
9 Ramsey Theory
for Graphs

In this chapter we set out from a type of problem which, on the face
of it, appears to be similar to the theme of Chapter 7: what kind of
substructures are necessarily present in every large enough graph?

While ‘large’ in Chapter 7 meant ‘many edges’ on a given number of
vertices, in this chapter it will simply mean ‘many vertices’. Of course,
we cannot expect any concrete graph H to arise as a subgraph in just
any graph G of large enough order. But if it does not, maybe we can say
something else about G? For example, if H 6✓ G then maybe G contains
some other graph we can specify in advance, one very di↵erent from H?

Ramsey’s theorem, in its simplest form, says just that: for every
integer r > 0, every large enough graph G contains either a Kr or Kr as
an induced subgraph. If G is connected, we can say a little more: then
G contains either a Kr or a large induced path or star. What can we
say if G is 2-connected, or even 3-connected?

Despite its superficial similarity to extremal problems, the above
type of question leads to a kind of mathematics with a distinctive flavour
of its own. Indeed, the theorems and proofs in this chapter have more in
common with similar results in algebra or geometry, say, than with most
other areas of graph theory. The study of their underlying methods,
therefore, is generally regarded as a combinatorial subject in its own
right: the discipline of Ramsey theory .

In line with the subject of this book, we shall focus on results that
are naturally expressed in terms of graphs. Even from the viewpoint of
general Ramsey theory, however, this is not as much of a limitation as
it might seem: graphs are a natural setting for Ramsey problems, and
the material in this chapter brings out a su�cient variety of ideas and
methods to convey some of the fascination of the theory as a whole.
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9.1 Ramsey’s original theorems

In its simplest version, Ramsey’s theorem says that, given an integer
r > 0, every large enough graph G contains either a Kr or a Kr as an
induced subgraph. At first glance, this may seem surprising: after all,
we need a proportion of about (r � 2)/(r � 1) of all possible edges to
force a Kr subgraph in G (Corollary 7.1.3), but neither G nor G can be
expected to have more than half of all possible edges.

However, there is a subtle di↵erence: we are not trying to force
either of these two events, that G ◆ Kr or that G ◆ Kr, but only
that one or the other happens. Keeping an open mind as to which of
them does, rather looking for a Kr only in the denser half of the set of
potential edges, helps G to live up to our expectations. And Ramsey’s
theorem says that it only has to be large enough.

Turán’s theorem fits this pattern too when G has exactly tr�1(n)
edges on n vertices. In this case it tells us more than Ramsey’s theorem:
if G does not contain a Kr then G contains a Kdn/(r�1)e, a complete
graph of order much larger than r.

So how could we go about proving Ramsey’s theorem? Let us try
to build a Kr or Kr in G inductively, starting with an arbitrary vertex
v1 2 V1 := V (G). If |G| is large, there will be a large set V2 ✓ V1r {v1}
of vertices that are either all adjacent to v1 or all non-adjacent to v1.
Accordingly, we may think of v1 as the first vertex of a Kr or Kr whose
other vertices all lie in V2. Let us then choose another vertex v2 2 V2

for our Kr or Kr. Since V2 is large, it will have a subset V3, still fairly
large, of vertices that are all ‘of the same type’ with respect to v2 as
well: either all adjacent or all non-adjacent to it. We then continue our
search for vertices inside V3, and so on (Fig. 9.1.1).

v1 v1

v2

V2 V3

Fig. 9.1.1. Choosing the sequence v1, v2, . . .

How long can we go on in this way? This depends on the size of
our initial set V1: each set Vi has at least half the size of its predeces-
sor Vi�1, so we shall be able to complete s construction steps if G has
order about 2s. As the following proof shows, the choice of s = 2r� 3
vertices vi su�ces to find among them the vertices of a Kr or Kr.
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Theorem 9.1.1. (Ramsey 1930) [9.2.2]

For every r 2 N there exists an n 2 N such that every graph of order at

least n contains either Kr
or Kr as an induced subgraph.

Proof. The assertion is trivial for r 6 1; we assume that r > 2. Let
n := 22r�3, and let G be a graph of order at least n. We shall define
a sequence V1, . . . , V2r�2 of sets and choose vertices vi 2 Vi with the
following properties:

(i) |Vi| = 22r�2�i (i = 1, . . . , 2r� 2);

(ii) Vi ✓ Vi�1 r {vi�1} (i = 2, . . . , 2r� 2);

(iii) vi�1 is adjacent either to all vertices in Vi or to no vertex in Vi

(i = 2, . . . , 2r� 2).

Let V1 ✓ V (G) be any set of 22r�3 vertices, and pick v1 2 V1 arbitrarily.
Then (i) holds for i = 1, while (ii) and (iii) hold trivially. Suppose now
that Vi�1 and vi�1 2 Vi�1 have been chosen so as to satisfy (i)–(iii) for
i� 1, where 1 < i 6 2r� 2. Since

|Vi�1 r {vi�1}| = 22r�1�i � 1

is odd, Vi�1 has a subset Vi satisfying (i)–(iii); we pick vi 2 Vi arbitrarily.
Among the 2r�3 vertices v1, . . . , v2r�3, there are r�1 vertices that

show the same behaviour when viewed as vi�1 in (iii), being adjacent
either to all the vertices in Vi or to none. Accordingly, these r�1 vertices
and v2r�2 induce either a Kr or a Kr in G, because vi, . . . , v2r�2 2 Vi

for all i. ⇤

The least integer n associated with r as in Theorem 9.1.1 is the
Ramsey number R(r) of r. Our proof shows that R(r) 6 22r�3, which is

Ramsey

number

R(r)close to the best known upper bound; see the Notes. In Chapter 11 we
shall use a simple probabilistic argument to show that R(r) is bounded
below by 2r/2 (Theorem 11.1.3).

In other words, the clique and independence number of a graph can
both, asymptotically, be logarithmically small compared with its order.
As soon as we forbid some fixed induced subgraph, however, one of them
may have to be bigger: The Erdős-Hajnal conjecture says that for every

Erdős-

Hajnal

conjecturegraph H there exists a constant �H > 0 such that every graph G not
containing an induced copy of H has a set of at least |G|�H vertices that
are either independent or span a complete subgraph in G.

It is customary in Ramsey theory to think of partitions as colourings:
a colouring of (the elements of) a set X with c colours, or c-colouring c-colouring

for short, is simply a partition of X into c classes1 (indexed by the ‘col-
ours’). In particular, these colourings need not satisfy any non-adjacency

1 Unlike elsewhere in this book, these partition classes may be empty.
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requirements as in Chapter 5. Given a c-colouring of [X]k, the set of all[X]k

k-subsets of X, we call a set Y ✓ X monochromatic if all the elements
of [Y ]k have the same colour,2 i.e. belong to the same of the c partition

mono-

chromatic

classes of [X]k. Similarly, if G = (V,E) is a graph and all the edges of
H ✓ G have the same colour in some colouring of E, we call H a mono-

chromatic subgraph of G, speak of a red (green, etc.) H in G, and so on.
In the above terminology, Ramsey’s theorem can be expressed as

follows: for every r there exists an n such that, given any n-set X,
every 2-colouring of [X]2 yields a monochromatic r-set Y ✓ X. Interest-
ingly, this assertion remains true for c-colourings of [X]k with arbitrary
c and k – with almost exactly the same proof!

We first prove the infinite version, which is easier, and then deduce
the finite version.

Theorem 9.1.2. Let k, c be positive integers, and X an infinite set. If[12.1.1]

[X]k is coloured with c colours, then X has an infinite monochromatic

subset.

Proof. We prove the theorem by induction on k, with c fixed. For k =
1 the assertion holds, so let k > 1 and assume the assertion for smaller
values of k.

Let [X]k be coloured with c colours. We shall construct an infinite
sequence X0, X1, . . . of infinite subsets of X and choose elements xi 2 Xi

with the following properties (for all i):

(i) Xi+1 ✓ Xi r {xi};
(ii) all k-sets {xi}[Z with Z 2 [Xi+1]k�1 have the same colour, which

we associate with xi.

We start with X0 := X and pick x0 2 X0 arbitrarily. By assumption,
X0 is infinite. Having chosen an infinite set Xi and xi 2 Xi for some i, we
c-colour [Xir {xi}]k�1 by giving each set Z the colour of {xi}[Z from
our c-colouring of [X]k. By the induction hypothesis, Xi r {xi} has an
infinite monochromatic subset, which we choose as Xi+1. Clearly, this
choice satisfies (i) and (ii). Finally, we pick xi+1 2 Xi+1 arbitrarily.

Since c is finite, one of the c colours is associated with infinitely
many xi. These xi form an infinite monochromatic subset of X. ⇤

If desired, the finite version of Theorem 9.1.2 could be proved just
like the infinite version above. However to ensure that the relevant sets
are large enough at all stages of the induction, we have to keep track of
their sizes, which involves a good deal of boring calculation. As long as
we are not interested in bounds, the more elegant route is to deduce the
finite version from the infinite ‘by compactness’, that is, using König’s
infinity lemma (8.1.2).

2 Note that Y is called monochromatic, but it is the elements of [Y ]k, not of Y ,
that are (equally) coloured.
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Theorem 9.1.3. For all k, c, r > 1 there exists an n > k such that every [9.3.3]

n-set X has a monochromatic r-subset with respect to any c-colouring
of [X]k.

Proof. As is customary in set theory, we denote by n 2 N (also) the (8.1.2)

set {0, . . . , n� 1}. Suppose the assertion fails for some k, c, r. Then for k, c, r

every n > k there exist an n-set, without loss of generality the set n, and
a c-colouring [n]k ! c such that n contains no monochromatic r-set. Let
us call such colourings bad ; we are thus assuming that for every n > k bad

colouring

there exists a bad colouring of [n]k. Our aim is to combine these into a
bad colouring of [N]k, which will contradict Theorem 9.1.2.

For every n > k let Vn 6= ; be the set of bad colourings of [n]k. For
n > k, the restriction f(g) of any g 2 Vn to [n�1]k is still bad, and hence
lies in Vn�1. By the infinity lemma (8.1.2), there is an infinite sequence
gk, gk+1, . . . of bad colourings gn 2 Vn such that f(gn) = gn�1 for all
n > k. For every m > k, all colourings gn with n > m agree on [m]k, so
for each Y 2 [N]k the value of gn(Y ) coincides for all n > max Y . Let
us define g(Y ) as this common value gn(Y ). Then g is a bad colouring
of [N]k: every r-set S ✓ N is contained in some su�ciently large n,
so S cannot be monochromatic since g coincides on [n]k with the bad
colouring gn. ⇤

The least integer n associated with k, c, r as in Theorem 9.1.3 is the
Ramsey number for these parameters; we denote it by R(k, c, r).

Ramsey

number

R(k, c, r)

9.2 Ramsey numbers

Ramsey’s theorem may be rephrased as follows: if H = Kr and G is a
graph with su�ciently many vertices, then either G itself or its comple-
ment G contains a copy of H as a subgraph. Clearly, the same is true
for any graph H, simply because H ✓ Kh for h := |H|.

However, if we ask for the least n such that every graph G of order n
has the above property – this is the Ramsey number R(H) of H – then

Ramsey

number

R(H)the above question makes sense: ifH has only few edges, it should embed
more easily in G or G, and we would expect R(H) to be smaller than
the Ramsey number R(h) = R(Kh).

A little more generally, let R(H1, H2) denote the least n 2 N such R(H1, H2)

that H1 ✓ G or H2 ✓ G for every graph G of order n. For most graphs
H1, H2, only very rough estimates are known for R(H1, H2). Interest-
ingly, lower bounds given by random graphs (as in Theorem 11.1.3) are
often sharper than even the best bounds provided by explicit construc-
tions.

The following proposition describes one of the few cases where exact
Ramsey numbers are known for a relatively large class of graphs:
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Proposition 9.2.1. Let s, t be positive integers, and let T be a tree of

order t. Then R(T,Ks) = (s� 1)(t� 1)+ 1.

Proof. The disjoint union of s� 1 graphs Kt�1 contains no copy of T ,(1.5.3)
(5.2.3)

while the complement of this graph, the complete (s� 1)-partite graph
Ks�1

t�1
, does not contain Ks. This proves R(T,Ks) > (s� 1)(t� 1)+ 1.
Conversely, let G be any graph of order n = (s�1)(t�1)+1 whose

complement contains no Ks. Then s > 1, and in any vertex colouring
of G (in the sense of Chapter 5) at most s � 1 vertices can have the
same colour. Hence, �(G) > dn/(s� 1)e = t. By Lemma 5.2.3, G has
a subgraph H with �(H) > t� 1, which by Corollary 1.5.3 contains a
copy of T . ⇤

As the main result of this section, we shall now prove one of those
rare general theorems providing a relatively good upper bound for the
Ramsey numbers of a large class of graphs, a class defined in terms
of a standard graph invariant. The theorem deals with the Ramsey
numbers of sparse graphs: it says that the Ramsey number of graphs H
with bounded maximum degree grows only linearly in |H| – an enormous
improvement on the exponential bound from the proof of Theorem 9.1.1.

Theorem 9.2.2. (Chvátal, Rödl, Szemerédi & Trotter 1983)
For every positive integer � there is a constant c such that

R(H) 6 c |H|

for all graphs H with �(H) 6 �.

Proof. The basic idea of the proof is as follows. We wish to show that

(7.1.1)
(7.4.1)
(7.5.2)
(9.1.1) H ✓ G or H ✓ G if |G| is large enough (though not too large). Consider

an ✏-regular partition of G, as provided by the regularity lemma. If
enough of the ✏-regular pairs in this partition have high density, we may
hope to find a copy of H in G. If most pairs have low density, we try
to find H in G. Let R, R0 and R00 be the regularity graphs of G whose
edges correspond to the pairs of density > 0; > 1/2; < 1/2 respectively.3

Then R is the edge-disjoint union of R0 and R00.
Now to obtain H ✓ G or H ✓ G, it su�ces by the blow-up lemma,

Lemma 7.5.2, to ensure that H is contained in a suitable ‘inflated regu-
larity graph’ R0

s or R
00

s . Since �(H) 6 �(H)+1 6 �+1, this will be the
case if s > ↵(H) and we can find a K�+1 in R0 or in R00. But that is easy
to ensure: we just need that Kr ✓ R, where r is the Ramsey number
of �+1, which will follow from Turán’s theorem because R is dense.

For the formal proof let now � > 1 be given. On input d := 1/2�, d

and �, Lemma 7.5.2 returns an ✏0. Let m := R(�+1) be the Ramsey✏0,m

✏ number of �+1. Let ✏ 6 ✏0 be positive but small enough that for k = m

3 In our formal proof later we shall define R00 a little di↵erently, so that it complies
properly with our definition of a regularity graph.
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(and hence for all k > m)

2✏ <
1

m� 1
� 1

k
; (1)

then in particular ✏ < 1. Finally, let M be the integer returned by the M

regularity lemma (Theorem 7.4.1) on input ✏ and m.
All the quantities defined so far depend only on �. We shall prove

the theorem with

c :=
2�+1M

1� ✏
. c

Let H with �(H) 6 � be given, and let s := |H|. Let G be an arbitrary s

graph of order n > c |H|; we show that H ✓ G or H ✓ G. G,n

By Theorem 7.4.1, G has an ✏-regular partition {V0, V1, . . . , Vk} with k

exceptional set V0 and |V1| = . . . = |Vk| =: `, where m 6 k 6 M . Then `

` =
n� |V0|

k
> n

1� ✏

M
> cs

1� ✏

M
> 2�+1s = 2s/d�. (2)

Let R be the regularity graph with parameters ✏, `, 0 corresponding to R

this partition. By definition, R has k vertices and

kRk >
✓
k

2

◆
� ✏k2

= 1

2
k2
⇣
1� 1

k
� 2✏

⌘

>
(1)

1

2
k2
⇣
1� 1

k
� 1

m� 1
+

1

k

⌘

= 1

2
k2

m� 2

m� 1

> tm�1(k)

edges. By Theorem 7.1.1, therefore, R has a subgraph K = Km. K

We now colour the edges ij of R with two colours: red if the pair
(Vi, Vj) has density at least 1/2, and green otherwise. Let R0 be the
spanning subgraph of R formed by the red edges, and R00 the spanning
subgraph of R formed by the green edges and those whose corresponding
pair has density exactly 1/2. Then R0 is a regularity graph of G with
parameters ✏, ` and 1/2. And R00 is a regularity graph of G, with the
same parameters: as one easily checks, every pair (Vi, Vj) that is ✏-regular
for G is also ✏-regular for G.

By definition of m, our graph K contains a red or a green Kr, for
r := �(H) 6 � + 1. Correspondingly, H ✓ R0

s or H ✓ R00

s . Since
✏ 6 ✏0 and ` > 2s/d� by (2), both R0 and R00 satisfy the requirements
of Lemma 7.5.2, so H ✓ G or H ✓ G as desired. ⇤



310 9. Ramsey Theory

So far in this section, we have been asking what is the least order of a
complete graph G such that every 2-colouring of its edges yields a mono-
chromatic copy of some given graph H. Rather than keeping G complete
and focusing on its order, let us now consider its structure too, i.e., min-
imize G with respect to the subgraph relation. Given a graph H, let us
call a graph G Ramsey-minimal for H if G is minimal with the propertyRamsey-

minimal

that every 2-colouring of its edges yields a monochromatic copy of H.
What do such Ramsey-minimal graphs look like? Are they unique?

The following result, which we include for its pretty proof, answers the
second question for some H:

Proposition 9.2.3. If T is a tree but not a star, then infinitely many

graphs are Ramsey-minimal for T .

Proof. Let |T | =: r. We show that for every n 2 N there is a graph of

(1.5.3)
(5.2.3)
(5.2.5)
(=11.2.2) order at least n that is Ramsey-minimal for T .

By Theorem 5.2.5, there exists a graph G with chromatic number
�(G) > r2 and girth g(G) > n. If we colour the edges of G red and
green, then the red and the green subgraph cannot both have an r-
(vertex-)colouring in the sense of Chapter 5: otherwise we could colour
the vertices of G with the pairs of colours from those colourings and
obtain a contradiction to �(G) > r2. So let G0 ✓ G be monochromatic
with �(G0) > r. By Lemma 5.2.3, G0 has a subgraph of minimum degree
at least r, which contains a copy of T by Corollary 1.5.3.

Let G⇤ ✓ G be Ramsey-minimal for T . Clearly, G⇤ is not a for-
est: the edges of any forest can be 2-coloured (partitioned) so that no
monochromatic subforest contains a path of length 3, let alone a copy
of T . (Here we use that T is not a star, and hence contains a P 3.) So G⇤

contains a cycle, which has length g(G) > n since G⇤ ✓ G. In particular,
|G⇤| > n as desired. ⇤

9.3 Induced Ramsey theorems

Ramsey’s theorem can be rephrased as follows. For every graph H = Kr

there exists a graph G such that every 2-colouring of the edges of G
yields a monochromatic H ✓ G. This is witnessed by any large enough
complete graph as G. Let us now change the problem slightly and ask
for a graph G in which every 2-edge-colouring yields a monochromatic
induced H ✓ G, where H is now an arbitrary given graph.

This slight modification changes the character of the problem. What
is needed now is no longer a simple proof that G is ‘big enough’ (as for
Theorem 9.1.1), but a careful construction: the construction of a graph
that, however we bipartition its edge set, contains an induced copy of H
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with all edges in one partition class. We shall call such a graph a Ramsey

graph for H. Ramsey

graph

The fact that every graph H has such a Ramsey graph G was proved
around 1973, independently by Deuber, by Erdős, Hajnal & Pósa, and
by Rödl. It is one of the fundamental results of graph Ramsey theory.

Theorem 9.3.1. Every graph has a Ramsey graph. In other words,

for every graph H there exists a graph G which, for every partition
4

{E1, E2} of E(G), contains H as an induced subgraph with E(H) ✓ E1

or E(H) ✓ E2.

We shall prove Theorem 9.3.1 for bipartite graphs first, and use this
in our proof of the general theorem. For the remainder of this section,
let us view bipartite graphs P as triples (V1, V2, E), where V1 and V2 are bipartite

the two vertex classes and E ✓ V1⇥V2 is the set of edges. The reason for
this more explicit notation is that we want embeddings between bipar-
tite graphs to respect their bipartitions: given another bipartite graph
P 0 = (V 0

1
, V 0

2
, E0), an injective map ':V1[V2!V 0

1
[V 0

2
will be called an

embedding of P in P 0 if '(Vi) ✓ V 0

i for i = 1, 2 and '(v1)'(v2) is an edge embedding

P !P 0

of P 0 if and only if v1v2 is an edge of P . Note that such embeddings are
‘induced’. Instead of ':V1[V2!V 0

1
[V 0

2
we may simply write ':P !P 0.

Recall that [X]k denotes the set of k-subsets of a set X. [X]k

Lemma 9.3.2. Every bipartite graph can be embedded in a bipartite

graph of the form (X, [X]k, E) with E = {xY | x 2 Y }. E

Proof. Let P be any bipartite graph, with vertex classes {a1, . . . , an}
and {b1, . . . , bm}, say. Let X be a set with 2n+m elements, say

X = {x1, . . . , xn, y1, . . . , yn, z1, . . . , zm} ;

we shall define an embedding ':P ! (X, [X]n+1, E).
Let us start by setting '(ai) := xi for all i = 1, . . . , n. Which

(n+ 1)-sets Y ✓ X are suitable candidates for the choice of '(bi) for
a given vertex bi? Clearly those adjacent exactly to the images of the
neighbours of bi, i.e. those satisfying

Y \ {x1, . . . , xn} = '(NP (bi)) . (1)

Since d(bi) 6 n, the requirement of (1) leaves at least one of the n+ 1
elements of Y unspecified. In addition to '(NP (bi)), we may therefore
include in each Y = '(bi) the vertex zi as an ‘index’; this ensures that
'(bi) 6= '(bj) for i 6= j, even when bi and bj have the same neighbours
in P . To specify the sets Y = '(bi) completely, we finally fill them up
with ‘dummy’ elements yj until |Y | = n+1. ⇤

4 The partition classes here are allowed to be empty.
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Next, we prove that every bipartite graph has a Ramsey graph –
even a bipartite one:

Lemma 9.3.3. For every bipartite graph P there exists a bipartite

graph P 0
such that for every 2-colouring of the edges of P 0

there is

an embedding ':P !P 0
for which all the edges of '(P ) have the same

colour.

Proof. We may assume by Lemma 9.3.2 that P has the form (X, [X]k, E)(9.1.3)

with E = {xY | x 2 Y }. We show the assertion for the graphP,X, k, E

P 0 := (X 0, [X 0]k
0
, E0), where k0 := 2k� 1, X 0 is any set of cardinalityP 0, X0, k0

|X 0| = R
⇣
k0, 2

�k0

k

�
, k |X|+ k� 1

⌘
,

(this is the Ramsey number defined after Theorem 9.1.3), and

E0 := {x0Y 0 | x0
2 Y 0 } .E0

Let us then colour the edges of P 0 with two colours ↵ and �. Of the↵,�

|Y 0| = 2k� 1 edges incident with a vertex Y 0
2 [X 0]k

0
, at least k must

have the same colour. For each Y 0 we may therefore choose a fixed k-set
Z 0 ✓ Y 0 such that all the edges x0Y 0 with x0

2 Z 0 have the same colour;Z0

we shall call this colour associated with Y 0.associated

The sets Z 0 can lie within their supersets Y 0 in
�k0

k

�
ways, as follows.

Let X 0 be linearly ordered. Then for every Y 0
2 [X 0]k

0
there is a unique

order-preserving bijection �Y 0 :Y 0 ! {1, . . . , k0}, which maps Z 0 to one�Y 0

of
�k0

k

�
possible images.

We now colour [X 0]k
0
with the 2

�k0

k

�
elements of the set

[{1, . . . , k0}]k ⇥ {↵,�}

as colours, giving each Y 0
2 [X 0]k

0
as its colour the pair (�Y 0(Z 0), �),

where � is the colour ↵ or � associated with Y 0. Since |X 0| was chosen
as the Ramsey number with parameters k0, 2

�k0

k

�
and k |X|+ k� 1, we

know that X 0 has a monochromatic subsetW of cardinality k |X|+k�1.W

All Z 0 with Y 0 ✓ W thus lie within their Y 0 in the same way, i.e. there
exists an S 2 [{1, . . . , k0}]k such that �Y 0(Z 0) = S for all Y 0

2 [W ]k
0
, and

all Y 0
2 [W ]k

0
are associated with the same colour, say with ↵.↵

We now construct the desired embedding ' of P in P 0. We first'|X

define ' on X =: {x1, . . . , xn}, choosing images '(xi) =: wi 2 W so thatxi, wi, n

wi < wj in our ordering of X 0 whenever i < j. Moreover, we choose the
wi so that exactly k�1 elements of W are smaller than w1, exactly k�1
lie between wi and wi+1 for i = 1, . . . , n�1, and exactly k�1 are bigger
than wn. Since |W | = kn+ k� 1, this can indeed be done (Fig. 9.3.1).

We now define ' on [X]k. Given Y 2 [X]k, we wish to choose'|[X]k

'(Y ) =: Y 0
2 [X 0]k

0
so that the neighbours of Y 0 among the vertices
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Fig. 9.3.1. The graph of Lemma 9.3.3

in '(X) are precisely the images of the neighbours of Y in P , i.e. the
k vertices '(x) with x 2 Y , and so that all these edges at Y 0 are col-
oured ↵. To find such a set Y 0, we first fix its subset Z 0 as {'(x) | x 2 Y }
(these are k vertices of type wi) and then extend Z 0 by k0 � k further
vertices u 2 W r '(X) to a set Y 0

2 [W ]k
0
, in such a way that Z 0 lies

correctly within Y 0, i.e. so that �Y 0(Z 0) = S. This can be done, because
k� 1 = k0 � k other vertices of W lie between any two wi. Then

Y 0 \'(X) = Z 0 = {'(x) | x 2 Y } ,

so Y 0 has the correct neighbours in '(X), and all the edges between Y 0

and these neighbours are coloured ↵ (because those neighbours lie in Z 0

and Y 0 is associated with ↵). Finally, ' is injective on [X]k: the images
Y 0 of di↵erent vertices Y are distinct, because their intersections with
'(X) di↵er. Hence, our map ' is indeed an embedding of P in P 0. ⇤

Proof of Theorem 9.3.1. Let H be given as in the theorem, and let
n := R(r) be the Ramsey number of r := |H|. Then, for every 2-colouring r, n
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of its edges, the graph K = Kn contains a monochromatic copy of H –K

although not necessarily induced.
We start by constructing a graph G0, as follows. Imagine the ver-

tices of K to be arranged in a column, and replace every vertex by a row
of
�n
r

�
vertices. Then each of the

�n
r

�
columns arising can be associated

with one of the
�n
r

�
ways of embedding V (H) in V (K); let us furnish

this column with the edges of such a copy of H. The graph G0 thus aris-
ing consists of

�n
r

�
disjoint copies of H and (n� r)

�n
r

�
isolated vertices

(Fig. 9.3.2).

| {z }
�

n
r

�

n � r

H

H

H
H

n

r

. . .

|
{z

}

Fig. 9.3.2. The graph G0

In order to define G0 formally, we assume that V (K) = {1, . . . , n}
and choose copies H1, . . . , H(nr)

of H in K with pairwise distinct vertex
sets. (Thus, on each r-set in V (K) we have one fixed copy Hj of H.)
We then defineG0

V (G0) :=
�
(i, j) | i = 1, . . . , n; j = 1, . . . ,

�n
r

�  

and

E(G0) :=

(nr)[

j=1

�
(i, j)(i0, j) | ii0 2 E(Hj)

 
.

The idea of the proof now is as follows. Our aim is to reduce the gen-
eral case of the theorem to the bipartite case dealt with in Lemma 9.3.3.
Applying the lemma iteratively to all the pairs of rows of G0, we con-
struct a very large graph G such that for every edge colouring of G there
is an induced copy of G0 in G that is monochromatic on all the bipartite
subgraphs induced by its pairs of rows, i.e. in which edges between the
same two rows always have the same colour. The projection of this
G0 ✓ G to {1, . . . , n} (by contracting its rows) then defines an edge
colouring of K. (If the contraction does not yield all the edges of K,
colour the missing edges arbitrarily.) By the choice of |K|, some Kr ✓ K
will be monochromatic. TheHj inside thisKr then occurs with the same
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colouring in the jth column of our G0, where it is an induced subgraph
of G0, and hence of G.

Formally, we shall define a sequence G0, . . . , Gm of n-partite graphs
Gk, with n-partition {V k

1
, . . . , V k

n } say, and then let G := Gm. The
graph G0 has been defined above; let V 0

1
, . . . , V 0

n be its rows:

V 0

i :=
�
(i, j) | j = 1, . . . ,

�n
r

�  
. V 0

i

Now let e1, . . . , em be an enumeration of the edges of K. For k = ek,m

0, . . . ,m� 1, construct Gk+1 from Gk as follows. If ek+1 = i1i2, say, i1, i2

let P = (V k
i1 , V

k
i2 , E) be the bipartite subgraph of Gk induced by its i1th P

and i2th row. By Lemma 9.3.3, P has a (minimal) bipartite Ramsey P 0

graph P 0 = (W1,W2, E0). We wish to define Gk+1 ◆ P 0 in such a way W1,W2

that every (monochromatic) embedding P !P 0 can be extended to an
embedding Gk !Gk+1 respecting their n-partitions. Let {'1, . . . ,'q} 'p, q

be the set of all embeddings of P in P 0, and let

V (Gk+1) := V k+1

1
[ . . .[V k+1

n ,

where

V k+1

i :=

8
<

:

W1 for i = i1
W2 for i = i2Sq

p=1
(V k

i ⇥ {p}) for i /2 {i1, i2}.

(Thus for i 6= i1, i2, we take as V k+1

i just q disjoint copies of V k
i .) We

now define the edge set of Gk+1 so that the obvious extensions of 'p to
all of V (Gk) become embeddings of Gk in Gk+1: for p = 1, . . . , q, let
 p:V (Gk)!V (Gk+1) be defined by

 p(v) :=

⇢
'p(v) for v 2 P
(v, p) for v /2 P

and let

E(Gk+1) :=
q[

p=1

{ p(v) p(v
0) | vv0 2 E(Gk) } .

Now for every 2-colouring of its edges, Gk+1 contains an induced copy
 p(Gk) of Gk whose edges in P , i.e. those between its i1th and i2th row,
have the same colour: just choose p so that 'p(P ) is the monochromatic
induced copy of P in P 0 that exists by Lemma 9.3.3.

We claim that G := Gm satisfies the assertion of the theorem. So
let a 2-colouring of the edges of G be given. By the construction of
Gm from Gm�1, we can find in Gm an induced copy of Gm�1 such that
for em = ii0 all edges between the ith and the i0th row have the same
colour. In the same way, we find inside this copy of Gm�1 an induced
copy of Gm�2 whose edges between the ith and the i0th row have the
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same colour also for ii0 = em�1. Continuing in this way, we finally arrive
at an induced copy of G0 in G such that, for each pair (i, i0), all the
edges between V 0

i and V 0

i0 have the same colour. As shown earlier, this
G0 contains a monochromatic induced copy Hj of H. ⇤

The Ramsey graph G for H built in the proof of Theorem 9.3.1 is
sparse in the sense that it contains no complete graphs bigger than it
has to in order to contain H: G and H have the same clique number
!(G) = !(H) (Exercise 23). This property, which comes for free with
this proof of the theorem, is non-trivial even if we do not ask for induced
embeddings: the existence of a graph G that contains a monochromatic
copy of H, induced or not, on any 2-colouring of its edges is neither
obvious nor does it follow easily from Ramsey’s original theorem.

An even stronger sparsity requirement on G is to ask that it should
contain no shorter cycles than H does, that g(G) = g(H). As a small
indication of how ambitious this requirement on G is, notice that the
statement of �(G) > r can be rephrased as a Ramsey-like property of G:
for any vertex-colouring with at most r colours, G contains a ‘monochro-
matic’ copy of H = K2, an edge joining two like-coloured vertices. But
as we noted in Chapter 5.2, graphs of simultaneously large chromatic
number and girth are di�cult to construct.

However, Ramsey graphs of large girth do exist:

Theorem 9.3.4. (Reiher & Rödl 2023)
Every graph H has a Ramsey graph G that satisfies g(G) = g(H) unless
H is a forest, in which case g(G) can be made arbitrarily large.

If H is a tree but not a star, the aim of g(G) = g(H) (= 1) cannot be
realised: if g(G) = 1 then G is a forest, so its edges can be 2-coloured
alternately so that every path of length 3 receives two colours.

9.4 Ramsey properties and connectivity

According to Ramsey’s theorem, every large enough graph G has a very
dense or a very sparse induced subgraph of given order, a Kr or Kr. If
we assume that G is connected, we can say a little more:

Proposition 9.4.1. For every integer r > 1 there is an n 2 N such that

every connected graph of order at least n contains Kr
, K1,r or P r

as an

induced subgraph.

Proof. Let d+1 be the Ramsey number of r, let n > d
d�2

(d� 1)r, and(1.3.3)

let G be a graph of order at least n. If G has a vertex v of degree at least
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d+1 then, by Theorem 9.1.1 and the choice of d, either N(v) induces a
Kr in G or {v}[N(v) induces a K1,r. On the other hand, if �(G) 6 d,
then by Proposition 1.3.3 G has radius > r, and hence contains two
vertices at a distance > r. Any shortest path in G between these two
vertices contains a P r. ⇤

In principle, we could now look for a similar set of ‘unavoidable’
k-connected subgraphs for any given connectivity k. To keep these ‘un-
avoidable sets’ small, it helps to relax the containment relation from
‘induced subgraph’ for k = 1 (as above) to ‘topological minor’ for k = 2,
and on to ‘minor’ for k = 3 and k = 4. For larger k, no similar results
are known.

Proposition 9.4.2. For every integer r > 2 there is an n 2 N such that

every 2-connected graph of order at least n contains Cr
or K2,r as a

topological minor.

Proof. Let d be the n associated with r in Proposition 9.4.1, and let G be (1.3.3)
(3.3.6)

a 2-connected graph with at least d
d�2

(d� 1)r vertices. By Proposition
1.3.3, either G has a vertex of degree > d or diam(G) > rad(G) > r.

In the latter case let a, b 2 G be two vertices at distance > r. By
Menger’s theorem (3.3.6), G contains two independent a–b paths. These
form a cycle of length > r.

Assume now that G has a vertex v of degree > d. Since G is 2-
connected, G� v is connected and thus has a spanning tree; let T be
a minimal tree in G � v that contains all the neighbours of v. Then
every leaf of T is a neighbour of v. By the choice of d, either T has a
vertex of degree > r or T contains a path of length > r, without loss of
generality linking two leaves. Together with v, such a path forms a cycle
of length > r. A vertex u of degree > r in T can be joined to v by r
independent paths through T , to form a TK2,r. ⇤

Theorem 9.4.3. (Oporowski, Oxley & Thomas 1993)
For every integer r > 3 there is an n 2 N such that every 3-connected

graph of order at least n contains a wheel of order r or a K3,r as a minor.

Let us call a graph of the form Cn ⇤K2 (n > 4) a double wheel , the
1-skeleton of a triangulation of the cylinder as in Fig. 9.4.1 a crown, and
the 1-skeleton of a triangulation of the Möbius strip a Möbius crown.

Theorem 9.4.4. (Oporowski, Oxley & Thomas 1993)
For every integer r > 4 there is an n 2 N such that every 4-connected

graph with at least n vertices has a minor of order at least r that is a

double wheel, a crown, a Möbius crown, or a K4,r.

Note that the graphs listed in Theorems 9.4.3 and 9.4.4 are themselves
3-connected resp. 4-connected, as required.
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Fig. 9.4.1. A crown and a Möbius crown

At first glance, the ‘unavoidable’ substructures presented in the four
theorems above may seem to be chosen somewhat arbitrarily. In fact,
the contrary is true: these sets are smallest possible, and as such unique.

To make this precise, call a graph property non-trivial if it containsnon-trivial

property

graphs of infinitely many isomorphism types. Given two such properties
P,P 0 and an order relation 6 between graphs (such as the subgraph
relation ✓, or the minor relation 4), write P 6 P 0 if for every G 2 P6
there is a G0

2 P 0 such that G 6 G0. If P 6 P 0 as well as P > P 0, call
P and P 0

equivalent and write P⇠P 0. For example, if 6 is the subgraph⇠

relation, P is the class of all paths, P 0 is the class of paths of even length,
and S is the class of all subdivisions of stars, then P ⇠ P 0 6 S 66 P.

Given a non-trivial graph property G, call a finite set {P1, . . . ,Pk} of
non-trivial graph properties Pi ✓ G aKuratowski set for G and6 if the Pi

Kuratowski

set

are incomparable (i.e., Pi 66 Pj whenever i 6= j) and for every non-trivial
graph property P ✓ G there is an i such that Pi 6 P. Such a Kuratowski
set {P1, . . . ,Pk} is unique up to equivalence: if {Q1, . . . ,Q`} is another
Kuratowski set for G then ` = k and, with suitable enumeration, Qi ⇠ Pi

for i = 1, . . . , k. (Why?)
The essence of our last four theorems can now be stated more com-

prehensively, as follows. Let us say k-connectedness for the class of all
k-connected finite graphs, and connectedness for 1-connectedness.

Theorem 9.4.5.

(i) The stars and the paths form the (2-element) Kuratowski set for

connectedness and the subgraph relation.

(ii) The cycles and the graphsK2,r (r > 2) form the (2-element) Kura-

towski set for 2-connectedness and the topological minor relation.

(iii) The wheels and the graphs K3,r (r > 3) form the (2-element)

Kuratowski set for 3-connectedness and the minor relation.

(iv) The double wheels, the crowns, the Möbius crowns, and the

graphs K4,r (r > 4) form the (4-element) Kuratowski set for 4-

connectedness and the minor relation. ⇤
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Exercises

1.� Determine the Ramsey number R(3).

2.� Deduce the case k = 2 (but c arbitrary) of Theorem 9.1.3 directly from
Theorem 9.1.1.

3. Prove that the graphs not containing some fixed star as an induced
subgraph are �-bounded.

(See Chapter 5.6 for the definition of �-boundedness.)

4. Let the edges of a complete graph G on N be coloured with two colours.
Show that G contains two monochromatic paths whose vertex sets par-
tition N.

5. An arithmetic progression is an increasing sequence of numbers of the
form a, a + d, a + 2d, a + 3d . . . . Van der Waerden’s theorem says that
no matter how we partition the natural numbers into two classes, one of
these classes will contain arbitrarily long arithmetic progressions. Must
there even be an infinite arithmetic progression in one of the classes?

6. Can you improve the exponential upper bound on the Ramsey number
R(n) for perfect graphs?

7. Show that the n✏-type bound in the Erdős-Hajnal conjecture cannot
be lowered substantially, by finding a graph H such that infinitely
many graphs G not containing H as an induced subgraph satisfy
↵(G) 6 |G|

1/2 as well as !(G) 6 |G|
1/2.

8. Let G be a class of graphs that is closed under taking induced subgraphs.
Assume that G is �-bounded, with a polynomial �-bounding function.
Prove the Erdős-Hajnal conjecture for the graphs in G.

9.+ Construct a graph on R that has neither a complete nor an edgeless
induced subgraph on |R| = 2@0 vertices. (So Ramsey’s theorem does
not extend to uncountable sets.)

10. (i)� Use Ramsey’s theorem to show that for any k, ` 2 N there is an
n 2 N such that every sequence of n distinct integers has an increasing
subsequence of length k +1 or a decreasing subsequence of length `+1.

(ii) Prove that n = k` + 1 has this property but n = k` does not.

11.+ Find a short proof of the Erdős-Pósa theorem (2.3.2) with a recursively
defined bound.

(Hint. For the recursion step find two cycles with at most one vertex
in common. If Menger’s theorem between them does not give you k
disjoint cycles, use the size of the separator it o↵ers for the definition
of f(k) from f(k � 1).)

12.+ Prove the edge version of the Erdős-Pósa theorem (2.3.2): there exists a
function g:N!R such that, given k 2 N, every graph contains either k
edge-disjoint cycles or a set of at most g(k) edges meeting all its cycles.

(Hint. Consider in each component a normal spanning tree.)
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13. Show that for every k 2 N there is an n 2 N such that among any
n points in the plane, no three of them collinear, there are k points
spanning a convex k-gon, i.e. such that none of them lies in the convex
hull of the others.

14. Show that for every k 2 N there is an n 2 N such that, for every partition
of {1, . . . , n} into k sets, at least one of the subsets contains numbers
x, y, z such that x + y = z.

15. Let (X,6) be a totally ordered set, and let G = (V, E) be the graph
on V := [X]2 with E := {(x, y)(x0, y0) | x < y = x0 < y0}.

(i) Show that G contains no triangle.

(ii) Show that �(G) will get arbitrarily large if |X| is chosen large
enough.

16. A family of sets is called a �-system if every two of the sets have the
same intersection. Show that every infinite family of sets of the same
finite cardinality contains an infinite �-system.

17. Prove that for every r 2 N and every tree T there exists a k 2 N such
that every graph G with �(G) > k and !(G) < r contains a subdivision
of T in which no two branch vertices are adjacent in G (unless they are
adjacent in T ).

18. Let m, n 2 N, and assume that m � 1 divides n � 1. Show that every
tree T of order m satisfies R(T, K1,n) = m + n � 1.

19. Prove that 2c < R(2, c, 3) 6 3c! for every c 2 N.

(Hint. Induction on c.)

20. Explain why, in the proof of Theorem 9.2.2, choosing ✏ small enough
can ensure that the regularity graph R contains a copy of K`, although
some of the pairs (Vi, Vj) in G may not be ✏-regular. Your explanation
may use that t`�1(k) ⇡

`�2
`�1

�
k
2

�
, but should contain no calculations.

21.+ Determine the Ramsey-minimal graphs for stars.

22. Prove the analogue of Theorem 9.3.1 for vertex colouring: for every
graph H there exists a graph G which, given any 2-colouring of its
vertices, contains a monochromatic induced copy of H.

23. Show that the Ramsey graph G for H constructed in the proof of The-
orem 9.3.1 satisfies !(G) = !(H).

24. In the proof of Theorem 9.3.1, is it really necessary to equip Gk+1 for
i /2 {i1, i2} with separate disjoint copies of V i

k , one for every p, or could
we define Gk+1 from Gk by just replacing P with P 0 and joining it to
the other V k

i in the right way?

25.� Show that any Kuratowski set for a non-trivial graph property is unique
up to equivalence.
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26. Deduce Theorem 9.4.5 (iii) from Theorem 9.4.3, and vice versa.

Notes

Due to increased interaction with research on random and pseudo-random5

structures (the latter being provided, for example, by the regularity lemma),
the Ramsey theory of graphs has recently seen a period of major activity and
advance. Theorem 9.2.2 is an early example of this development.

For the more classical approach, the introductory text by R.L. Graham,
B.L. Rothschild & J.H. Spencer, Ramsey Theory (2nd edn.), Wiley 1990,
makes stimulating reading. This book includes a chapter on graph Ramsey
theory, but is not confined to it. Surveys of finite and infinite Ramsey theory
are given by J. Nešetřil and A. Hajnal in their chapters in the Handbook of
Combinatorics (R.L. Graham, M. Grötschel & L. Lovász, eds.), North-Holland
1995. The Ramsey theory of infinite sets forms a substantial part of combi-
natorial set theory, and is treated in depth in P. Erdős, A. Hajnal, A. Máté &
R. Rado, Combinatorial Set Theory , North-Holland 1984. An attractive col-
lection of highlights from various branches of Ramsey theory, including appli-
cations in algebra, geometry and point-set topology, is o↵ered in B. Bollobás,
Graph Theory , Springer GTM 63, 1979.

Ramsey’s original theorem, Theorem 9.1.1, is from F.P. Ramsey, On a
problem of formal logic, Proc. Lond.Math. Soc. 2 (1930), 264–286. Our proof
is due to P. Erdős and G. Szekeres, A combinatorial problem in geometry, Com-
pos.Math. 2 (1935), 463–470. Its bound of R(r) 6 22r�3 = 4r/8 was improved
by an exponential factor, to (4� ✏)r for some ✏ > 0, only as recently as in 2023,
by M. Campos, S. Gri�ths, R. Morris and J. Sahasrabudhe, An exponential
improvement for diagonal Ramsey, arXiv:2303.09521.

The Erdős-Hajnal conjecture is taken from P. Erdős & A. Hajnal, Ramsey-
type theorems, Discrete Appl.Math. 25 (1989), 37–52. A survey on the state
of the art a couple of years ago was given by M. Chudnovsky, The Erdős-Hajnal
conjecture – a survey, J.Graph Theory 75 (2014), 178–190, arXiv:1606.08827.

Theorem 9.2.2 is due to V. Chvátal, V. Rödl, E. Szemerédi & W.T. Trot-
ter, The Ramsey number of a graph with bounded maximum degree, J.Comb.
Theory, Ser. B 34 (1983), 239–243. The theorem marked a breakthrough to-
wards a conjecture of Burr and Erdős (1975), which asserts that the Ramsey
numbers of graphs with bounded average degree in every subgraph are lin-
ear: for every d 2 N, the conjecture says, there exists a constant c such that
R(H) 6 c |H| for all graphs H with d(H 0) 6 d for all H 0

✓ H. This conjecture
was eventually proved by C. Lee, Ramsey numbers of degenerate graphs, Ann.
Math. 185 (2017), 791–829, arXiv:1505.04773.

Our proof of Theorem 9.3.1 is from J. Nešetřil & V. Rödl, Simple proof of
the existence of restricted Ramsey graphs by means of a partite construction,
Combinatorica 1 (1981), 199–202. This construction technique was refined
in an iterative and highly complex way for the proof of Theorem 9.3.4 in

5 Concrete graphs whose structure resembles the structure expected of a random
graph are called pseudo-random. For example, the bipartite graphs spanned by an
✏-regular pair of vertex sets in a graph are pseudo-random.
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C. Reiher & V. Rödl, The girth Ramsey theorem, arXiv:2308.15589. This an-
swered a question of Erdős from 1974.

The two theorems in Section 9.4 are based on B. Oporowski, J. Oxley &
R. Thomas, Typical subgraphs of 3- and 4-connected graphs, J.Comb.Theory,
Ser. B 57 (1993), 239–257. They have been generalized to arbitrary k, but for
a weaker ‘global’ notion of connectivity as often used in graph minor theory,
by Benson Joeris, Connectivity, tree-decompositions and unavoidable minors,
PhD thesis, University of Waterloo (2015).




