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1. Introduction

Let G be an infinite connected graph. A ray (from v) in G is a 1-way infinite path in G

(with initial vertex v). An infinite connected subgraph of a ray R ⊂ G is called a tail of R.
If X ⊂ G is finite, the infinite component of R\X will be called the tail of R in G\X.

The following assertions are equivalent for rays P,Q ⊂ G:

(i) There exists a ray R ⊂ G which meets each of P and Q infinitely often.

(ii) For every finite X ⊂ G, the tails of P and Q in G\X lie in the same component
of G\X.

(iii) G contains infinitely many disjoint paths connecting a vertex of P with one of Q.

If two rays P,Q ⊂ G satisfy (i)–(iii), we call them end-equivalent (or briefly equivalent)
in G and write P ∼

G
Q. An end of G is an equivalence class under ∼

G
, and E(G) denotes

the set of ends of G. For example, the 2-way infinite ladder has two ends, the infinite grid
Z×Z and every infinite complete graph have one end, and the dyadic tree has 2ℵ0 ends.

This paper is concerned with the relationship between the ends of a connected infinite
graph G and the ends of its spanning trees. If T is a spanning tree of G and P,Q are
end-equivalent rays in T , then clearly P and Q are also equivalent in G. We therefore
have a natural map η : E(T )→E(G) mapping each end of T to the end of G containing it.
In general, η need be neither 1–1 nor onto. For example, the 2-way infinite ladder has a
spanning tree with 4 ends (the tree consisting of its two sides together with one rung), and
every infinite complete graph is spanned by a star, which has no ends at all. A spanning
tree T of G for which η is 1–1 is said to respect the ends of G or called end-respecting ,
and a spanning tree T for which η is onto is called end-complete. An end-respecting and
end-complete spanning tree is end-faithful .

The concept of an end was introduced for graphs by Halin [ 5 ] in 1964. It has since
inspired some profound work in infinite graph theory; see for example Halin [ 6 ], Po-
lat [ 10, 11 ], Seifter [ 12 ], Watkins [ 14 ], or any of several articles in [ 4 ]. The problem
which Halin originally addressed in [ 5 ] is this:

Problem. Does every infinite connected graph have an end-faithful spanning tree?

Very recently, Seymour and Thomas [ 13 ] have been able to construct graphs which are
infinitely connected—and hence have precisely one end—but in which every spanning tree
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has uncountably many ends. (One of their examples is TKℵ1-free, a fact which will lend
additional relevance to the main result of this paper; see Theorem 1.3 below.) Thus, the
general answer to Halin’s question is no; the problem remains to understand what makes
a graph contain an end-faithful spanning tree, and how these graphs can be recognized.

For countable graphs, a construction of an end-faithful spanning tree was already
given as the main result in Halin [ 5 ]:

Theorem 1.1. [ 5 ] Every countable connected graph has an end-faithful spanning tree.

In 1969, Jung [ 8 ] investigated end-faithful spanning trees of a particularly intuitive
kind: he characterized the graphs G containing a normal rooted spanning tree T , one for
which every pair of adjacent vertices of G is comparable in the induced partial order ≤

T

on V (G) (see below for an exact definition of ≤
T

). Jung’s characterization implies the

following sharpening of Theorem 1.1:

Theorem 1.2. [ 8 ] Every countable connected graph has a normal rooted spanning tree.

The purpose of this paper is to construct an end-faithful spanning tree for any graph,
irrespective of its cardinality, that does not contain a subdivided infinite complete graph
as a subgraph:

Theorem 1.3. If G is a connected graph not containing a TKℵ0 , then G has an end-

faithful spanning tree T .

Our construction of the tree T employs a certain decomposition of G into countable
factors, which enables us to use the end-faithful spanning trees constructed in the proof
of Theorem 1.1. It should be emphasized that the mere existence of the spanning tree T

can be shown with considerably less effort by using the stronger Theorem 1.2 instead of
Theorem 1.1 (Halin [ 7 ]).

The decomposition results needed for our construction of the tree T are presented in
Section 2. Most of these results have fairly straightforward proofs, found in [ 2 ]. Our key
decomposition theorem however, Theorem 2.2, is proved in a separate paper [ 3 ]. Section 3
contains the construction of T . In Sections 4 and 5, T is shown to be end-faithful.

The terminology used in this paper is mostly standard, see e.g. [ 1 ]. In addition, we
shall use the following notations.

If P is a path with vertices x and y, then Px,y denotes the subpath of P from x to y.
If P = x1 . . . xn, then P̊ is the interior x2 . . . xn−1 of P . For X,Y ⊂ G, we call a path
P ⊂ G an X–Y path if its endvertices are in X and Y , respectively, and its interior vertices
are in G \ (X ∪Y ).
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If T is a rooted tree, with root v0 say, then T induces a natural partial order ≤
T

on

its vertices: v ≤
T

w if v lies on the unique v0–w path in T . A ray, for the purpose of this

definition, will be assumed to be rooted at its initial vertex.
A graph H ⊂ G is called convex in G if H contains every induced path in G whose

endvertices are in H. Equivalently, H is convex in G if and only if the endvertices of every
H–H path in G are adjacent in H.

G is locally finite if every vertex of G has finite degree. By a well-known theorem of
König [ 9 ], every infinite but locally finite connected graph contains a ray from each of its
vertices.

And finally, if G is a graph and a is a cardinal, the a-closure of G is obtained from G

by adding all edges xy /∈ E(G) for which G contains a independent x–y paths (see [ 3 ]).

In our construction of the tree T for Theorem 1.3, we shall use Theorem 1.1 in the
following slightly sharper version:

Theorem 1.1′. If G is a countable connected graph and F ⊂ G is a finite forest, then G

has an end-faithful spanning tree T which contains F .

Proof. Use Theorem 1.1 to find an end-faithful spanning tree in every component of G\F .
Extend the union of these trees with F to a spanning tree T of G. T is end-faithful in G.

2. Simplicial decompositions and tree-decompositions.

Let G be a graph, σ > 0 an ordinal, and let Bλ be an induced subgraph of G for every
λ < σ. The family F = (Bλ)λ<σ is called a simplicial decomposition of G if the following
three conditions hold:

(S1) G =
⋃

λ<σ Bλ;

(S2)
(⋃

λ<µ Bλ

)
∩Bµ =: Sµ is a complete graph for each µ (0 < µ < σ);

(S3) no Sµ contains Bµ or any other Bλ (0 ≤ λ < µ < σ).

For v ∈ V (G) and H ⊂ G, we denote by λ(v) the minimal λ < σ for which v ∈ Bλ, and
set Λ(H) := {λ(v) | v ∈ V (H) }. Then λ(v) = µ if and only if v ∈ Bµ\Sµ, and λ(v) < µ

for all v ∈ Sµ. For µ ≤ σ, we write G|µ :=
⋃

λ<µ Bλ.
We shall usually refer to a complete graph as a simplex , as is the custom in the field.

The graphs Sµ = G|µ ∩Bµ in (S2) will be called simplices of attachment .
In a simplicial decomposition, each simplex of attachment Sµ is by definition contained

in the union of the factors Bλ, λ < µ. In many simplicial decompositions, including all
those of finite graphs, each Sµ is even contained in just one of the earlier factors [ 2 ]:
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(S4) each Sµ is contained in Bλ for some λ < µ (µ < σ).

When this happens, we denote by τ(µ) the minimal λ < µ for which Sµ ⊂ Bλ, and
inductively define τk(µ) := τ(τk−1(µ)), where τ0(µ) = µ.

A family F = (Bλ)λ<σ which satisfies (S1) and (S4) (but not necessarily (S2) or (S3))
is called a tree-decomposition of G, and if F satisfies all of (S1)–(S4), it is called a simplicial
tree-decomposition of G. The reason for this is that we can associate with F a decomposition
tree TF = TF (G), as follows:

V (TF ) := {Bλ | λ < σ } ,
E(TF ) := {BµBτ(µ) | µ < σ } .

The first factor in F , B0, is taken to be the root of TF . Thus Bµ ≤
TF

Bν if and only if

µ = τk(ν) for some k ≥ 0. Furthermore, Λ(Sµ) ⊂ { τk(µ) | k ∈ N } (induction on µ), so in
particular Bλ(v) ≤

TF

Bµ for all v ∈ Bµ (see [ 2 ] for details). If a graph G contains no infinite

simplex, its rays are closely related to the rays in its decomposition tree. This fact will be
central to our construction of the tree T .

The decompositions we shall use will have another property: they are coherent. A
decomposition (Bλ)λ<σ is coherent if, for every λ < σ, each vertex of Sλ has a neighbour
in Bλ\Sλ, and Bλ\Sλ is connected.

We now list a number of facts about simplicial decompositions and tree-decomposi-
tions that will be used later. The first of these facts is a fundamental property of the
factors in a simplicial decomposition.

Proposition 2.1. [ 2 ] If (Bλ)λ<σ is a simplicial decomposition of G, then every Bµ is a

convex subgraph of G.

The next theorem will be our main tool. Its proof is given in [ 3 ].

Theorem 2.2. Let G be an uncountable graph not containing any subdivided infinite

simplex. Then the ℵ1-closure G′ of G admits a coherent simplicial tree-decomposition

F = (Bλ)λ<σ into countable factors and with finite simplices of attachment, which has the

following property: for every µ < σ and every edge xy ∈
(
E(Bµ)\E(Sµ)

)
\E(G), there

are uncountably many ordinals ν, with τ(ν) = µ, such that Bν contains an Sν–Sν path P

with endvertices x, y and E(P ) ⊂ E(G).

The remaining two propositions concern separation properties in tree-decompositions.
Their proofs are straightforward throughout. [ 2 ]

Proposition 2.3. If B,B′, B′′ are factors in a tree-decomposition F of G and B lies on

the B′–B′′ path in TF (G), then B separates B′\B from B′′\B in G.
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Proposition 2.4. Let F = (Bλ)λ<σ be a tree-decomposition of G. Let λ, µ, ν < σ be

such that Bν ≥
TF

Bµ but Bλ � ≥
TF

Bµ. Then Sµ separates Bλ\Sµ from Bν\Sµ in G.

3. The construction of T

Let G be a given uncountable graph, G �⊃ TKℵ0 . We shall construct an end-faithful
spanning tree T of G.

The basic idea for the construction of T is as follows. Using Theorem 2.2, we decom-
pose the ℵ1-closure G′ of G into countable factors Bµ, µ < σ. By Halin’s theorem, we can
then find an end-faithful spanning tree Tµ in each of the factors Bµ. Essentially, our task
will be to choose the trees Tµ in such a way that they can be pieced together inductively
to form T , our desired end-faithful spanning tree of G.

There are various problems we have to be aware of during the construction of T . One
of them lies in the fact that the trees Tµ will in general contain edges from E(G′) \E(G),
which must be replaced by paths in G before Tµ can be incorporated into T . In replacing
these edges, we have to ensure that their replacement paths are pairwise independent
and avoid the part of T already constructed. Conversely, we shall not be entirely free in
choosing Tµ, because replacement paths corresponding to earlier trees Tλ (λ < µ) may
have spilled over into Bµ and have to be accommodated into Tµ. This problem will be
taken care of by Theorem 2.2, which was tailored specificly for this purpose.

Another problem deserving attention is that of stringing the Tµ’s together in the right
way, so that T does indeed emerge as end-faithful when the construction is complete. To
deal with this problem, we shall rely on the close relationship between the ends of G and
those of the decomposition tree TF (G′) belonging to our simplicial tree-decomposition F

of G′. This relationship is based on the fact that all the simplices of attachment in F are
finite: since a ray in G can pass only finitely often through any given Sµ, it must either
be ‘centred on’ (have infinitely many vertices in) one factor Bµ, or follow the course of a
ray in TF . Moreover, equivalent rays in G must follow the same ray in TF , because their
tails cannot be separated by a finite set of vertices (cf. Proposition 2.4). In this way, each
end of G induces an end of TF (or collapses to one vertex Bµ of TF ).

Since equivalent rays in G follow a unique ray in TF (ore none at all), T can only be
end-faithful if it contains, for each end E of TF , a unique ray Q (from a fixed root v0)
that induces E. The uniqueness of these rays Q ⊂ T will be ensured by specifying a single
vertex sµ in every Sµ, to serve as a bottle-neck for all paths in T passing from G′|µ into
Bµ\Sµ. The existence of the rays Q will be guaranteed by the specific choice of sµ in Sµ.
Figure 1 shows examples of how failure to select bottle-neck vertices sµ ∈ Sµ at all or a
wrong choice of sµ’s may result in a spanning tree T that fails to be end-respecting or
end-complete, respectively.
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FIGURE 1. End-unfaithful spanning trees in graphs with sim-
plicial decompositions into triangles

Before we begin our formal construction of T , let us run through some of the terms
that will be used. F = (Bλ)λ<σ will be a fixed simplicial tree-decomposition of the ℵ1-
closure G′ of G into countable factors Bλ. The tree T will be obtained as the union of a
nested sequence of graphs T |µ, µ < σ. Each T |µ will have the following properties:

A1(µ): T |µ ⊂ G, T |µ is a tree, and V (T |µ) ⊃ V (G′|µ). Moreover, T |µ ⊃ T |λ for every

λ < µ.

For each µ < σ, the definition of T |µ+1 will depend on T |µ, on another graph Tµ, and on
the choice of a certain edge eµ. Here,

A2(µ): Tµ is an end-faithful spanning tree of Bµ\Sµ; Tµ may have edges that are not

edges of G.

A3(µ): eµ is an edge of G′ joining Tµ to T |µ ∩Sµ in such a way that (Tµ ∪T |µ)+ eµ is a

tree.

The term Eµ will denote the set of edges e ∈ E(Tµ) ∪ { eµ } that are not edges of G.
When T |µ+1 is formed from the union of T |µ, Tµ and { eµ }, these edges e are replaced
with independent paths P (e) ⊂ G. By Theorem 2.2, these paths will be chosen in such a
way that they run through different factors Bν(e), ν(e) > µ, for different edges e ∈ Eµ.
This scattering of the paths P (e) will have the desired effect that any spillover of T |µ into
Bν\Sν (for some fixed ν ≥ µ) remains unchanged as µ grows towards ν, and therefore
keeps its original form of P (e):

A4(µ): If µ ≤ ν < σ and T |µ ∩Bν �⊂ Sν , then T |µ ∩Bν = (T |µ ∩Sν)∪P , where P is an

Sν–Sν path in Bν . Moreover, there exist λ < µ and an edge e ∈ Eλ, such that

λ = τ(ν), ν = ν(e) and P = P (e).

We are now ready to begin the formal construction of T , an end-faithful spanning tree
of our graph G.

Let G′ be the ℵ1-closure of G, and let F = (Bλ)λ<σ be a simplicial tree-decomposi-
tion of G′ as provided by Theorem 2.2. Let v0 be a vertex of B0; v0 will be kept fixed
throughout the proof and serve as the root of T . Since F is a tree-decomposition, it has a
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decomposition tree TF , whose vertices are the factors Bλ, λ < σ. For simplicity, we shall
normally use ≤ rather than ≤

TF

to denote the natural partial order on V (TF ).

Since any two vertices x, y ∈ G′ with xy ∈ E(G′)\E(G) are joined in G by uncountably
many independent paths (recall the definition of the ℵ1-closure), the replacement of such
edges with suitable paths in G yields the following:

Lemma 3.1. If P,Q ⊂ G are rays with P ∼
G′

Q, then P ∼
G

Q. �

Let 0 ≤ µ ≤ σ, and suppose that for all λ < µ we have defined T |λ, T |λ+1, Tλ, eλ,
sλ and Eλ, together with ν(e) and P (e) for all e ∈ Eλ, such that A1(λ), A1(λ+1), A4(λ)
and A4(λ+1) hold. In the following we shall define the above terms for λ = µ and prove
A1 and A4 for µ and µ+ 1, provided that µ, µ+ 1 < σ (except that for the definition of
T |µ and the proofs of A1(µ) and A4(µ) we include the case of µ = σ, and that eµ will
only be defined for µ > 0).

We first define T |µ and prove A1(µ) and A4(µ). If µ is a successor ordinal, µ = λ+1
say, then T |µ is already defined, and A1(µ) and A4(µ) hold by assumption. Suppose
therefore that µ is not a successor ordinal. If µ = 0, set T |µ := ∅; then A1(µ) and A4(µ)
hold trivially. Otherwise, i.e. if µ is a limit ordinal, let

T |µ :=
⋃

λ<µ

T |λ .

A1(µ) is easily seen to follow from our assumption that A1(λ) holds for all λ < µ. To
verify A4(µ), notice that if µ ≤ ν < σ and T |µ ∩Bν �⊂ Sν , then also T |λ′ ∩Bν �⊂ Sν for
some λ′ < µ, since µ is a limit ordinal. By A4(λ′),

T |λ′ ∩Bν = (T |λ′ ∩Sν)∪P ,

where P = P (e) for some e ∈ Eλ with λ < λ′, λ = τ(ν) and ν = ν(e). Let λ′′ be any
ordinal with λ′ ≤ λ′′ < µ. Clearly again T |λ′′ ∩Bν �⊂ Sν , because T |λ′′ ⊃ T |λ′ . Thus, by
A4(λ′′), T |λ′′ ∩Bν has the form (T |λ′′ ∩ Sν)∪ P̃ , where P̃ is an Sν–Sν path in Bν . But
P̃ ⊃ P (again by T |λ′′ ⊃ T |λ′), and P is also an Sν–Sν path. Therefore P̃ = P = P (e).
Thus

T |µ ∩Bν =
⋃

λ′≤λ′′<µ

(T |λ′′ ∩Bν)

=
⋃

λ′≤λ′′<µ

(T |λ′′ ∩Sν)∪P (e)

= (T |µ ∩Sν)∪P (e) ,

where P (e) is an Sν–Sν path in Bν and e ∈ Eλ with λ < λ′ < µ, λ = τ(ν) and ν = ν(e).
This completes the proof of A4(µ).
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For the remaining definitions and the proofs of A1(µ + 1) and A4(µ + 1), we shall
assume that µ �= σ. Let us say that µ is of type 1 if T |µ ∩ Bµ ⊂ Sµ, and of type 2
otherwise.

For the definition of Tµ, recall that since F is coherent, Bµ\Sµ is connected. If µ is of
type 1, then T |µ ∩ (Bµ\Sµ) = ∅, and we let Tµ be any end-faithful spanning tree of Bµ\Sµ.
If µ is of type 2, then T |µ ∩ (Bµ\Sµ) = P̊ (e) for some e ∈ Eλ and λ < µ (by A4(µ)), and
we let Tµ be an end-faithful spanning tree of Bµ\Sµ containing P̊ (e). These choices of Tµ

are possible by Theorems 1.1 and 1.1′, and they satisfy A2(µ).
Next we define eµ and sµ. Set s0 := v0, and assume in the sequel that µ > 0. If µ is

of type 1, we let eµ be any edge xy of G′ with λ(x) = τ(µ) and λ(y) = µ. Notice that this
choice of eµ is always possible: by definition of τ(µ), Sµ has a vertex x with λ(x) = τ(µ),
and x has a neighbour y in Bµ\Sµ, because F is coherent. If µ is of type 2 on the other
hand, we let eµ be the unique edge that lies on the v–v0 path in T |µ for every v ∈ P̊ (e)
(e ∈ Eλ as earlier). The existence and uniqueness of such an edge follow from the fact that
T |µ is a tree (A1(µ)) and that every v ∈ P̊ (e) has degree 2 in T |µ (A4(µ)). In each case,
(Tµ ∪T |µ) + eµ is a tree (A3(µ)).

Notice also that in both cases the definition of eµ is such that eµ has one endvertex
in Sµ and one in Bµ\Sµ; we let sµ be the endvertex of eµ in Sµ. Then

B(µ): For every v ∈ Bµ\Sµ, the vertex sµ lies on the v–v0 path in the tree (Tµ∪T |µ)+eµ.

Let
Eµ :=

(
E(Tµ)∪{ eµ }

)
\E(G) .

Using the property of F given by Theorem 2.2, we now choose for each edge xy ∈ Eµ an
ordinal ν =: ν(e) with τ(ν) = µ, such that Bν contains an Sν–Sν path P with endvertices
x, y and E(P ) ⊂ E(G); the path P will be denoted by P (e). Moreover, we choose the
ordinals ν(e) in such a way that ν(e) �= ν(e′) for distinct e, e′ ∈ Eµ; this is again possible
by Theorem 2.2, because |Eµ| ≤ |Bµ|2 ≤ ℵ0. Since λ(v) = ν(e) > µ for every v ∈ P̊ (e)
with e ∈ Eµ, the following holds:

C(µ): If e, e′ ∈ Eµ and e �= e′, then P̊ (e)∩ P̊ (e′) = ∅ and P̊ (e)∩G′|µ+1 = ∅.
It remains to define T |µ+1 and to prove A1(µ+ 1) and A4(µ+ 1). Let us set

T |µ+1 :=
((

(Tµ ∪T |µ) + eµ

)
∪

⋃
e∈Eµ

P (e)
)
−Eµ .

In order to prove A1 and A4 for µ+ 1, observe first that the sets

Nλ := { ν(e) | e ∈ Eλ }

are disjoint for distinct values of λ ≤ µ, because τ(ν) = λ for all ν ∈ Nλ (by definition
of ν(e)). In particular,

e ∈ Eλ, e′ ∈ Eλ′ , λ �= λ′ ⇒ P̊ (e)∩ P̊ (e′) = ∅ . (1)
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By A4(µ), any vertex v of T |µ \G′|µ+1 must be on some P (e) with e ∈ Eλ, λ < µ. Hence
(1) implies that (T |µ\G′|µ+1) ∩ P̊ (e) = ∅ for all e ∈ Eµ. Combining this with C(µ), we
obtain

D(µ): T |µ ∩ P̊ (e) = ∅, for all e ∈ Eµ.

As (Tµ ∪T |µ)+eµ is a tree, and the paths P̊ (e), e ∈ Eµ, are pairwise disjoint and avoid Tµ,
D(µ) implies that T |µ+1 is a tree. This establishes A1(µ+ 1), the other assertions being
obvious.

For the proof of A4(µ+ 1), let ν with µ+ 1 ≤ ν < σ and T |µ+1 ∩Bν �⊂ Sν be given.
If ν ∈ Nµ, say ν = ν(e) with e ∈ Eµ, then ν /∈ Nλ for all λ < µ, and hence T |µ ∩Bν ⊂ Sν

by A4(µ). Thus T |µ ∩ (Bν\Sν) = ∅, and therefore T |µ+1 ∩ (Bν\Sν) = P̊ (e). This implies

T |µ+1 ∩Bν = (T |µ+1 ∩Sν)∪P (e) ,

as desired. On the other hand if ν /∈ Nµ, then T |µ+1 ∩ (Bν\Sν) ⊂ T |µ, so

T |µ+1 ∩ (Bν\Sν) = T |µ ∩ (Bν\Sν) = P̊ (e)

for some e ∈ Eλ and λ < µ, again by A4(µ). Thus again

T |µ+1 ∩Bν = (T |µ+1 ∩Sν)∪P (e) ,

completing the proof of A4(µ+ 1).
Let us finally set

T := T |σ .

By A1(σ), T is a spanning tree of G.

The proof that T is end-faithful with respect to G will be given in Sections 4 and 5.
In the remainder of this section we shall extract a few facts from the construction of T for
later use. Unless otherwise stated, each of these facts holds for every µ < σ.

The first fact concerns the edges in the sets Eµ.

E(µ): If e = xy ∈ Eµ and λ(x) ≤ λ(y), then either λ(x) = λ(y) = µ, or λ(x) = τ(µ),
λ(y) = µ and x = sµ.

For the proof of E(µ), notice first that if e ∈ E(Tµ), then λ(x) = λ(y) = µ by Tµ ⊂ Bµ\Sµ.
Suppose therefore that e /∈ E(Tµ), i.e. that e = eµ. Then µ must be of type 1, since
otherwise eµ would be in E(T |µ) ⊂ E(G), and hence not in Eµ. Therefore λ(x) = τ(µ),
λ(y) = µ and x = sµ by definition of eµ and sµ.

The second fact contains the information ensuring that the definition of sµ achieves
its purpose; see our earlier informal discussion.

F(µ): λ(sµ) ∈ { τ(µ), τ2(µ) }, and if λ(sµ) = τ2(µ), then sµ = sτ(µ) (for µ > 0).

The proof of F(µ) is clear by definition of eµ if µ is of type 1 (and hence λ(sµ) = τ(µ)).
If µ is of type 2, then sµ is an endvertex of P (e) and hence of e for some e ∈ Eλ with
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λ = τ(µ). By E(λ), this implies that either λ(sµ) = λ = τ(µ), or else λ(sµ) = τ(λ) = τ2(µ)
and sµ = sλ = sτ(µ).

Let us note the following immediate consequence of (F).

If Bλ0Bλ1 . . . is a ray from B0 in TF , then { sλi
| i ∈ N } is infinite. (2)

Indeed, as Bλ0 = B0, we have τ(λn) = λn−1 for all n ∈ N. Therefore λ(sλn
) ∈ {λn−1, λn−2 }

(by F(λn)), for all n ∈ N. This implies (2).
Next, we show that T contains essentially no Bµ–Bµ paths other than those of the

form P (e), e ∈ Eµ.

G(µ): If P is a Bµ–Bµ path in T , with endvertices x and y where y ∈ Bµ\Sµ, then

xy ∈ Eµ and P = P (xy).

To prove G(µ), we first show that P ⊂ T |µ+1. As x, y ∈ V (T |µ+1) and T |µ+1 is a tree, x
and y are joined by a path in T |µ+1. Since T |µ+1 ⊂ T and T contains only one x–y path,
this path must be P . Notice that Sµ separates y from every vertex v /∈ Sµ with λ(v) < µ

(Proposition 2.4), while Sµ does not separate y from any v ∈ P̊ . Therefore λ(v) ≥ µ and
hence λ(v) > µ for all v ∈ P̊ . By definition of T |µ+1, this implies that every v ∈ P̊ is
contained in P̊ (e) for some e ∈ Eµ. But inner vertices of different paths P (e) cannot be
adjacent, since ν(e) �= ν(e′) and τ(ν(e)) = τ(ν(e′)) = µ for distinct e, e′ ∈ Eµ. Therefore
all v ∈ P̊ are on the same path P (e), i.e. P̊ ⊂ P (e) for some e ∈ Eµ. Since P and P (e) are
both Bµ–Bµ paths, this means that P = P (e) and xy = e.

G(µ) has the following useful consequence: if P ⊂ T is a path that meets Bµ infinitely
often but avoids Sµ, we can turn P into a path P ′ ⊂ Tµ by replacing each Bµ–Bµ path
Px,y ⊂ P with the edge xy ∈ Eµ. Similarly, we can contract any path P ⊂ G onto a path
P ′ ⊂ Bµ—recall that since Bµ is a convex subgraph of G (Proposition 2.1), the endvertices
of P will be adjacent in Bµ:

H(µ): If P = v1v2 . . . is a (finite or infinite) path in G, then Bµ contains a path P ′ =
vk1vk2 . . ., where V (P ′) = V (P )∩V (Bµ) and ki < kj if and only if i < j. Moreover,

if P ⊂ T\Sµ, then P ′ ⊂ Tµ.

Finally, we prove what was earlier desribed as the ‘bottle-neck’ property of the ver-
tices sµ.

I(µ): If µ = τk(ν), k ≥ 0, and v ∈ G with λ(v) = ν, then sµ separates v from v0 in T

(for µ > 0).

We prove I(µ) be induction on k. If k = 0, then ν = µ, so v ∈ Tµ. Let P be the v–v0

path in the tree (Tµ ∪ T |µ) + eµ. By B(µ), sµ ∈ P . Replacing every edge e ∈ E(P )∩Eµ

with P (e), we obtain a path in T |µ+1 that joins v to v0 and contains sµ (cf. D(µ)). Since
T |µ+1 ⊂ T and T is a tree, this implies the assertion.

Suppose now that k > 0, and that I(µ) holds for all smaller values of k. Let P be a
v–v0 path in T ; we have to show that sµ ∈ P . By the case of k = 0, v is separated from
v0 by sν in T , so P contains an sν–v0 path P ′. If λ(sν) = τ(ν), then µ = τk−1(λ(sν)), so
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sµ ∈ P ′ by the induction hypothesis. Suppose therefore that λ(sν) �= τ(ν). Then, by F(ν),
λ(sν) = τ2(ν) and sν = sτ(ν). If τ2(ν) ≥ µ, the assertion again follows by the induction
hypothesis (as above). But if τ2(ν) < µ, then k = 1 and µ = τ(ν), giving sν = sτ(ν) = sµ.
This completes the proof of I(µ).

4. T is end-complete

It will be convenient in this and the next section to call a ray P ⊂ G centred on Bµ if P
meets Bµ infinitely often, and uncentred if V (P )∩V (Bµ) is finite for every µ < σ.

Let P be a given ray in G; we have to find a ray Q ⊂ T such that P ∼
G

Q.

We first suppose that P is centred on some Bµ, µ < σ. Since any ray Q is equivalent
to P as soon as it is equivalent to some tail of P , we may assume that P ∩ Sµ = ∅. Let
P ′ ⊂ Bµ be the path obtained from P by H(µ); then P ′ is a ray in Bµ\Sµ. As Tµ is an
end-faithful spanning tree of Bµ\Sµ, it contains a ray Q′ with P ′ ∼

Bµ\Sµ

Q′, and hence

P ′ ∼
G′

Q′. Let Q be obtained from Q′ by replacing each edge e ∈ E(Q′) ∩Eµ with the

path P (e). Then Q ⊂ T |µ+1 ⊂ T , and Q is a ray (by C(µ)). As P ′ ∼
G′

Q′, clearly P ∼
G′

Q.

By Lemma 3.1, this implies that P ∼
G

Q.

Let us from now on suppose that P is uncentred. Recall that the factors Bλ in our
decomposition F of G′ are the vertices of the decomposition tree TF . For given rays P ⊂ G

and R = Bλ0Bλ1 . . . ⊂ TF , let us set

I(P,R) := { i ∈ N | λi ∈ Λ(P ) } .

The following two lemmas relate the uncentred rays in G to rays in TF .

Lemma 4.1. For every uncentred ray P ⊂ G, there exists a ray R from B0 in TF such

that I(P,R) is infinite.

Proof. Let T (P ) be the union of all Bλ–B0 paths in TF with λ ∈ Λ(P ). T (P ) is a subtree
of TF . For vertices B′, B′′ of TF , let us say that B′ precedes B′′ if B′ < B′′ but there is
no vertex B ∈ TF of the form B = Bλ, λ ∈ Λ(P ), such that B′ < B < B′′. Let us prove
the following:

Each vertex of T (P ) precedes at most finitely many vertices Bλ ∈ T (P )
with λ ∈ Λ(P ).

(3)

Suppose (3) fails, and let B be a vertex of T (P ) that precedes every vertex in some
infinite set U ⊂ {Bλ | λ ∈ Λ(P ) }. We show that whenever B′, B′′ are distinct elements
of U , any subpath P ′ = v . . . w of P with v ∈ B′\B and w ∈ B′′\B passes through B.
Since P has a vertex in Bλ\B for every Bλ ∈ U (by Bλ > B and the definition of U), this
means that P meets B infinitely often, contrary to our assumption that P is uncentred.
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Let B′, B′′ and P ′ be given as stated. B′ and B′′ are incomparable in TF , because B

precedes both of them. Let B̃ be the maximal vertex of TF that satisfies B̃ < B′ as well
as B̃ < B′′. Then B̃ ≥ B. Moreover, B̃ lies on the B′–B′′ path in TF , so P ′ ∩ B̃ �= ∅
by Proposition 2.3. Let u ∈ P ′ ∩ B̃. Clearly Bλ(u) ≤ B̃, so Bλ(u) and B are comparable,
because also B ≤ B̃. Since Bλ(u) ≤ B̃ < B′ and Bλ(u) ≤ B̃ < B′′ but B precedes B′

and B′′, we have B �< Bλ(u), and therefore B ≥ Bλ(u) (see the first part of Figure 2). Thus
B lies on the B′–Bλ(u) path in TF , which implies that Pu,v ∩B �= ∅ (by Proposition 2.3).
This completes the proof of (3).

FIGURE 2. Vertices of T (P ) in the proof of (3)

As a first consequence of (3), we note that T (P ) is locally finite: if B ∈ T (P ) has
infinitely many neighbours B′ > B, and B′

λ is the smallest vertex of T (P ) with B′ ≤ B′
λ

and λ ∈ Λ(P ) (recall the construction of T (P )), then B precedes B′
λ, and all these B′

λ’s
are distinct. By König’s theorem, T (P ) therefore contains a ray R =: R(P ), say R =
Bλ0Bλ1 . . . . Since B0 ∈ T (P ), we may assume that λ0 = 0.

It remains to show that infinitely many of the indices λi are in Λ(P ). Suppose not,
and let k be maximal with λk ∈ Λ(P ). Then no Bλi with i > k is of the form Bλ, λ ∈ Λ(P ),
but, by construction of T (P ), each of them precedes such a Bλ, and is in turn preceded
by Bλk

(see the second part of Figure 2). Since for every Bλ ∈ TF there are only finitely
many vertices B ∈ TF with Bλ > B but {Bλi | i > k } is infinite, this means that Bλk

precedes infinitely many vertices Bλ with λ ∈ Λ(P ), contrary to (3). �

Lemma 4.2. If P is an uncentred ray in G and R = Bλ0Bλ1 . . . is a ray from B0 in TF

such that I = I(P,R) is infinite, then every tail of P meets every Sλn
with sufficiently

large n ∈ N.
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Proof. Let P ′ be a given tail of P . Pick k ∈ I ′, where

I ′ := I \ { i ∈ I | λi ∈ Λ(P\P ′) } .

Since P\P ′ is finite but I is infinite, I ′ is also infinite, and λi ∈ Λ(P ′) for every i ∈ I ′. We
show that P ′ meets every Sλn with k < n ∈ N. Let such n be given, and let i ≥ n with
i ∈ I ′. Let u, v ∈ P ′ with λ(u) = λk and λ(v) = λi. Since λk < λn, we have u ∈ G|λn

, so
v and u are separated by Sλn

in G′ unless u is itself in Sλn
(by Proposition 2.4). Hence

P ′
u,v ∩Sλn

�= ∅ as claimed. �

Equipped with Lemmas 4.1 and 4.2, we can now tackle the second case in our proof
of the end-completeness of T in G. Let P be a given uncentred ray in G, and let R =
Bλ0Bλ1 . . . be as provided by Lemma 4.1. Define Q :=

⋃∞
n=0 Qn, where Qn is the sλn–

sλn+1 path in T (and sλ0 := v0). We shall first prove that Q is a ray, and then show that
Q ∼

G
P .

In order to prove that Q is a path, we show that for different n ≥ 0 the vertices
v ∈ Qn − sλn

have distinct λ(v), so the paths Qn − sλn
must be disjoint for different n.

For every λ < σ, let λ′ be such that Bλ′ is the maximal vertex on R with Bλ′ ≤ Bλ. (To
see that λ′ exists, recall that R is a ray from B0, which is the root of TF .) We prove the
following:

v ∈ Qn − sλn , n ≥ 0 ⇒ λ′(v) = λn (4)

We apply induction on n. Let n ≥ 0, and suppose the assertion holds for all i < n.
Then

⋃n−1
i=0 Qi is (empty or) the v0–sλn path in T . By F(λn+1), we have either λ(sλn+1) =

λn or sλn+1 = sλn ; recall that τ(λn+1) = λn. In the latter case Qn − sλn = ∅, so there is
nothing to prove; we shall therefore assume that λ(sλn+1) = λn. Then sλn+1

∈ Bλn\Sλn .
Recall that eλn

is an edge of G′ joining sλn
to a vertex of Bλn

\Sλn
, say to x. Let Q′

n be
the sλn–sλn+1 path in Bλn consisting of eλn followed by the x–sλn+1 path in Tλn . (Recall
that Tλn

is a spanning tree of Bλn
\Sλn

.) If we replace every edge e ∈ E(Q′
n)∩Eλn

with
the path P (e) ⊂ T , we obtain an sλn

–sλn+1 path in T (cf. C(λn)). Since T is a tree, this
is the unique sλn

–sλn+1 path in T , and therefore equal to Qn.
To complete the proof of (4), it remains to show that λ′(v) = λn for every v ∈ P̊ (e)

with e ∈ E(Q′
n) ∩ Eλn

. By definition of P (e), we have λ(v) = ν(e) for v ∈ P̊ (e) and
τ(ν(e)) = λn. Therefore λ′(v) = λn unless λ′(v) = λ(v) = λn+1.

Before we show that λ′(v) must be λn rather than λn+1, let us note that certainly
λ′(v) > λi for all i < n, and therefore v /∈ Q0 ∪ . . .∪Qn−1 by the induction hypothesis.
Thus Q̊n ∩

⋃n−1
i=0 Qi = ∅, and Q0 ∪ . . .∪Qn is the v0–sλn+1 path in T .

Let us now resume our proof that λ′(v) = λn for any given v ∈ P̊ (e) and e ∈ E(Q′
n)∩

Eλn . As shown above, all we have to check is that λ(v) �= λn+1. This, however, follows
from the definition of eλn+1 and sλn+1 : if λ(v) = λn+1, then λn+1 is of type 2 (because
P̊ ⊂ T |λn+1 ∩ (Bλn+1\Sλn+1)) and sλn+1 lies on the v–v0 path in T |λn+1 ⊂ T—which
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contradicts the fact that v ∈ Q̊n and Q0 ∪ . . . ∪ Qn is the v0–sλn+1 path in T . This
completes the proof of (4), showing that Q is a path.

The proof that Q is infinite, and therefore a ray, is now straightforward. As V (Q) ⊃
{ sλn | n ∈ N }, Q can only be finite if infinitely many sλn ’s coincide. This however is
ruled out by (2).

We have shown that Q is a ray in T that passes through every vertex sλi
, i ∈ N. In

order to prove that Q is equivalent to P in G, let U be a given finite set of vertices of G,
and let P ′ and Q′ be the tails of P and Q in G−U , respectively. We have to show that
G−U contains a P ′–Q′ path. By Lemma 4.2 and the definition of Q, we can find an n ∈ N

such that P ′ ∩Sλn �= ∅, say s ∈ P ′ ∩Sλn , and sλn
∈ Q′. If s = sλn or ssλn

∈ E(G), we are
done. But otherwise ssλn

∈ E(G′)\E(G), so G contains uncountably many independent
s–sλn

paths, one of which avoids U .

5. T is end-respecting

Lemma 5.1. Suppose P1, P2 are rays in G, P1 is centred on Bµ (µ < σ), and P1 ∼
G

P2.

Then P2 is also centred on Bµ.

Proof. If P2 is centred at all, say on ν, then clearly ν = µ : if ν �= µ, without loss of
generality ν > µ, then Sν separates infinitely many vertices of P1 from infinitely many
vertices of P2 in G′ (Proposition 2.4), which contradicts our assumption that P1 ∼

G
P2.

Suppose therefore that P2 is not centred. Let R = Bλ0Bλ1 . . . be a ray in TF such
that I(P2, R) is infinite (Lemma 4.1). For every i ∈ I(P2, R), let vi be a vertex on P2

with λ(vi) = λi. As at most finitely many Bλn can be such that Bµ ≥ Bλn , there exists
k ∈ N with Bµ �≥ Bλk

. By Proposition 2.4, Sλk
separates every vi with i ≥ k from every

vertex u ∈ Bµ\Sλk
. Thus the finite set V (Sλk

) separates infinitely many vertices of P1

from infinitely many vertices of P2 in G′, again contradicting P1 ∼
G

P2. �

For our proof that T respects the ends of G, let rays P1, P2 ⊂ T with P1 ∼
G

P2 be

given. We have to show that P1 ∼
T

P2. We shall distinguish two cases: that P1 and P2 are

both centred on the same Bµ, and that P1 and P2 are both uncentred. By Lemma 5.1 this
distinction is exhaustive.

Case 1: P1 and P2 are centred on Bµ, µ < σ.

Since Sµ is finite, we may assume without loss of generality that Pi ∩Sµ = ∅, i = 1, 2. Let
us choose an infinite sequence Q1, Q2, . . . of disjoint paths in G as follows. Having definied
Q1, . . . , Qn−1 for some n ∈ N, consider the tails Pn

1 and Pn
2 of P1 and P2 in G \

⋃n−1
i=1 Qi.

If Pn
1 ∩ Pn

2 �= ∅, set Qn := { qn } for some vertex qn ∈ Pn
1 ∩ Pn

2 . If Pn
1 ∩ Pn

2 = ∅, let
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Qn = q1
n . . . q2

n be a path in G \ (Sµ ∪
⋃n−1

i=1 Qi) with qi
n ∈ Pi ∩Bµ, i = 1, 2. Note that Qn

exists, because by assumption P1 and P2 are equivalent in G and centred on Bµ.
Let P ′

1 and P ′
2 correspond to P1 and P2 as in H(µ), and let Q′

n correspond to Qn,
n ∈ N. Then Q′

1, Q
′
2, . . . is an infinite sequence of disjoint paths in Bµ\Sµ, each joining a

vertex of P ′
1 to one of P ′

2. Therefore P ′
1 ∼

Bµ\Sµ

P ′
2. As Pi ⊂ T\Sµ by assumption, H(µ)

implies that P ′
i ⊂ Tµ, i = 1, 2. But Tµ is an end-respecting spanning tree of Bµ\Sµ, so

P ′
1 ∼

Tµ

P ′
2. As Tµ is a tree, this equivalence means that V (P ′

1)∩V (P ′
2) is infinite. Therefore

V (P1)∩V (P2) is infinite, too (recall that V (P ′
i ) ⊂ V (Pi), i = 1, 2), so P1 ∼

T
P2 as claimed.

Case 2: P1 and P2 are both uncentred.

We shall assume, without loss of generality, that P1 and P2 are rays from v0. For i = 1, 2,
let Ri be a ray from B0 in TF such that Ii := I(Pi, Ri) is infinite (by Lemma 4.1).

Let us use the equivalence of P1 and P2 in G to show that R1 = R2. Suppose R1 �= R2,
and let Bµ be the first (= minimal) vertex of R1 that is not on R2. Then B �≥ Bµ for
every B ∈ V (R2), because R2 is a ray from B0. By Proposition 2.4, therefore, and the
fact that I1 and I2 are infinite, Sµ separates infinitely many vertices of P1 from infinitely
many vertices of P2 in G′. As Sµ is finite, this contradicts our assumption that P1 ∼

G
P2.

Thus R1 = R2 =: R, say R = Bλ0Bλ1 . . . . As I1 and I2 are infinite, I(λn) implies
that P1 and P2 contain sλn , for every n ∈ N. (Recall that P1 and P2 are rays from v0.)
By (2) therefore, P1 and P2 have infinitely many vertices in common, giving P1 ∼

T
P2 as

desired.
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