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This paper gives a summary of open problems and recent results con-

cerning the existence and uniqueness of simplicial decompositions (Halin) and

tree-decompositions (Robertson/Seymour) into primes.

All graphs considered in this paper are finite or countably infinite. Let G be a
graph, σ > 0 an ordinal, and let Bλ be an induced subgraph of G for every λ < σ.
The family F = (Bλ)λ<σ is called a simplicial tree-decomposition of G if the following
four conditions hold.

(S1) G =
⋃

λ<σ Bλ

(S2)
(⋃

λ<µ Bλ

)
∩Bµ =: Sµ is a complete graph for each µ (0 < µ < σ)

(S3) No Sµ contains Bµ or any other Bλ (0 ≤ λ < µ < σ)

(S4) Each Sµ is contained in Bλ for some λ < µ (µ < σ)

If F satisfies (S1)–(S3) but not necessarily (S4), F is called a simplicial decomposition
of G. If F satisfies (S1), (S3) and (S4), F is called a tree-decomposition of G. We
shall usually call complete graphs simplices (as is the custom in the field) and refer
to the Sµ’s in (S2) as simplices of attachment.

The concepts of simplicial decompositions, tree-decompositions and simplicial
tree-decompositions were all inspired by a common forerunner: the decompositions
of finite graphs used by K. Wagner in his classic paper [ 13 ], in which he proved the
equivalence of the 4-Colour-Conjecture to Hadwiger’s Conjecture for n = 5.

To show that the 4CC implies Hadwiger’s Conjecture (for n = 5), Wagner used
the following idea. He considered all (edge-maximal finite) graphs not subcontract-
ing to K5, and proved that breaking up any such graph along separating complete
subgraphs (‘simplices’) leaves factors that are either planar or isomorphic to a cer-
tain 3-chromatic non-planar graph. Assuming the 4CC, these factors are therefore
4-colourable, a property which can be lifted back to the original graph.

Wagner’s decompositions were later redefined—and named ‘simplicial decompo-
sitions’—by Halin [ 9 ], to make them suitable for infinite graphs; the definition given
by Halin is equivalent to our conditions (S1)–(S3). It is an interesting fact that for
finite graphs the conditions (S1)–(S3) imply (S4), which is not the case for infinite
graphs. Thus, with the transition to infinite graphs based on (S1)–(S3), one of the
most striking features of Wagner’s finite decompositions was lost: their ‘tree shape’,
a consequence of (S4) (see [ 2 ] for details).

It was this ‘tree shape’ that gave rise to the other generalization of Wagner’s
decompositions: the ‘tree-decompositions’ recently introduced by Robertson and Sey-
mour [ 12 ]. Robertson and Seymour’s definition of a tree-decomposition (again for
finite graphs) is equivalent to our conditions (S1), (S3) and (S4).
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Thus simplicial tree-decompositions, as defined above, are simplicial decomposi-
tions as well as tree-decompositions. They are therefore a generalization of Wagner’s
decompositions to infinite graphs in the structural sense mentioned, while at the
same time maintaining their compatibility with graph properties such as the chro-
matic number.

The compatibility of simplicial tree-decompositions with various natural graph
properties has been the basis for a number of applications. Most notably, Wagner
and Halin used simplicial tree-decompositions to characterize a number of graph
properties given in terms of forbidden minors; see [ 13–15 ] and [ 8,10 ], or [ 11, p.188 ]
for an overview. A more recent application of simplicial tree-decompositions can be
found in [ 1 ].

On the other hand, simplicial tree-decompositions provide a fascinating object
of study in themselves. They have turned out to possess a number of very natural
features [ 2 ], and some of their most basic properties are still unknown.

The following two questions are perhaps the most basic ones one would ask about
any kind of graph decomposition. Firstly, does every graph admit a decomposition
into primes, that is, into graphs that cannot be decomposed further? And secondly,
if a graph has a decomposition into primes, to what extent will this decomposition
be uniquely determined?

This paper summarizes recent progress on these questions for tree-decomposi-
tions and simplicial tree-decompositions, and lists some of the problems that remain
open. In order to get by with a minimum of terminology, we shall adopt an informal
style, give precedence to examples over theorems (except for the main results), and
treat most technicalities with generous disregard. For a more rigorous exposition the
reader is referred to [ 2–5 ].

Let us first consider the existence of prime decompositions. We shall call a graph
prime with respect to a given type of decomposition if it has no such decomposition
into more than one factor. For example, a graph is prime with respect to simplicial
decompositions and with respect to simplicial tree-decompositions if and only if it
contains no separating simplex. (It is not difficult to see that any graph with a non-
trivial simplicial decompositions needs separating simplices to serve as simplices of
attachment [ 2 ].) Similarly, a graph is prime with respect to tree-decompositions if
and only if it has no separating subgraph whatsoever, i.e., iff it is itself a simplex.

As an example, consider the graph G shown in Fig. 1. G admits the simplicial
tree-decomposition (T1, T2, T3, T4). The factors Ti in this decomposition are triangles,
and therefore prime. Thus (T1, T2, T3, T4) is a simplicial tree-decomposition of G into
primes.

The following problem was raised by Halin [ 9 ] in (1964), and it is in its generality
still unsolved:

Problem. Determine the graphs that admit a simplicial decomposition into primes.

For finite graphs this problem does not arise: it is not difficult to show that
every finite graph admits a simplicial decomposition into primes (see Halin [ 11 ]).
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FIGURE 1. Prime factors of a graph

Moreover, Halin [ 9 ] was able to extend this result to graphs of any cardinality which
do not contain an infinite simplex. For countable graphs and simplicial tree-decom-
positions (the most ‘genuine’ infinite simplicial decompositions, because of their tree
shape), characterizations of the graphs admitting a prime decomposition were given
in [ 3 ] and [ 5 ]; see below. The most extensive study of the general problem can be
found in [ 7 ], one of the last papers of G. A. Dirac.

When Halin posed the above problem in [ 9 ], he also showed that graphs not
admitting a simplicial decomposition into primes exist. The following graph is a
variation of Halin’s example: let S = S [ s1, s2, . . . ] be an infinite simplex, P =
x1x2 . . . a one-way infinite path, and let H1 be the graph obtained from the disjoint
union of S and P by drawing the edges xisj for all i ≥ j and joining one additional
vertex q to all vertices in S (Fig. 2).

FIGURE 2. H1—the prototype counterexample?

H1 admits a simplicial decomposition into primes: for example, the decomposition

F = (X1, X2, X3, . . . , Y ) ,
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where

Xi : = H1 [xi, xi+1, s1, . . . , si ]

and

Y : = H1 [ s1, s2, s3 . . . , q ] .

However, F is not a tree-decomposition: the simplex of attachment of the last
factor Y is S, which is not contained in any of the earlier factors Xi (cf. (S4)). Notice
that this problem is not just due to an unfortunate choice of the factors Xi: since
xi is separated from si+1 by the simplex H1 [xi+1, s1, . . . , si ] for each i, no vertex of
P can be in a common prime induced subgraph of H1 with all vertices of S. (We
express this fact by saying that S has no prime extension into P .)

The following theorem, proved in [ 3 ], implies that H1 does in fact not admit a
simplicial tree-decomposition into primes, and that the obstruction we encountered
in trying to find one lies at the heart of the matter.

If G is a graph, S ⊂ G, and C is a component of G\S, let S [C ] denote the
subgraph of S induced by all vertices that have a neighbour in C. If S [C ] = S, we
shall call S attached to C.

Theorem 1. A countable graph G has a simplicial tree-decomposition into primes

if and only if G satisfies the following condition:

(†) If S ⊂ G is a simplex, C and C ′ are distinct components of G\S, and S is

attached to C, then S [C ′ ] has a prime extension into C. (Fig. 3)

FIGURE 3. An extension X of S [ C′ ] into C

It is a rather striking phenomenon that long after Halin had published his original
example of a graph not admitting a prime decomposition, no essentially different such
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‘counterexample’ had been found; see e.g. Dirac [ 7 ]. Indeed, all graphs G without a
simplicial tree-decomposition into primes seem to have a structure very much like that
of H1: they all seem to contain an infinite simplex S separating G into components
C and C ′, where S is attached to C, G [C ∪S ] is covered by a family (X1, X2, . . .) of
convex subgraphs (although not necessarily simplices) that have the same intersection
pattern with S and with each other as in the case of H1, and S [C ′ ] is not contained
in any one of the Xi. (A subgraph X of G is convex in G if any induced path in
G connecting vertices of X is contained in X.) It is then only a small step further
to notice that contracting C ′ to a single vertex q and shrinking the subgraphs Xi a
little gives one a contraction of G [C ∪S ] onto H1.

And indeed,

(∗) Any graph not admitting a simplicial tree-decomposition into primes has a minor

isomorphic to H1.

How about the converse of (∗)—that is, how far is (∗) from being a characteri-
zation of the graphs that admit simplicial tree-decompositions into primes?

Notice that the graph property of not containing H1 as a minor is closed under
taking minors. Thus we can only hope to characterize the prime-decomposable graphs
by this property if they share this feature, i.e., if minors of decomposable graphs are
again decomposable. Or more intuitively, if we seek to express our observation that
H1 is in a sense the ‘simplest’ non-decomposable graph by using the minor relation,
then this relation and our notion of ‘simpler’ should match: a minor of a graph with
a prime decomposition should itself admit a prime decomposition, and this should
be at most as complex as that of the original graph.

With the usual concept of a minor, however, this is far from true. Recall that a
minor of a graph G is obtained in two steps:

(1) taking a subgraph of G, and

(2) contracting edges of the subgraph.

Clearly, both these steps are too general to meet our above requirement; that is, if
G is a graph that has a relatively simple prime decomposition, and if H is obtained
from G by either of the two steps, then H may only admit much more complex prime
decompositions, or even none at all.

For example, if G is an infinite simplex and thus admits the trivial prime decom-
position consisting only of itself, we can find subgraphs in G with arbitrarily complex
or even no prime decompositions, including H1. An only slightly more complicated
example shows that even if we restrict step (1) to taking induced subgraphs it still
allows us to obtain H1 from a prime graph: if we add a new vertex to H1 and join it to
all old vertices by independent paths of length at least 2, the resulting graph is prime
(because it has no separating simplex) and contains H1 as an induced subgraph.

As an example for step (2), consider the graph G obtained by identifying two
cycles of order 10 along 3 consecutive vertices x, y, z. Then G is prime, but contracting
the edges xy and yz results in a graph that has a separating simplex (the contracted
vertex), and therefore only a non-trivial prime decomposition into two factors. Or
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more extremely, if we subdivide every edge of H1 once, the resulting graph will again
be prime (and therefore admit the trivial prime decomposition), but we can reobtain
H1 from it only by contracting the appropriate edges.

Thus if we want the converse of (∗) to hold, we have to restrict the definition of
a minor by sharpening both of the above steps.

Let us call two vertices of a graph simplicially close if they are not separated by
any simplex, and let us call H a simplicial minor of G if H is obtained from G by

(1′) taking a convex subgraph of G, and

(2′) contracting edges of this convex subgraph in such a way that simplicially close
vertices remain simplicially close.

It is easily seen that this restricted concept of a minor no longer admits the
examples we considered above. And indeed, simplicial minors satisfy the converse of
(∗):

(∗∗) If H1 is a simplicial minor of G, then G admits no simplicial tree-decomposition

into primes.

In order to achieve (∗∗), we had to come down a long way from the most general
concept of a minor that formed the basis of (∗). It would therefore not be surprising
if we now had to pay for the gain of (∗∗) with the loss of (∗), that is, if not admitting
a prime decomposition no longer implied the existence of certain (simplicial) minors
like H1.

The following main theorem of [ 5 ] asserts that this is not the case: the graphs
admitting a simplicial tree-decomposition into primes are characterized by only two
forbidden simplicial minors, H1 and its counterpart H2, obtained from H1 by filling
in all missing edges of the form xixj .

Theorem 2. A countable graph G admits a simplicial tree-decomposition into

primes if and only if neither H1 nor H2 is a simplicial minor of G.

Theorem 2 has a corresponding version for tree-decompositions, also proved
in [ 5 ]:

Theorem 3. A countable graph has a tree-decomposition into primes if and only if

it is chordal and neither H1 nor H2 is its simplicial minor.

Let us now briefly address the second question regarding prime decompositions,
the question of uniqueness.

Problem. Which graphs have a (simplicial) (tree-) decomposition into a unique set

of primes?
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The finite case of this problem is again easy: every finite graph has a simplicial
tree-decomposition into a unique set of primes, see Halin [ 11 ]. The primes of a finite
graph can be obtained by iteratively splitting it along separating simplices.

In general however, a prime decomposition need not be unique. Consider, for
example, the graph H ′

1 := H1\{ q }. H ′
1 admits the simplicial tree-decompositions

F = (S, X1, X2, X3, . . .)

and

F ′ = (X1, X2, X3, . . .) .

Thus, while F is a perfectly acceptable simplicial tree-decomposition, its factor S

is in a sense redundant: if we omit it, the remaining factors still form a prime
decomposition of H ′

1.
Let us call a simplicial tree-decomposition reduced if it has no such redundant

factors. Reduced prime decompositions are by far the most ‘common’ kind; for
example, all prime decompositions into finite factors are reduced [ 4 ].

The following result was obtained in [ 4 ]:

Theorem 4. If a countable graph has a reduced simplicial tree-decomposition into

primes, then its factors and simplices of attachment in any such decomposition are

uniquely determined.

The immediate question arising from this result is whether every graph that has
some simplicial tree-decomposition into primes also has a reduced such decomposition—
in which case prime decompositions could in practice be taken reduced as a matter
of course. However, this is not the case; [ 4 ] contains an example of a graph that
has a simplicial tree-decomposition into primes but no reduced prime decomposition:
the ‘transitive closure’ T0 of the infinite dyadic tree.

Again, T0 seems to be ‘essentially’ the only example of such a graph:

Problem. Is T0 in some sense contained in every countable graph that admits a

simplicial tree-decomposition into primes but no reduced such decomposition?

Let us finally mention a problem that is almost as fundamental as the quest for
prime decompositions, and certainly of no less interest: the problem of which graphs
admit a prime decomposition into finite factors.

It is easily seen that any simplicial decomposition into finite factors satisfies
(S4), and is therefore even a simplicial tree-decomposition. Moreover, if a graph has
a simplicial (tree-) decomposition into finite factors, then these factors can be split
further into primes, extending the decomposition to a prime decomposition of the
graph. A satisfactory characterization of the graphs that admit a decomposition into
finite factors would therefore also characterize the graphs admitting a decomposition
into finite primes.
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Problem. Which graphs admit a simplicial decomposition into finite factors?
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