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Abstract

A well-known conjecture of Erdős states that, given an infinite graph G
and sets A, B ⊆ V (G), there exists a family of disjoint A–B paths P
together with an A–B separator X consisting of a choice of one vertex
from each path in P. There is a natural extension of this conjecture in
which A, B and X may contain ends as well as vertices. We prove this
extension for sets A and B that can be separated by countably many
vertices or ends, and for sets A and B which have disjoint closures in the
end topology of G.

1 Introduction

Erdős conjectured (see [11]) that Menger’s theorem should extend to infinite
graphs as follows:

Erdős-Menger Conjecture. For every graph G = (V, E) and any two sets
A, B ⊆ V there is a set P of disjoint A–B paths in G and an A–B separator X
consisting of a choice of one vertex from each of the paths in P.

There are several partial results [3]. In particular, Aharoni [2] proved the
conjecture for countable graphs. In [4], this was extended as follows:

Theorem 1.1. [4] The Erdős-Menger conjecture holds for all graphs G and sets
A, B ⊆ V that are separated in G by a countable set of vertices.

In particular, the conjecture holds whenever A is countable, regardless of the
cardinality of G.

Another line of attack was taken in [7]. Again, an assumption is made that
A and B are easy to separate. But this time, the notion of separation used is
topological:

Theorem 1.2. [7] The Erdős-Menger conjecture holds for all graphs G and sets
A, B ⊆ V whose closures in the topological space |G| consisting of G together
with its ends are disjoint.

(See Section 2 for a formal definition of |G|, and some discussion of what the
disjoint closures condition means for the relative position of A and B in G.)

Although Theorem 1.2 refers implicitly to the ends of G by its closure condi-
tion, the conclusion is the original one from Erdős’s conjecture, which makes no
reference to ends. However, there is also a natural extension of the conjecture
that does refer to ends. Here, the sets A and B may contain ends as well as
vertices. The A–B paths in P can be either finite paths linking two vertices,
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or rays linking a vertex to an end, or double rays linking two ends. Similarly,
the separator X may contain ends (that lie in A or B), thus blocking any ray
belonging (= converging) to that end. This extension was proposed in [6], and
found to be true for countable graphs under certain necessary restrictions for A
and B.

In this paper, we extend both Theorems 1.1 and 1.2 to ends, in the spirit
of [6]. Our extension of Theorem 1.2 will build on our extension of Theorem 1.1.

2 Definitions and statement of results

The basic terminology we use can be found in [5]. All the graphs in this paper
are simple and undirected. As most of the graphs we deal with are infinite, we
recall a few (standard) concepts for infinite graphs. Let G = (V, E) be a fixed
infinite graph.

A 1-way infinite path is called a ray, a 2-way infinite path a double ray. The
subrays of rays or double rays are their tails. The ends of G are the equivalence
classes of rays under the following equivalence relation: two rays R1, R2 in G are
equivalent if no finite set of vertices separates them. As one easily observes, this
condition holds if and only if there are infinitely many disjoint (finite) R1–R2

paths. This in turn is equivalent to the existence of a ray that meets both R1

and R2 infinitely often. The set of ends of G is denoted by Ω = Ω(G), and we
write G = (V, E, Ω) to refer to G together with its set of ends.

Paths in G can be finite paths (which contain at least one vertex), rays,
double rays, or singleton sets {ω}, where ω is an end of G.

We will now define the standard topology on G together with its ends. We
start by viewing G itself as a 1-complex. (Thus, the basic open neighbourhoods
of an inner point of an edge are the open intervals on the edge containing that
point, while the basic open neighbourhoods of a vertex v are the unions of half-
open intervals containing v, one from every edge at v.1 The point set of this
1-complex will again be denoted by G.) To extend this topology to the set G∪Ω,
we have to define a neighbourhood basis for every end ω ∈ Ω. To do so, consider
any finite set S ⊆ V . Then G−S has exactly one component C = C(S, ω) that
contains a tail of every ray in ω. We say that ω belongs to C, and write C(S, ω)
for the component C together with all the ends of G belonging to C. As the
basic open neighbourhoods of ω we now take all sets of the form

Ĉ(S, ω) := C(S, ω) ∪ E′(S, ω),

where S is any finite subset of V and E′(S, ω) is any union of half-edges
(z, y] ⊆ e, one for every edge e = xy with x ∈ S and y ∈ C (with z ∈ e̊).

Let |G| denote the topological space on G ∪ Ω thus defined. (When G is
locally finite, |G| is a compact space known as the Freudenthal compactification
of G; see [8, 9] for more.)

We write X for the closure of a set X ⊆ |G| in |G|. For example, the set
C(S, ω) defined above is the closure in |G| of the set C(S, ω). Generally, the

1Alternatively, we might fix for every edge [u, v] a homeomorphism with the real interval
[0, 1] and take as basic open neighbourhoods for a vertex v only those unions of half-open
edges [v, z) whose images in [0, 1] have the same length. This gives a different topology when
vertices have infinite degrees, but since all relevant sequences of points will be sequences of
vertices or of ends, the difference does not matter.
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difference between a subgraph H and its closure H is always a set of ends of G
(possibly empty). These need not correspond to ends of H and should not
be confused with them. For example, if G is the 1-way infinite ladder and H
consists of all the rungs, then H \ H consists of one point, the unique end ω
of G. But H itself has no ends. Similarly, the subgraph H ′ = G − E(H) of G
is a double ray and thus has two ends, but H ′ \ H ′ = {ω} as before.

With precise definitions now available, let us take another look at what the
assumption of A ∩ B = ∅ in Theorem 1.2 means for the relative position of the
sets A and B (which we assume to be disjoint). Formally, the condition means
that every ray in G can be separated by finitely many vertices from at least one
of the sets A and B. An obvious way to ensure this, of course, is to assume
that some finite set of vertices separates A from B. But this is much stronger
(except when G is locally finite), and the conjecture has long been known for
this case. A more typical example of A ∩ B = ∅ is to take as A and B two
distinct levels of vertices in the κ-regular tree (for κ any infinite cardinal), in
which case G contains κ disjoint A–B paths.

The closure of an infinite path P contains one or two ends of G. (Even if P
is a double ray, its closure may contain only one end, as in the ladder example
above.) We will often consider such an end as the first or last point of P , and
when we say that two paths are disjoint then these points too shall be distinct.
(The first and last point of a path P = {ω}, of course, is ω.) For A, B ⊆ V ∪Ω,
a path is an A–B path if its first but no other point lies in A and its last but no
other point lies in B.

A set X ⊆ V ∪ Ω is an A–B separator in a subspace T ⊆ |G| if every path
P in T with its first point in A and its last point in B satisfies P ∩X �= ∅. (We
express this informally by saying that “P meets X”, though strictly speaking
we shall mean P rather than just P .) We say that a set Y ⊆ V ∪Ω lies on a set
P of disjoint A–B paths if Y consists of a choice of exactly one vertex or end
from every path in P. We say that G satisfies the Erdős-Menger conjecture for
A and B, or that the Erdős-Menger conjecture holds for G, A, B, if |G| contains
a set P of disjoint A–B paths and an A–B separator on P. (Thus, officially, we
always refer to the ends version of the conjecture. But this is compatible with
the traditional terminology: if neither A nor B contains an end then neither
can any A–B path, so the conjecture with ends automatically defaults to the
original conjecture in this case.)

The union of a ray R and infinitely many disjoint paths starting on R but
otherwise disjoint from R is a comb with spine R. The last points (vertices
or ends) of those paths are the teeth of the comb. We will frequently use the
following simple lemma:

Lemma 2.1. In the graph G = (V, E, Ω) let R be a ray of an end ω, and let
X ⊆ V ∪ Ω such that ω /∈ X. Then ω ∈ X if and only if G contains a comb
with spine R and teeth in X.

We can now state our two main results. First, our extension of Theorem 1.1:

Theorem 2.2. Let G = (V, E, Ω) be a graph, let A, B ⊆ V ∪Ω satisfy A∩B =
∅ = A∩B, and suppose that there exists a countable A–B separator X ⊆ V ∪Ω
in G. Then G satisfies the Erdős-Menger conjecture for A and B.

In particular, the ends version of the Erdős-Menger conjecture is true when-
ever A is countable. We remark that the condition A∩B = ∅ = A∩B is really
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necessary [6]; so Theorem 2.2 is best possible in this respect. If neither A nor
B contains an end, the condition reduces to A ∩ B = ∅, which we may always
assume without loss of generality; thus, Theorem 2.2 implies Theorem 1.1.

Our second main result, whose proof builds on Theorem 2.2, extends Theo-
rem 1.2 fully to its natural topological setting:

Theorem 2.3. Every graph G = (V, E, Ω) satisfies the Erdős-Menger conjec-
ture for all sets A, B ⊆ V ∪ Ω that have disjoint closures in |G|.

Let us complete this section with an outline of the proofs to come, and of
how the paper is organized.

The proof of Theorem 2.2 will occupy us for the next two sections. It runs
roughly as follows. Most of the proof – all of Section 3 – will be spent on
transferring our problem to an equivalent problem in which G is replaced with
a suitable minor and A and B consist of vertices only. In this new situation,
the countable A–B separator X – which likewise may be assumed to consist
of vertices only – divides G into two parts: one between X and A (including
both) and the rest (which includes B). We now apply Theorem 1.1 to obtain
an A–X separator Y on a system of disjoint A–X paths in the first part. Note
that Y is again countable, and it separates A from B in G. Repeating the same
procedure for the part of G between Y and B yields a system of Y –B paths
with a separator Z on it, which again separates A from B. These paths can be
concatenated with the A–Y segments of the first, to give a system of disjoint A–
B paths (with the A–B separator Z on it). It remains to transfer this solution
back to the original sets A, B containing ends, in the original graph G.

In Section 5 we prove Theorem 2.3. Employing techniques developed in
Section 3 and in [7], we will eliminate all ends in the closures of A and B. Then
the remaining ends can be discarded as well. In this way, the problem is reduced
to a rayless graph, for which the Erdős-Menger conjecture is known to hold:

Theorem 2.4 (Aharoni [1], Polat [12]). The Erdős-Menger conjecture holds for
rayless graphs.

3 The reduction lemma

In this section we develop further some techniques from [6] designed to reduce
the ends versions of the Erdős-Menger conjecture to the related vertex versions.
Observe that in the finite Menger theorem we can ignore all the vertices in A∩B
and work with the graph G− (A∩B) instead. In an infinite graph, however, we
have to take care that no end in A ∪ B is destroyed or split when the vertices
of A ∩ B are deleted from G.

Lemma 3.1. Let G = (V, E, Ω) be a graph, and let A, B ⊆ V ∪ Ω satisfy

A ∩ (B \ B) = ∅ = (A \ A) ∩ B.

Then for the graph G′ := G− (A∩B∩V ) there are sets A′, B′ ⊆ V (G′)∪Ω(G′)
satisfying

(i) |A′| ≤ |A|;

(ii) if A ⊆ V then A′ ⊆ A, and if B ⊆ V then B′ ⊆ B;
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(iii) A′ ∩ B′ = ∅ = A′ ∩ B′;

(iv) if G′ satisfies the Erdős-Menger conjecture for A′ and B′, then G satisfies
it for A and B.

Proof. Put A′ := A \ B and B′ := B \ A, both of which are subsets of |G|.
Consider a ray R of an end α in A′ or B′, say in A′. Then R has a tail in G′.
Indeed, if not then there are vertices of A∩B ∩ V ⊆ B in every neighbourhood
of α ∈ A\B. Consequently, α ∈ A∩(B \B), which is a contradiction. Similarly,
two rays R1, R2 in G′ of which R1 is a ray of an end ω ∈ A′ ∪B′ are equivalent
in G′ if and only if they are equivalent in G. Indeed, if R1 and R2 are equivalent
in G then there is a ray R3 ∈ ω that meets both of R1 and R2 infinitely often.
Now R3 has a tail in G′, showing that R1 and R2 are also equivalent in G′.

Thus, mapping every end of G in A′ ∪ B′ to the unique end of G′ that
contains tails of its rays defines a bijection between the ends in A′ ∪ B′ and
certain ends in G′. Using this bijection (and a slight abuse of notation) we may
view A′ and B′ also as subsets of V (G′)∪Ω(G′). Clearly, A′ ∩B′ is empty and
hence (iii) is satisfied. Also, (i) and (ii) are trivial.

For (iv), let X ′ be an A′–B′ separator on a set of disjoint A′–B′ paths P ′

in G′. Adding to P ′ the trivial paths {x} for all x ∈ A ∩ B yields a set P of
disjoint A–B paths on the A–B separator X := X ′ ∪ (A ∩ B).

Later on, in Lemma 3.5, we shall need a family of disjoint subgraphs of G
(with certain properties) such that every end of A lies in the closure of one of
these subgraphs. Such a family cannot always be found. But our next lemma
finds instead a family of subgraphs such that the ends of A not contained in
their closures form a set I that can be ignored: those ends will automatically
be separated from B by any (A\ I)–B separator on a set of disjoint A–B paths.

Lemma 3.2. Let G = (V, E, Ω) be a graph, and let A, B ⊆ V ∪ Ω be such that
A∩B = ∅ = A∩B. Then for every set AΩ ⊆ A∩Ω there exist a set I ⊆ AΩ, an
ordinal µ∗, and families (Gµ)µ<µ∗ and (Sµ)µ<µ∗ such that, for every µ < µ∗, the
graph Gµ −Sµ is a component of G−Sµ with Sµ as its finite set of neighbours,
and

(i) Gµ − Sµ ∩ B = ∅;

(ii) if Gµ �= ∅ then Gµ ∩ AΩ �= ∅;

(iii) V (Gν ∩ Gµ) ⊆ Sν ∩ Sµ for all ν < µ.

Moreover,

(iv) for every end α ∈ AΩ \ I there is a µ < µ∗ with α ∈ Gµ;

(v) every (A \ I)–B separator on a set of disjoint (A \ I)–B paths is also an
A–B separator.

Proof. We construct the families (Gµ)µ<µ∗ and (Sµ)µ<µ∗ and a transfinite se-
quence I0 ⊆ I1 ⊆ . . . ⊆ AΩ recursively. The sets Iµ (µ < µ∗) will serve as
precursors to I. To simplify notation, we write Cµ := Gµ − Sµ for every µ. For
the construction, we will in addition to (i)–(iii) require for every µ that

(vi) Iµ ∩ Gν = ∅ for all ν ≤ µ.
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We start by setting I0, G0, S0 := ∅. Consider the least ordinal µ > 0 such that
the above sets are already defined for all λ < µ. If µ is a limit, we set

Iµ :=
⋃

λ<µ

Iλ

and Gµ, Sµ := ∅. This choice clearly satisfies (i)–(iii) and (vi).
Suppose now that µ is a successor, µ = λ+1 say. If every end in AΩ \ Iλ lies

in some Gν with ν < µ, we set µ∗ := µ and terminate the recursion. So suppose
there is an end α ∈ AΩ \ Iλ that lies in no earlier Gν . Then, if possible, choose
a finite vertex set S such that C(S, α) avoids all Gν with ν < µ.

Such a choice of S is impossible if and only if

for every finite S ⊆ V there is a ν < µ with C(S, α) ∩ Gν �= ∅. (1)

In this case we choose to ignore α, i.e. set Iµ := Iλ∪{α} and Gµ, Sµ := ∅. Again
the requirements (i)–(iii) are clearly met, while (vi) holds by the choice of α.

Now suppose we can find S as desired. As A ∩ B = ∅, we can also find a
basic open neighbourhood Ĉ(S′, α) of α in |G| that is disjoint from B. We now
define Sµ as the set of neighbours of C(S ∪ S′, α) and Gµ := G[Sµ ∪ C(Sµ, α)].
Then (i) holds since Sµ ⊇ S′, while (ii) holds as α ∈ Gµ. To see (iii), first note
that

Gν ∩ Cµ = ∅ for all ν < µ

by the choice of S. So, all we have to show is that Gν ∩ Sµ ⊆ Sν . Consider
a vertex v ∈ Gν ∩ Sµ. Since Sµ is the set of neighbours of Cµ, there is a
vertex w ∈ Cµ adjacent to v. As noted above, w /∈ Gν . So v is a vertex in
Gν = Cν ∪ N(Cν) with a neighbour outside Gν , implying v /∈ Cν and hence
v ∈ Sν , as desired.

Let us finally set Iµ := Iλ and verify (vi). We only need to show that
Iµ ∩ Gµ = ∅. Suppose that intersection contains an end α′. Let µ′ < µ be
minimal such that α′ ∈ Iµ′ . Then (1) should have been satisfied for µ′ and α′,
but fails with S := Sµ as C(Sµ, α′) = Cµ, a contradiction.

Having defined Iµ, Gµ and Sµ for all µ < µ∗ so that (i)–(iii) and (vi) are
satisfied, we put

I :=
⋃

µ<µ∗

Iµ.

Together with the definition of µ∗ this implies (iv). Observe that from (vi) we
obtain I ∩ Gµ = ∅ for all µ < µ∗.

To establish (v) let P be a system of disjoint (A \ I)–B paths and X an
(A \ I)–B separator on P. Now suppose that X is not an A–B separator in |G|,
i.e. there is a path Q from A to B that avoids X. By turning Q into a path Q̃
from A \ I to B that avoids X, we will obtain a contradiction.

We may assume that Q starts at an end α ∈ I. Let µ be the step at which
α was added to I, i.e. let µ be minimal with α ∈ Iµ. Choose a finite vertex set
S such that C(S, α) is disjoint from B (this is possible, as A ∩ B = ∅). Then
any path of P that meets C(S, α) must pass through S. Hence only finitely
many paths of P can meet C(S, α), and so Xα := X ∩ C(S, α) is also finite.
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Conditions (iii) and (iv) ensure that every end in Xα lies in exactly one Cλ; let
{λ1, . . . , λm} be the set of these λ. Then for

S′ := S ∪ (Xα ∩ V ) ∪
m⋃

i=0

Sλi

we have
C(S′, α) ∩ X = ∅.

Now, all we need is a point of A \ I that lies in C(S′, α) (and thus can be used
to change Q into the desired path). Indeed, if there is an ordinal λ < µ such
that Gλ �= ∅ and

Cλ ⊆ C(S′, α), (2)

we can complete the proof as follows. By (ii) for λ there will be an end α′ ∈ A
in Cλ ⊆ C(S′, α). Since I ∩ Gλ = ∅, we have α′ ∈ A \ I. Take an α′–Q path
P in C(S′, α) with last vertex x, say. Then P avoids X, and hence so does the
path Q̃ := PxQ. Thus, Q̃ is as desired.

So suppose there is no ordinal λ < µ satisfying (2). Then for all λ < µ we
have either Cλ ∩ C(S′, α) = ∅ or Cλ ∩ S′ �= ∅. As all the Cλ are disjoint by
(iii), only finitely many of them meet S′; let λm+1, . . . , λn be the corresponding
ordinals. Then

S′′ := S′ ∪
n⋃

i=m+1

Sλi

satisfies C(S′′, α) ∩ Cλ = ∅ for all λ < µ.
However, Gλ ∩ C(S′′, α) cannot be empty for all λ < µ, as this would con-

tradict (1) for step µ with S := S′′. So there exists an ordinal λ < µ with
Sλ ∩C(S′′, α) �= ∅. A vertex v in this intersection must have a neighbour in Cλ,
which then also lies in S′ ∪ C(S′, α) because C(S′′, α) ⊆ C(S′, α). Thus,

(S′ ∪ C(S′, α)) ∩ Cλ �= ∅.

Since Cλ � C(S′, α) by assumption, this implies that Cλ meets S′. But then
λ ∈ {λm+1, . . . , λn} and hence Sλ ⊆ S′′, contradicting the fact that v lies in
both Sλ and C(S′′, α).

For our end-to-vertex reduction we need two more lemmas.

Lemma 3.3. [6] Let H be a subgraph of a graph G, let S ⊆ V (H) be finite, and
let T ⊆ V (H)∪Ω(G) be such that T ⊆ H. Then H contains a set P of disjoint
S–T -paths and an S–T -separator (in H) on P.

For a set T of vertices in a graph H, a T -path is a path that meets T only
in its first and last vertex. A set of paths will be called disjoint outside a given
subgraph Q ⊆ H if distinct paths meet only in Q.

Lemma 3.4. [13, 6] Let H be a graph, T ⊆ V (H) finite, and k ∈ N. Then H
has a subgraph H ′ containing T such that for every T -path Q = s . . . t in H
meeting H − H ′ there are k distinct T -paths from s to t in H ′ that are disjoint
outside Q.
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Our next lemma allows us to replace the set A ⊆ V ∪Ω in Theorem 2.2 with
a set A′ consisting only of vertices.

Lemma 3.5. Let G = (V, E, Ω) be a graph, and let A, B ⊆ V ∪ Ω be such that
A ∩ B = ∅ = A ∩ B. Then there are a minor G′ = (V ′, E′, Ω′) of G and sets
A′ ⊆ V ′, B′ ⊆ V ′ ∪ Ω′ satisfying

(i) |A′| ≤ |A|;

(ii) if B ⊆ V then B′ ⊆ B;

(iii) A′ ∩ B′ = ∅ = A′ ∩ B′;

(iv) G satisfies the Erdős-Menger-conjecture for A and B if G′ satisfies it for
A′ and B′.

Proof. Applying Lemma 3.2 with AΩ := A ∩ Ω we obtain an ordinal µ∗, sub-
graphs Gµ, finite vertex sets Sµ and a set of ends I ⊆ A. Our aim is to change G
into G′ by deleting and contracting certain connected subgraphs of our graphs
Gµ − Sµ. By Lemma 3.2 (iii) we shall be able to do this independently for the
various Gµ: for each µ < µ∗ separately, we shall find in Gµ − Sµ a set D1(µ)
of connected subgraphs to be deleted, and another set D2(µ) of connected sub-
graphs that will be contracted.

Fix µ < µ∗. If Gµ is empty we let D1(µ) = D2(µ) = ∅. Assume now that
Gµ �= ∅. Put Aµ := A ∩ Gµ. Applying Lemma 3.3 to H = Gµ we find in Gµ

a finite set P of disjoint Sµ–Aµ paths and an Sµ–Aµ separator Xµ on P. We
write Xµ = Uµ ∪ Oµ, where Uµ = Xµ ∩ V and Oµ = Xµ ∩ Ω, both of which are
finite since |Xµ| ≤ |P| ≤ |Sµ|. Moreover,

Uµ separates Sµ from Aµ \ Oµ in G. (3)

Indeed, every Sµ–(Aµ \Oµ) path in G lies in Gµ and hence meets Xµ, and since
it cannot meet Oµ unless it ends there, it meets Xµ in Uµ.

We define D1(µ) as the set of all the components D of G−Uµ whose closure
D meets Aµ \ Oµ. By (3), these components satisfy D ⊆ Gµ − Sµ, and their
neighbourhood N(D) ⊆ Uµ in G is finite. In addition,

D ∩ Oµ = ∅ for all D ∈ D1(µ). (4)

For if α ∈ D ∩ Oµ, say, and P is the Sµ–Aµ path in P that ends in α, then
P has a tail in D. Since P does not meet Uµ ⊇ N(D), this implies P ⊆ D.
Consequently, Sµ ∩ D is not empty as it contains at least the first vertex of P .
This contradicts D ⊆ Gµ − Sµ.

Put
Hµ := Gµ −

⋃
D1(µ).

Note that, as every v ∈ Uµ lies on a path in P,

Gµ contains a set of disjoint Hµ–Aµ paths whose set of first points
is Uµ. (5)

By (3) and the definition of Hµ, we have Hµ ∩A ⊆ Uµ ∪Oµ = Xµ. Since Oµ

is finite, we can extend Uµ ∪ Sµ to a finite set Tµ ⊆ V (Hµ) that separates the
ends in Oµ pairwise in G. Let H ′

µ be the finite subgraph of Hµ containing Tµ
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which Lemma 3.4 provides for k := |Sµ|+ 1, and for each α ∈ Oµ let Dα be the
component of G − H ′

µ to which α belongs. Finally, we conclude our definitions
for µ by setting D2(µ) := {Dα |α ∈ Oµ}.

Define for i = 1, 2
Di :=

⋃
µ<µ∗

Di(µ).

Observe that, by Lemma 3.2 (iii) and since their neighbourhoods in G are finite,
the elements of D1 ∪ D2 have pairwise disjoint closures.

Before we can define G′, we first have to introduce a graph G̃ = (Ṽ , Ẽ, Ω̃)
from which we will obtain G′ by deleting certain vertices. Let G̃ be obtained
from G −

⋃
D1 by contracting every Dα ∈ D2 to a single vertex aα, and put

A∗ := {aα |Dα ∈ D2}.

Then for Z :=
⋃
D1 ∪

⋃
D2 we have

G − Z = G ∩ G̃ = G̃ − A∗.

By Lemma 3.2 (iii) and by (3), the union of the sets of paths in (5) for all
µ < µ∗ is a set of disjoint paths. Thus, for U :=

⋃
µ<µ∗ Uµ

there is a set of disjoint U–A paths whose set of first points is U ,
and whose paths meet G̃ only in U . (6)

An important property of G̃ is that the ends of G in B ∩ Ω correspond
closely to ends of G̃. To establish this correspondence formally, we begin with
the following observation:

Every ray of an end β ∈ B has a tail in G − Z. (7)

To see this, recall that all the D ∈ D1 ∪D2 have pairwise disjoint closures, and
that each of them is a connected subgraph of G whose closure contains an end
or a vertex of A. Hence, a ray R of β meets only finitely many D ∈ D1 ∪D2, as
we could otherwise find infinitely many disjoint R–A paths, giving A ∩ B �= ∅
by Lemma 2.1 – a contradiction. Also, R meets every D ∈ D1 ∪D2 only finitely
often. Indeed, D lies in Gµ for some µ < µ∗ and is thus, by Lemma 3.2 (i),
separated from β by its finite set of neighbours N(D). This establishes (7).

Let R1, R2 be two rays in G∩ G̃, and assume that the end of R1 lies
in B. Then R1 and R2 are equivalent in G if and only if they are
equivalent in G̃.

(8)

To prove (8), suppose first that R1, R2 are equivalent in G, i.e. belong to the
same end β ∈ B. Then there is a ray R3 that meets both R1 and R2 infinitely
often, and hence ends in β. By (7), R3 has a tail in G − Z = G̃ − A∗, showing
that R1 and R2 are equivalent also in G̃.

Conversely, if R1 and R2 are joined in G̃ by infinitely many disjoint paths,
we can replace any vertices aα ∈ Ṽ \ V = A∗ on these paths by finite paths in
Dα to obtain infinitely many disjoint R1–R2 paths in G. This completes the
proof of (8).
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We can now define our correspondence between the ends in B and certain
ends of G̃. For every end β ∈ B there is by (7) an end β′ ∈ Ω̃ such that
β ∩ β′ �= ∅. By (8), this end β′ is unique and the map β 	→ β′ is injective.
Moreover,

B̃ := (B ∩ V ) ∪ {β′ |β ∈ B ∩ Ω} ⊆ Ṽ ∪ Ω̃

by Lemma 3.2 (i). For each µ < µ∗, let

Ãµ := Uµ ∪ {aα |α ∈ Oµ},

if Gµ �= ∅; if Gµ = ∅, put Aµ, Ãµ := ∅. Then let

Ã :=

(
A \

( ⋃
µ<µ∗

Aµ ∪ I

))
∪

⋃
µ<µ∗

Ãµ,

which is a subset of Ṽ by Lemma 3.2 (iii),(iv). Finally, let

G′ := G̃ − (Ã ∩ B̃).

To show the assertions (i)–(iv), we will apply Lemma 3.1 to the graph G̃ and
the sets Ã and B̃.

So, let us show that

(Ã \ Ã) ∩ B̃ = ∅ = Ã ∩ (B̃ \ B̃)

(with closures taken in |G̃|). We trivially have Ã∩ (B̃ \ B̃) = ∅ because Ã ⊆ Ṽ .
To prove that (Ã \ Ã)∩ B̃ = ∅, consider an end β′ ∈ B̃. The corresponding end
β ∈ B has a neighbourhood C := Ĉ(S, β) in |G| that avoids A. By (6), and
since S is finite, the intersection C ∩ U =: UC is finite. Also, as in the proof
of (7), C may meet only finitely many Dα ∈ D2. Denote by OC the set of the
corresponding aα ∈ G̃. Adding to S \Z the sets UC and OC then yields a finite
set S′ ⊆ Ṽ such that the neighbourhood Ĉ ′(S′, β′) in |G̃| even avoids Ã.

Thus, Lemma 3.1 is applicable and yields sets A′ ⊆ V ′ and B′ ⊆ V ′ ∪ Ω′

satisfying (iii). For (i) use Lemma 3.1 (i), and observe that |Ã| ≤ |A|. (Indeed,
Ã is comprised of two sets, one of which is contained in A. The other set,⋃

µ<µ∗ Ãµ, has cardinality at most |A| by (6).) Assertion (ii) follows from the
definition of B̃ and Lemma 3.1 (ii).

We now prove assertion (iv) of the lemma. Suppose G′ satisfies the Erdős-
Menger conjecture for A′ and B′. Then, by Lemma 3.1, there is also in G̃ a set
P̃ of disjoint Ã–B̃ paths and an Ã–B̃ separator X̃ on P̃. In order to turn P̃
into a set P := {P | P̃ ∈ P̃} of disjoint A–B paths in G, consider any P̃ ∈ P̃.
If the first point a of P̃ lies in A we leave P̃ unchanged, i.e. set P := P̃ . If
a ∈ Ã \ (A ∪ A∗), then a ∈ Uµ for some µ < µ∗, and we let P be the union
of P̃ with an Aµ–Uµ path in Gµ that ends in a; this can be done disjointly
for different P̃ ∈ P̃ if we use the paths from (6). Moreover, the Aµ–Hµ path
concatenated with P̃ in this way has only its last vertex in G̃, so it will not meet
any other vertices on P̃. Finally if a = aα ∈ A∗, we let P be obtained from
P̃ by replacing a with a path in Dα that starts at the end α and ends at the
vertex of Dα incident with the first edge of P̃ (the edge incident with a). In all
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these cases we have P ⊆ G, because P̃ has no vertex in A∗ other than possibly
a. And no vertex of P other than possibly its last vertex lies in B, because
B ∩ V = B̃ ∩ Ṽ and any new initial segment of P lies in a subgraph Gλ − Sλ of
G which avoids B by Lemma 3.2 (i).

It remains to check that the paths P just defined have distinct last points in
B even when the last points of the corresponding paths P̃ are ends. However if
P̃ ends in β′ ∈ B̃ then its tail P̃ − a ⊆ P ⊆ G is equivalent in G̃ to some ray in
β′ ∩ β, by definition of β′. By (8) this implies P̃ − a ∈ β, so the last point of
P is β ∈ B. And since the map β 	→ β′ is well defined, these last points differ
for distinct P , because the corresponding paths P̃ have different endpoints β′

by assumption.
We still need an A–B separator on P. The only vertices x ∈ X̃ that do

not lie on the path P obtained from the path P̃ containing x are points in A∗.
So let X be obtained from X̃ by replacing every end β′ ∈ X̃ ∩ B̃ with the
corresponding end β ∈ B and replacing every aα ∈ X̃ ∩A∗ with the end α ∈ A.
Since P ∈ P starts in α if P̃ starts in aα (and P ends in β if P̃ ends in β′), this
set X consists of a choice of one point from every path in P.

Let us then show that

X is an A–B separator in G. (9)

Suppose there exists a path Q ⊆ G − X that starts in A and ends in B.
Lemma 3.2 (v) enables us to choose Q as a path starting in A\ I. Our aim is to
turn Q into an Ã–B̃ path Q′ in G̃ that avoids X̃, which contradicts the choice
of X̃.

If Q meets
⋃
D1, it has a last vertex there by (7), in D ∈ D1(λ), say. Its

next vertex a lies in Uλ, by the definition of D. We then define (for the time
being) Q′ as the final segment aQ of Q starting at a. If Q has no vertex in⋃
D1, then either the first point of Q is a vertex a ∈ A ∩ Ã (in which case we

put Q′ := Q), or Q starts at an end α ∈ A\I. By Lemma 3.2 (iv), there exists a
λ < µ∗ such that α ∈ Gλ, which implies α ∈ Oλ. We make a := aα the starting
vertex of Q′ and continue Q′ along Q, beginning with the last Dα–G̃ edge on Q.
Our assumption of α /∈ X implies that aα /∈ X̃, by the definition of X. Thus in
the first two cases, Q′ is now a path in G −

⋃
D1; in the third, Q′ is a path in

(G −
⋃
D1)/Dα, which starts at the vertex a ∈ Ã and avoids X̃.

However, Q′ may still meet D2. And although we know from (7) that Q′ has
a last vertex in

⋃
D2, say in Dα′ , we cannot simply shorten Q′ to a path aα′Q′

in G̃, because it may happen that aα′ ∈ X̃. Instead, we will use Lemma 3.4 to
replace any segments of Q′ that meet some Dα ∈ D2 (with aα �= a) by paths
through the corresponding Gµ that avoid X̃. As we only have to deal with a
finite initial segment of Q′ and the Dα are all disjoint, we are able to modify Q′

step by step. Eventually, we will obtain a (walk that can be pruned to a) path
Q′ in G̃ that avoids X̃, yielding the desired contradiction.

So consider a segment of Q′ that meets some Dα ∈ D2. By definition of Dα

we may assume that segment to be a Tµ-path sQ′t in Hµ, where µ is such that
Dα ⊆ Gµ. By definition of H ′

µ (which is a subgraph of G̃ by Lemma 3.2 (iii),
i.e. no parts of H ′

µ were deleted or contracted when we defined G̃), there are
|Sµ|+1 paths from s to t in H ′

µ that are disjoint outside sQ′t. But H ′
µ contains

at most |Sµ| vertices from X̃: since these lie on disjoint paths ending in B̃ and
Sµ separates H ′

µ ⊆ Gµ from B in G and hence from B̃ in G̃, all of these paths
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must meet Sµ. So one of our |Sµ| + 1 s–t paths in H ′
µ avoids X̃, and we can

use this path to replace sQ′t on Q′. This completes the proof of (9).

We can now repeat the reduction for the ends of B.

Lemma 3.6. Let G = (V, E, Ω) be a graph, and let A, B ⊆ V ∪ Ω be such that
A ∩ B = ∅ = A ∩ B. Then there are a minor G′ of G and sets A′, B′ ⊆ V (G′)
satisfying

(i) |A′| ≤ |A|,

(ii) G satisfies the Erdős-Menger conjecture for A and B if G′ satisfies it for
A′ and B′.

Proof. Apply Lemma 3.5 twice, once for A and once for B.

By Lemma 3.6, we already have the main case of Theorem 2.2:

Proposition 3.7. Let G = (V, E, Ω) be a graph, let A, B ⊆ V ∪Ω be such that
(A \ A) ∩ B = ∅ = A ∩ (B \ B), and let A be countable. Then G satisfies the
Erdős-Menger conjecture for A and B.

Proof. Use Lemmas 3.1 and 3.6, and Theorem 1.1.

The next section will be spent on strengthening Proposition 3.7 to the full
generality of Theorem 2.2.

4 Countable separators

In this section we prove Theorem 2.2. But first, let us establish a weaker version
in which the separator X also satisfies A ∩ (X \ X) = ∅:

Lemma 4.1. Let G = (V, E, Ω) be a graph, let A, B ⊆ V ∪ Ω satisfy A ∩ B =
∅ = A ∩ B, and suppose there exists a countable A–B separator X ⊆ V ∪ Ω in
G with A ∩ (X \ X) = ∅. Then G satisfies the Erdős-Menger conjecture for A
and B.

Proof. First, we find a countable A–B separator Y and a set PY of disjoint Y –A
paths satisfying

(a) in every y ∈ Y there starts a path of PY ;

(b) Y ∩ Ω ⊆ A ∪ B;

(c) (Y \ Y ) ∩ B = ∅ = Y ∩ (B \ B).

We may clearly assume that X ∩ Ω ⊆ A ∪ B. As A ∩ B = ∅, this implies that
X ∩ (A \ A) = ∅. As also A ∩ (X \ X) = ∅ and X is countable, we can use
Proposition 3.7 to obtain a set P1 of disjoint X–A paths and an X–A separator
Y on P1 in G.

We claim that Y together with the set

PY := {yP |P ∈ P1 and y ∈ Y ∩ P}

of disjoint Y –A paths is as desired.
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Indeed, Y is countable because P1 is. Further, Y is an A–B separator in
G: any path starting in B and ending in A meets X and thus has a subpath P
starting in X and ending in A. But then P also meets Y . The conditions (a)
and (b) are easily checked; for the latter recall that we assumed X ∩Ω ⊆ A∪B.

Next, we show (c). By (b), any end α ∈ Y ∩ (B \ B) lies in A ∩ B, which is
empty by assumption. Now consider an end β ∈ (Y \Y )∩B. Every neighbour-
hood of β contains a point of Y ; it even contains infinitely many points of Y ,
as otherwise we could find a neighbourhood containing no point of Y . Choose
a neighbourhood Ĉ(S, β) of β that contains no point of A (which is possible, as
A ∩ B = ∅). The infinitely many points of Y lying in Ĉ(S, β) are linked to A
by disjoint paths in PY . All of these infinitely many paths must meet the finite
set S, a contradiction. Therefore, (c) is proved.

Having found Y and PY , we now apply Proposition 3.7 again, this time for
the sets Y and B. Thus, we get a system P2 of disjoint B–Y paths and a B–Y
separator Z on P2 in G.

Finally, let P be the system of disjoint B–A paths obtained by concatenating
every B–Y path P ∈ P2 with the unique Y –A path P ′ ∈ PY from (a) that starts
at the endpoint of P . Note that these are indeed paths: if P terminates in an
end ω ∈ Y then, by (b), ω ∈ A or ω ∈ B. In the former case P ′ is trivial, in
the latter case P . Clearly, Z lies on P. All that is left to show is that Z is also
an A–B separator. So consider a path P that starts in A and ends in B. By
definition of Y , P meets Y and thus has a subpath starting in Y and ending
in B. This subpath cannot avoid the Y –B separator Z.

We can now complete the proof of Theorem 2.2, which we restate:

Theorem 2.2. Let G = (V, E, Ω) be a graph, let A, B ⊆ V ∪Ω satisfy A∩B =
∅ = A∩B, and suppose that there exists a countable A–B separator X ⊆ V ∪Ω
in G. Then G satisfies the Erdős-Menger conjecture for A and B.

Proof. We will start by constructing a set A′ ⊆ A and a countable A′–B sepa-
rator X ′ with

(X ′ \ X ′) ∩ A′ = ∅, (10)

to which we will then apply Lemma 4.1.
Using Lemma 3.2 with

AΩ := (X \ X) ∩ A,

we find I, µ∗ and families (Gµ)µ<µ∗ and (Sµ)µ<µ∗ satisfying the assertions (i)–
(v) of Lemma 3.2. As before, write Cµ := Gµ − Sµ. Setting A′ := A \ I and

X ′ :=
⋃

µ<µ∗

Sµ ∪
(

X \
⋃

µ<µ∗

Cµ

)

we claim that X ′ is a countable A′–B separator satisfying (10).
To see that X ′ is countable, recall that the sets Cµ are disjoint for different µ

(Lemma 3.2 (iii)), and that each Cµ with Sµ �= ∅ contains an end α ∈ AΩ

(Lemma 3.2 (ii)). Since α ∈ X (by definition of AΩ), we have Cµ ∩ X �= ∅, so
by the countability of X there are only countably many such µ.
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Let us now show that X ′ is an A′–B separator. Consider a path Q from A′

to B. Since X is an A–B separator, Q must meet X. If Q meets X outside X ′,
it meets X in Cµ for some µ < µ∗. By Lemma 3.2 (i), however, Q cannot be
contained in Cµ, so Q meets Sµ ⊆ X ′.

To prove (10), suppose there is an end ω ∈ (X ′ \X ′)∩A′. Let us show first
that

ω /∈ X. (11)

Suppose otherwise; then we have either ω ∈ (X \ X) ∩ A = AΩ or ω ∈ X \ X ′.
In both cases (in the first by Lemma 3.2 (iv), observe that ω /∈ I as ω ∈ A′;
in the second by construction of X ′) there is a µ < µ∗ with ω ∈ Gµ. Then by
Lemma 3.2 (iii), the sets of the form Ĉ(Sµ, ω) are neighbourhoods of ω that
avoid X ′, contradicting ω ∈ X ′ \ X ′.

By (11), there exists a finite set S such that C(S, ω)∩X = ∅. By our choice
of ω, however, C(S, ω) contains infinitely many vertices from X ′, and hence
from X ′ \ X ⊆

⋃
µ<µ∗ Sµ. Since each Sµ is finite, we can thus find infinitely

many µ < µ∗ and corresponding vertices sµ ∈ Sµ ∩ C(S, ω) that are distinct
for different µ. By Lemma 3.2 (ii) and Sµ = N(Cµ), each sµ sends a path
Pµ ⊆ G[Cµ ∪ {sµ}] to an end in AΩ ⊆ X. These Pµ are disjoint by Lemma 3.2
(iii), so only finitely many of them meet S. Every other Pµ lies entirely in
C(S, ω), so C(S, ω) ∩ X �= ∅. But then also C(S, ω) ∩ X �= ∅, contradicting our
choice of S. This establishes (10).

Applying Lemma 4.1 to A′,B and the separator X ′ (note that A′ ∩B = ∅ =
A′ ∩ B, as A′ ⊆ A), we obtain a set P of disjoint A′–B paths and an A′–B
separator on P, which by Lemma 3.2 (v) is also an A–B separator.

5 Disjoint closures

We restate our second main result, which we shall prove in this section.

Theorem 2.3. Every graph G = (V, E, Ω) satisfies the Erdős-Menger conjec-
ture for all sets A, B ⊆ V ∪ Ω that have disjoint closures in |G|.

Our proof follows that of Theorem 1.2 as given in [7], and in addition we
will draw on techniques from the proof of Lemma 3.5. Our aim is to reduce
our problem to rayless graphs, and then apply Theorem 2.4. We thus need to
dispose of the ends in G, which will be achieved in three steps. First, we delete
all ends in A. More precisely, we reduce the problem to a minor G′ of G and
to sets A′, B′ so that the closure of A′ contains no ends. In the next step we
repeat this procedure for B′. To preserve what we have gained in the first step,
we have to be careful that no new ends are introduced into A′. All this amounts
to the following lemma:

Lemma 5.1. Let G = (V, E, Ω) be a graph, and let A, B ⊆ V ∪ Ω be such
that A ∩ B = ∅. Then there exists a minor G′ = (V ′, E′, Ω′) of G and sets
A′, B′ ⊆ V ′ ∪ Ω′ that satisfy the following conditions:

(a) Ω′ ∩ A′ = ∅ (in particular A′ ⊆ V ′);

(b) if Ω ∩ B = ∅ then Ω′ ∩ B′ = ∅ (and in particular B′ ⊆ V ′);
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(c) A′ ∩ B′ = ∅; and

(d) the Erdős-Menger conjecture holds for A and B in G if it holds for A′ and
B′ in G′.

Two applications of Lemma 5.1, one for A and another for B, reduces our
problem to the case that G has no ends in A ∪ B. We then eliminate the
remaining ends by the following lemma from [7]:

Lemma 5.2. [7] Let G = (V, E, Ω) be a graph, and let A, B ⊆ V be such that
Ω∩ (A∪B) = ∅. Then G has a rayless subgraph G′ ⊆ G containing A∪B such
that the Erdős-Menger conjecture for A and B holds in G if it does in G′.

Finally, we apply Theorem 2.4 to complete the proof.
It thus remains to establish Lemma 5.1. We shall need the following easy

lemma from [9]:

Lemma 5.3. [9] Let G be a connected graph, and let U ⊆ V (G) be an infinite set
of vertices. Then G contains either a comb with |U | teeth in U or a subdivided
star with |U | leaves in U .

Proof of Lemma 5.1. First, we construct a subgraph M ⊆ G whose closure does
not contain ends of A. More formally, our aim is that in |G|

Ω ∩ A ∩ M = ∅. (12)

Our desired graph G′ will then be obtained from a supergraph of M .
We define M by transfinite ordinal recursion, as a limit M =

⋂
µ≤µ∗ Mµ

of a well-ordered descending family of subgraphs Mµ indexed by ordinals. Put
M0 := G, and for a limit ordinal µ �= 0 let Mµ :=

⋂
µ′<µ Mµ′ . Now, consider

a successor ordinal µ + 1. If Ω ∩ A ∩ Mµ = ∅ put µ∗ := µ and M := Mµ, and
terminate the recursion. Otherwise, there is an αµ ∈ Ω∩A∩Mµ. Since A∩B = ∅,
we can choose a finite vertex set Lµ such that the open neighbourhood Ĉ(Lµ, αµ)
is disjoint from B. Put Cµ := C(Lµ, αµ) and Mµ+1 := Mµ − Cµ. Observe that
Cµ ∩ Mµ is never empty as αµ ∈ Mµ. Thus, the recursion terminates.

Let C be the set of components of G−M . For every C ∈ C put SC := NG(C),
GC := G[V (C)∪SC ] and AC := A∩GC . We shall now proceed in a similar way
as in the proof of Lemma 3.5: in order to obtain G′ we will delete and contract
certain connected subgraphs, each of which will lie in a C ∈ C. Thus, the GC

here play a similar role as the Gµ in Lemma 3.5. Now, in contrast to the set
of neighbours Sµ we deal with there, the sets SC here are not necessarily finite.
Consequently, it may happen that two C ∈ C do not have disjoint closures.
However, for our purposes it is sufficient to know that no end in A lies in the
closure of two elements of C:

AC ∩ AD ⊆ SC ∩ SD for two different C, D ∈ C (13)

Indeed, suppose there is an end α ∈ AC∩AD = A∩GC∩GD. Then every neigh-
bourhood Ĉ(T, α) of α contains vertices of both GC and GD. Being connected,
C(T, α) also contains a GC–GD path, and therefore a vertex of SC ⊆ V (M).
This implies α ∈ M , a contradiction to (12). As no vertices other than those of
SC ∩ SD lie in AC ∩ AD, (13) is proved.
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Now, consider a given C ∈ C. Although SC may be infinite it can be sepa-
rated from AC by finitely many vertices and ends. Indeed, we claim that

GC contains a finite set PC of disjoint SC–AC paths and a SC–AC

separator XC on PC .
(14)

First, consider a non-trivial SC–AC path P . P is either completely contained
in GC or in G − C. Suppose the latter. Then P terminates in an end α ∈ AC .
By (13), P can meet every D ∈ C only finitely often, hence it meets M infinitely
often, a contradiction to (12). Thus, every SC–AC path lies completely in GC .

Next, let us show that each set of disjoint SC–AC paths in GC is finite. So
suppose there is a an infinite set P1, P2, . . . of such paths. Let S ⊆ SC be the
set of first vertices of the Pi. We claim there is a comb in G with teeth in S. If
not, applying Lemma 5.3 to H := C ∪

⋃
i∈N

Pi we obtain a subdivided infinite
star with leaves in S. Since each vertex s ∈ S has degree 1 in H, the centre v
of the star must lie in C. Let µ be the step when v was deleted from G, i.e.
µ := min{µ′ | v ∈ V (Cµ′)}. Then, the finite set Lµ separates v from S, which
is impossible. Thus, there is a comb with teeth in S. Let ω ∈ Ω be the end of
its spine. Then every neighbourhood of ω contains infinitely many vertices of S
and then also infinitely many of the Pi. Consequently, infinitely many elements
of A lie in the neighbourhood. Thus, ω ∈ SC ∩ A ⊆ M ∩ A, a contradiction
to (12).

Taking an inclusion-maximal (and hence finite) set of disjoint SC–AC paths
in G we see that SC is separated from AC in G by a countable separator (namely
by the union of the vertex sets of the paths together with the set of last points).
Furthermore, (12) implies SC ∩ AC ∩ Ω = ∅. Thus, by Lemma 3.1 and Theo-
rem 2.2, there is a set PC of disjoint SC–AC paths in G and a separator XC

on PC . By the preceding arguments, PC is a finite set of paths in GC , which
establishes (14).

For C ∈ C, put UC := XC ∩ V and OC := XC ∩ Ω. As in the proof of
Lemma 3.5 we will delete certain subgraphs of GC that lie “behind” UC and
contract others that contain ends of OC . First of all, we see that UC separates
SC from AC \ OC . This is exactly the same as (3) in the proof of Lemma 3.5.

We then define D1(C) as the set of all the components D of G − UC whose
closure D meets AC \ OC . Because UC is an SC–(AC \ OC) separator, these
components satisfy D ⊆ GC − SC , and their neighbourhood N(D) ⊆ UC in G
is finite. Also, D ∩ OC = ∅ for all D ∈ D1(C), which can be proved as (4) of
Lemma 3.5. We put HC := GC −

⋃
D1(C) and see that GC contains a set of

disjoint HC–AC paths whose set of first points is UC .
To find the subgraphs which will be contracted, we extend in the proof of

Lemma 3.5 the finite set Uµ ∪ Sµ to a finite set Tµ that separates the ends in
Oµ pairwise. This enables us to apply Lemma 3.4. Here, SC may be an infinite
set, so to find a suitable finite set TC we cannot use a superset of SC . Instead,
consider for each α ∈ OC the ordinal µα for which α ∈ Cµα . Then, the finite
set Lµα separates α from SC ⊆ V (M). The union of these finitely many finite
sets together with UC can be taken as the finite set TC we need for Lemma 3.4.

Define H ′
C as the finite subgraph of HC containing TC which Lemma 3.4

provides for k := |TC | + 1, and for each α ∈ OC let Dα be the component
of G − H ′

C to which α belongs. Finally, we set D2(C) := {Dα |α ∈ OC} and
Di :=

⋃
C∈C Di(C), i = 1, 2. By deleting all subgraphs in D1 and by contracting

16



each subgraph Dα ∈ D2 to a vertex aα we obtain the graph G̃ = (Ṽ , Ẽ, Ω̃). We
put

Ã := (A \
⋃

C∈C
AC) ∪

⋃
C∈C

UC ∪ {aα |Dα ∈ D2}.

Observe that Ã ⊆ Ṽ because of (12).
Let us show that (a) holds for Ã in G̃. Indeed, suppose not. Then, there

is by Lemma 2.1 a comb K̃ ⊆ G̃ with teeth in Ã and spine R, say. Consider a
R–Ã path P of the comb. If P ends in a vertex of UC for some C ∈ C then we
extend P using the corresponding path in PC to a R–A path. If P ends in one
of the contracted vertices aα we substitute its last edge by a path through Dα

ending in α so that again we obtain a R–A path. Because of (13), and since
the Dα and all the paths in

⋃
C∈C PC are disjoint, all these changed paths are

still disjoint. Thus we have found a comb K ⊆ G with spine R and teeth in A.
Only finitely many of the R–A paths of K may meet M as otherwise the end of
R lies in the closure of both A and M , a contradiction to (12). Thus, we may
assume that K is contained in a C ∈ C. In particular, R ⊆ C ∩ G̃. But the
finite set XC separates C ∩ G̃ from AC , contradicting that K contains infinitely
many disjoint R–AC paths. This proves (a) for Ã.

Making use of (13), we see in a similar way as in the proof of Lemma 3.5,
that every ray R of an end β ∈ B has a tail in G ∩ G̃. There thus is a β′ ∈ Ω̃
with β ∩ β′ �= ∅ and it can be shown as in the proof of Lemma 3.5 that this
mapping is injective. Put

B̃ := (B ∩ V ) ∪ {β′ |β ∈ B ∩ Ω} ⊆ Ṽ ∪ Ω̃.

The graph G̃ together with the sets Ã and B̃ is almost what we want.
Indeed, (a) is satisfied and below we shall see that (b) and (d) hold as well.
Only (c) fails since Ã and B̃ may share some vertices. However, Ã does not
contain ends by (a). Thus

∅ = Ã ∩ B̃ ∩ Ω̃ = (Ã \ Ã) ∩ (B̃ \ B̃).

Now, in a similar way as in Lemma 3.1 we find sets A′ and B′ in the graph
G′ := G̃ − (Ã ∩ B̃) such that (c) holds and properties (a), (b) and (d) are
preserved. Therefore, to finish the proof it suffices to show (b) and (d) for Ã
and B̃ in G̃.

For (b), assume that Ω̃ ∩ B̃ �= ∅. Then either B̃ contains ends, or there is
an end ω ∈ Ω̃ such that every neighbourhood Ĉ(S, ω) in G̃ contains vertices of
B̃. In the latter case, by (a), we may suppose that Ĉ(S, ω) does not contain
vertices of Ã, and thus view it as a neighbourhood in G containing vertices of
B. Thus, in both cases, Ω ∩ B �= ∅, which proves (b).

The proof of (d) is completely analogous to the proof of (iv) in Lemma 3.5.
Note that when we change the set P̃ of disjoint Ã–B̃ paths into A–B paths, the
paths still have, by (13), distinct first points.
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