canonical tree-decompositions. As a consequence of this different approach,
any tangle-tree duality theorem for blocks seemed beyond reach for a long time.

It was shown much later that blocks can in fact be captured by F-tangles with
F consisting of stars [10,11,16]. But these F have to be constructed recursively for
each given graph, and are therefore highly artificial: tailor-made for the purpose,
but not defining F-tangles that can be understood from their definition. As a
consequence, the certificates they yield in theory for the non-existence of blocks are
of little use in practice. Our Theorem 6.4, however, offers very tangible certificates:

Theorem 7.1. Let S be the set of separations of a graph G, with the usual order
function [9], and let k ∈ N. Then exactly one of the following assertions holds:

(i) G has a k-block;

(ii) there exists an Bk-tree of
→
Sk.

In the case of (ii), the Bk-tree can be chosen to be irreducible, efficient, and ordered.

Proof. We have already seen that k-blocks induce Bk-tangles of Sk and vice versa.
We can thus replace (i) with the assertion that Sk has a Bk-tangle, and proceed to
apply Theorem 6.4.

Let us check the theorem’s premise. The set Bk is standard for
→
Sk, since the all

co-trivial oriented separations in
→
Sk are of the form (V,A), where V = V (G) and

|A| < k.18 Clearly, then, {{(V,A)}} ∈ Bk.
For a proof that Bk is rich for

→
Sk, it suffices by Lemma 4.4 to show that Bk is

closed under minimization in
→
S . Given any σ ∈ F , let σ′ be obtained from σ by

18In addition, the set A has to lie in the separator of another separation of order < k.
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replacing every (A,B) ∈ σ by some (A′, B′) ≤ (A,B) from
→
S .19 As󰁟 󰀋

B′ : (A′, B′) ∈ σ′󰀌 ⊆
󰁟 󰀋

B : (A,B) ∈ σ
󰀌
,

our assumption of σ ∈ Bk clearly implies that σ′ ∈ Bk, as required. □
Next, profiles. Profiles of graphs were introduced by Hundertmark [19], who

noticed that the above-mentioned tree-structure theorem for blocks [5] required in
its proof much less information about blocks than is provided in their definition.
All that is needed is that the orientation of Sk which a k-block induces20 avoids the
set F of triples of the form {→

r , →s ,
←
r ∨←s}. In the context of graphs, this supremum

is taken in the universe of all the separations of the given graph.
More generally, given any separation system

→
S in some universe 󰂓U of separations,

we let
P =

󰀋
{→
r , →s ,

←
r ∨ ←s} :

→
r , →s ∈ 󰂓U

󰀌
,

and refer to the P-tangles of S as its profiles. A profile is regular if none of its
elements is small.

Hundertmark’s discovery was seminal: since graph tangles are profiles too, the
canonical construction from [5], rewritten for profiles [12], offered canonical trees of
tangles – something that Robertson and Seymour [20] had been unable to achieve
directly by their tangle methods.

So what about tangle-tree duality for profiles? It was the hope to find such a
theorem that motivated the original generalization of graph tangles to F-tangles in
abstract separation systems [15], since profiles had this form by definition. But the
hope proved elusive. We did indeed find a duality theorem for F-tangles in [15],
but we needed crucially that F consisted of stars. This was good enough for
tangles, since T -tangles coincide with T ∗-tangles, as well as for some further duality
theorems in graphs and matroids [14], but there was no tangle-tree duality theorem
for profiles among these.

As in the case of blocks it is possible to construct, recursively, sets F of stars
in submodular separation systems embedded in a universe so that its profiles are
precisely its F-tangles. One can then apply [15] to obtain a tangle-tree duality
theorem for profiles, encoded as such F-tangles [10].

Alternatively, we can now obtain certificates for the non-existence of profiles
directly from Theorem 6.4.

As preparation, we need a lemma. Given a separation system
→
S in some uni-

verse 󰂓U , we call a profile of S strong if it has no subset in

Ps =
󰀋
{→
r , →s ,

←
t } :

→
r , →s ,

→
t ∈ 󰂓U and

←
t ≤ ←

r ∨ ←s
󰀌
.

Note that strong profiles are regular: if
→
r ≤ ←

r then no strong profile contains
→
r ,

since
→
r ≤ ←

r ∨ ←
r puts {→

r } in Ps. If
→
S is submodular and 󰂓U is distributive, the

converse holds too:

Lemma 7.2. Every regular profile of a submodular separation system in a distribu-
tive universe of separations is strong.

Proof. Let (
→
S,≤) be any submodular separation system in a distributive lattice 󰂓U .

Suppose S has a regular profile τ that is not strong. Then there exist
→
r , →s ,

←
t in τ

such that
←
t 󰃑 ←

r ∨ ←s. Choose this triple with
←
t as large as possible under ≤.

19Recall that, for graph separations, (A′, B′) ≤ (A,B) if and only if A′ ⊇ A and B′ ⊆ B.
20orient every separation towards the side that contains the given k-block
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Our aim will be to show that both
→
t ∨ →

r and
→
t ∨ →s lie in

→
S . For if they do,

they must lie in τ by the consistency of τ , since
→
t ∨ →

r ≥ →
r ∈ τ and

→
t ∨ →s ≥ →s ∈ τ

and τ is regular.21 Then, as

(
→
t ∨ →s )∗ ∨ (

→
t ∨ →

r )∗ = (
←
t ∧ ←s) ∨ (

←
t ∧ ←

r ) =
←
t ∧ (←s ∨ ←

r ) =
←
t

by distributivity, we shall have τ ⊇ {→
t ∨ →

r ,
→
t ∨ →s ,

←
t } ∈ P, which contradicts our

assumption that τ is a profile.
So let us show that

→
t ∨ →

r ∈
→
S ; the proof of

→
t ∨ →s ∈

→
S is analogous. By

submodularity we have
→
t ∨ →

r ∈
→
S as desired unless

→
t ∧ →

r ∈
→
S , so let us assume

this. Then also
→
S ∋ (

→
t ∧ →

r )∗ =
←
t ∨ ←

r ≥ ←
t ∈ τ , so

←
t ∨ ←

r ∈ τ by the consistency
and regularity21 of τ .

If
←
t ∨ ←

r =
←
t , then

←
t ≥ ←

r and thus
→
t ≤ →

r , giving
→
t ∨ →

r =
→
r ∈

→
S as desired.

But otherwise
←
t ∨←

r >
←
t ∈ τ , which contradicts the maximality of

←
t in our choice

of
→
r , →s ,

←
t ∈ τ with

←
t ≤ ←

r ∨ ←s, since also
←
t ∨ ←

r ≤ ←
r ∨ ←s by definition of the

supremum
←
t ∨ ←

r . □

Lemma 7.2 implies that the regular profiles of a submodular separation system
in a distibutive universe are precisely its Ps-tangles. Indeed, being profiles, they
are P-tangles and therefore consistent, and they avoid Ps since, by the lemma,
they are strong, so they are Ps-tangles. Conversely, every Ps-tangle avoids P ⊆ Ps

and is therefore a profile, and it is strong since Ps-tangles cannot contain small
separations, as noted earlier.

Theorem 7.3. Let
→
S be any submodular separation system in a distibutive universe

of separations. Then exactly one of the following assertions holds:

(i) there exists a regular profile of S;

(ii) there exists an Ps-tree of
→
S .

In the case of (ii), the Ps-tree can be chosen to be irreducible, efficient, and ordered
with respect to any order function on S.

Proof. Our aim is us apply Theorem 6.4 to
→
S with F = Ps. As remarked after

Lemma 7.2, the regular profiles of S are precisely its Ps-tangles. It remains to
check that Ps is standard and rich for

→
S .

For a proof that Ps is standard, we have to show that {←s} ∈ Ps whenever →s is
trivial in

→
S . Let r ∈ S witness that →s is trivial. Then

→
r ,

←
r < →s , so ←s <

→
r < →s .

Hence ←s ≤ →s ∨ →s , which puts {←s} in Ps.
For a proof that Ps is rich for

→
S , it suffices by Lemma 4.4 to show that Ps is

closed under minimization in
→
S . Given any set σ = {→

r , →s ,
←
t } ∈ Ps, consider any

set σ′ = {→
r′,

→
s′,

←
t′} with

→
r′ ≤ →

r and
→
s′ ≤ →s and

←
t′ ≤ ←

t . Then σ′ ∈ Ps as desired,
since

←
t′ ≤ ←

t ≤ ←
r ∨ ←s ≤ ←

r′ ∨ ←
s′; the middle inequality comes from σ ∈ Ps. □

Finally, let us apply our results to tangles defined by clusters in large datasets.
The basic setup is that

→
S is the set 2V of all subsets of our data set V, the involution *

given by complementation in V. Then S is the set of bipartitions s = {A,B} of V,
whose orientations are →s = A and ←s = B (say). We then choose an order function
on S that assigns high values to separations that divide many pairs of elements of V

21Compare Lemma 2.1 and the remark preceding it.
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which we consider as ‘close’,22 the idea being that separations of low order cannot
divide many close pairs and therefore cannot cut through a cluster, only chip off a
few points. This, then, implies that large clusters induce F-tangles for F defined as

Cn :=
󰀋
{→
r , →s ,

→
t } : |→r ∩ →s ∩ →

t | < n
󰀌
,

where the agreement value n is chosen to fit the context.
Thus, Cn-tangles in datasets are a bit like Bk-tangles in graphs, except that n

is now a value separate from the order k of the tangles considered. An important
difference is that, unlike k-blocks in graphs, the clusters captured by those tangles
are not normally subsetsX of V that we can, or even wish to, specify explicitly: they
can be ‘fuzzy’, and do not have to lie entirely on the side of the separations chosen
by the tangle they induce, only mostly. Quantitatively, while the intersection of
any three elements of an Cn-tangle contains at least n datapoints, the intersection
of all of them will likely be empty – unlike in the case of k-blocks in graphs, which
are equal to the intersection of all the sides of the graph’s separations chosen by
the tangle.

In other contexts than generic clustering one sometimes looks for Cn-tangles not
of the set S of all the bipartitions of V, but of some specific, hand-designed set S of
bipartitions of V. For example, S might be a questionnaire whose elements partition
a population V of individuals that have answered it into those that answered yes
and those that answered no. In such a context, Cn-tangles can be interpreted as
‘typical’ ways to answer the questions in S, as mindsets found in the population V
regarding the questions in S. See [8] for more.

In all these contexts we can now use Theorem 6.1 to efficiently display the clusters
or mindsets in V as determined by S, as long as Cn is standard and rich for

→
S . If

we are interested specifically in certifying that our dataset has no clusters of some
desired density at all, we can similarly apply Theorem 6.4.

The sets Cn are standard for all
→
S ∕= ∅ and n > 0: then {∅} ∈ Cn, and only ∅ can

be co-trivial in
→
S . Also, Cn is clearly closed under minimization in

→
S : replacing the

elements →s of a triple σ with subsets
→
s′ ≤ →s leads to

󰁗
σ′ ⊆

󰁗
σ, so σ ∈ Cn implies

σ′ ∈ Cn. By Lemma 4.4, therefore, Cn is rich for
→
S .

Theorems 6.1 and 6.4 thus have the following instances in our context:

Corollary 7.4. If
→
S is any non-empty set of subsets of a set V and n > 0, then

→
S has an efficient and irreducible ordered Cn-tangle structure tree.

Corollary 7.5. Let
→
S be any non-empty set of subsets of a set V, and let n > 0.

Then exactly one of the following assertions holds:

(i) there exists a Cn-tangle of S;

(ii) there exists a Cn-tree of
→
S .

In the case of (ii), the Cn-tree can be chosen to be irreducible, efficient, and ordered
with respect to any order function on S.

References

[1] Sandra Albrechtsen, Optimal trees of tangles: refining the essential parts, 2023.

22Choosing this order function to fit the application context allows for considerable variety in
using tangles for clustering. See [8, Chapter 9] for an overview of some standard order functions,
or [21] for a concrete example.



22 HANNO VON BERGEN AND REINHARD DIESTEL

[2] , Refining trees of tangles in abstract separation systems: inessential parts, Combina-
torial Theory 4(1) (2024; arXiv:2302.01808).

[3] J. Carmesin, R. Diestel, M. Hamann, and F. Hundertmark, Canonical tree-decompositions
of finite graphs I. Existence and algorithms, J. Comb. Theory Ser. B 116 (2016), 1–24;
arXiv:1305.4668.

[4] , Canonical tree-decompositions of finite graphs II. Essential parts, J. Comb. Theory
Ser. B 118 (2016), 268–283; arXiv:1305.4909.

[5] J. Carmesin, R. Diestel, F. Hundertmark, and M. Stein, Connectivity and tree structure in
finite graphs, Combinatorica 34 (2014), no. 1, 1–35; arXiv:1105.1611.

[6] J. Carmesin and J. Kurkofka, Entanglements, J. Comb. Theory, Ser. B 164 (2024), 17–28;
arXiv:2205.11488.

[7] R. Diestel, Abstract separation systems, Order 35 (2018), 157–170; arXiv:1406.3797.
[8] , Tangles: A structural approach to artificial intelligence in the empirical sciences,

Cambridge University Press, 2024. e-book: tangles-book.com/book/.
[9] , Graph theory (6th edition), Springer-Verlag, 2025.

Electronic edition available at http://diestel-graph-theory.com/.
[10] R. Diestel, Ph. Eberenz, and J. Erde, Duality theorems for blocks and tangles in graphs,

SIAM J. Discrete Math. 31 (2017), no. 3, 1514–1528; arXiv:1605.09139.
[11] R. Diestel, J. Erde, and D. Weißauer, Structural submodularity and tangles in abstract sepa-

ration systems, J. Comb. Theory Ser. A 167C (2019), 155–180; arXiv:1805.01439.
[12] R. Diestel, F. Hundertmark, and S. Lemanczyk, Profiles of separations: in graphs, matroids,

and beyond, Combinatorica 39 (2019), no. 1, 37–75; arXiv:1110.6207.
[13] R. Diestel and H.v.Bergen, Tangle structure tree applications.
[14] R. Diestel and S. Oum, Tangle-tree duality in graphs, matroids and beyond, Combinatorica

39 (2019), 879–910. arXiv:1701.02651.
[15] , Tangle-tree duality in abstract separation systems, Advances in Mathematics 377

(2021), 107470; arXiv:1701.02509.
[16] Ph. Eberenz, Characteristics of profiles, Master’s Thesis, Hamburg University, 2015.
[17] C. Elbracht, J. Kneip, and M. Teegen, Obtaining trees of tangles from tangle-tree duality, J.

Combinatorics 13 (2022), 251–287; arXiv:2011.09758.
[18] Joshua Erde, Refining a tree-decomposition which distinguishes tangles, SIAM J. Discrete

Math. 31 (2017), 1529–1551; arXiv:1512.02499.
[19] F. Hundertmark, Profiles. An algebraic approach to combinatorial connectivity, 2011.
[20] N. Robertson and P.D. Seymour, Graph minors. X. Obstructions to tree-decomposition, J.

Comb. Theory Ser. B 52 (1991), 153–190.
[21] H. von Bergen and R. Diestel, Traits and tangles: an analysis of the Big Five paradigm by

tangle-based clustering, J. Math. Psychology 125 (102920) (2025; arXiv:2411.18670).


