
6 Flows

Let us view a graph G = (V,E) as a network: its edges carry some kind
of flow – of water, electricity, data or similar. How could we model this
precisely?

For a start, we ought to know how much flow passes through each
edge e = xy, and in which direction. In our model, we could assign
a positive integer k to the pair (x, y) to express that a flow of k units
passes through e from x to y, or assign �k to (x, y) to express that k
units of flow pass through e the other way, from y to x. For such an
assignment f :V 2 !Z we would thus have f(x, y) = �f(y, x) whenever
x and y are adjacent vertices.

Typically, a network will have only a few nodes where flow enters
or leaves the network; at all other nodes, the total amount of flow into
that node will equal the total amount of flow out of it. For our model
this means that, at most nodes x, the function f will satisfy Kirchho↵ ’s

law
Kirchho↵’s

law

X

y2N(x)

f(x, y) = 0 .

In this chapter, we call any map f :V 2 ! Z with the above two
properties a ‘flow’ on G. Sometimes, we shall replace Z with another
group, and as a rule we consider multigraphs rather than graphs.1 As
it turns out, the theory of those ‘flows’ is not only useful as a model for
real flows: it blends so well with other parts of graph theory that some
deep and surprising connections become visible, connections particularly
with connectivity and colouring problems.

1 For consistency, we shall phrase some of our proposition for graphs only: those
whose proofs rely on assertions proved (for graphs) earlier in the book. However, all
those results remain true for multigraphs.
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6.1 Circulations

Let G = (V,E) be an (undirected) multigraph. Every edge e = xy ofG = (V,E)

G has two directions, (x, y) and (y, x). (These coincide if e is a loop,
so loops have only one direction.) A triple (e, x, y) consisting of an
edge together with one of its directions is an oriented edge. The oriented
edges corresponding to e are its orientations, denoted by !e and  e . Thus,edge

orientations

{!e,  e} = {(e, x, y), (e, y, x)}, but we cannot generally say which is which.
We write

!
E := { (e, x, y) | e 2 E; x, y 2 V ; e = xy } .!

E

for the set of all oriented edges. We shall denote elements of
!
E as !e,

 e, etc. even if there is no previously defined edge e, and then use ‘e’ to
refer to its underlying edge.

For an arbitrary set
!
F ✓

!
E of oriented edges we put

 
F := {  e | !e 2

!
F } . 

F

Note that
!
E itself is symmetrical:

 
E =

!
E. For two sets X,Y ✓ V of

vertices, not necessarily disjoint, and
!
F ✓

!
E, we define

!
F (X,Y ) := { (e, x, y) 2

!
F | x 2 X; y 2 Y ; x 6= y } ,!

F (X,Y )

abbreviate
!
F ({x}, Y ) to

!
F (x, Y ) etc., and write!

F (x, Y )

!
F (x) :=

!
F (x, V ) =

!
F ({x}, {x}) .!

F (x)

Here, as below, X denotes the complement V rX of a vertex set X ✓ V.X

Note that any loops at vertices x 2 X \Y are disregarded in the defini-
tions of

!
F (X,Y ) and

!
F (x).

Let H be an abelian semigroup,2 written additively with zero 0.0

Given X,Y ✓ V , not necessarily disjoint, and a function f :
!
E!H, letf

f(X,Y ) f(X,Y ) :=
X

~e 2 ~E (X,Y )

f(!e) . (1)

Instead of f({x}, Y ) we again write f(x, Y ), etc.f(x, Y )

From now on, we assume that H is an abelian group. We call f
a circulation on G (with values in H) if f satisfies the following twocirculation

conditions:

(F1) f(e, x, y) = �f(e, y, x) for all (e, x, y) 2

!
E with x 6= y;

(F2) f(v, V ) = 0 for all v 2 V .

2 This chapter contains no group theory. The only semigroups we ever consider
for H are the natural numbers, the integers, the reals, the cyclic groups Zk, and their
products Zk ⇥Zm.
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If f satisfies (F1), then

f(X,X) = 0

for all X ✓ V . If f satisfies (F2), then

f(X,V ) =
X

x2X

f(x, V ) = 0 .

Together, these two basic observations imply that, in a circulation, the
net flow across any cut is zero:

Proposition 6.1.1. If f is a circulation, then f(X,X) = 0 for every
[6.3.1]
[6.5.2]

set X ✓ V .

Proof. f(X,X) = f(X,V )� f(X,X) = 0� 0 = 0. ⇤

Since bridges form cuts by themselves, Proposition 6.1.1 implies
that circulations are always zero on bridges:

Corollary 6.1.2. If f is a circulation and e = xy is a bridge in G, then

f(e, x, y) = 0. ⇤

The following lemma will be useful for induction proofs later.

Lemma 6.1.3. Given any edge e0 = xy of G, every circulation on G/e0
[6.3.1]
[6.6.1]

extends to a circulation on G.

Proof. Let f be a circulation on G/e0, and
!e0 := (e0, x, y). By the defini-

tion of multigraph minors in Chapter 1.10 we have E(G/e0) = Er{e0}.
Edges in ErE(x, y) are loops either in both G and G/e0 or in neither,
so the f -values on their orientations from G/e0 are well-defined in G too.
Edges e 6= e0 in E(x, y) are loops in G/e0 at the contracted vertex ve0 ;
we take their f -value from G/e0 as f(!e) for !e := (e, x, y) in G, and set
f( e) := �f(!e) to satisfy (F1). It remains to define f on !e0 and  e0.

Let

fx :=
X�

f(e, u, x) 2

!
E | u /2 {x, y}

 

fy :=
X�

f(e, y, v) 2

!
E | v /2 {x, y}

 

fxy :=
X�

f(e, x, y) 2

!
E | e 6= e0

 
.

By (F2) for f at ve0 in G/e0 we have fx = fy. Setting f(!e0) := fx� fxy
and f( e0) := �f(!e0) is the unique way now to extend f from

!
Er{!e0,  e0}

further to a circulation on G. ⇤

We remark that Lemma 6.1.3 has no analogue for flows, circulations
that are non-zero everywhere (see Section 6.3): even if f is non-zero on
all of G/e0, its extensions to G may all have to be zero on e0.
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6.2 Flows in networks

In this section we give a brief introduction to the kind of network flow
theory that is now a standard proof technique in areas such as matching
and connectivity. By way of example, we shall prove a classic result of
this theory, the so-called max-flow min-cut theorem of Ford and Fulk-
erson. This theorem alone implies Menger’s theorem without much dif-
ficulty (Exercise 3), which indicates some of the natural power lying in
this approach.

Consider the task of modelling a network with one source s and
one sink t, in which the amount of flow through a given link between
two nodes is subject to a certain capacity of that link. Our aim is to
determine the maximum net amount of flow through the network from
s to t. Somehow, this will depend both on the structure of the network
and on the various capacities of its connections – how exactly, is what
we wish to find out.

Let G = (V,E) be a multigraph, s, t 2 V two fixed vertices, andG = (V,E)

c:
!
E !N a map; we call c a capacity function on G, and the quadruples, t, c,N

N := (G, s, t, c) a network . Note that c is defined independently for thenetwork

two orientations of an edge. A function f :
!
E ! R is a flow in N if itflow

satisfies the following three conditions (Fig. 6.2.1):
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Fig. 6.2.1. A network flow in short notation: all values refer to
the direction indicated (capacities are not shown)

(F1) f(e, x, y) = �f(e, y, x) for all (e, x, y) 2

!
E with x 6= y;

(F20) f(v, V ) = 0 for all v 2 V r {s, t};
(F3) f(!e) 6 c(!e) for all !e 2

!
E.

We call f integral if all its values are integers.integral

Let f be a flow in N . If S ✓ V is such that s 2 S and t 2 S, we callf

the pair (S, S) a cut in N , and c(S, S) the capacity of this cut.3cut in N

Since f now has to satisfy only (F20) rather than (F2), we no longercapacity

have f(X,X) = 0 for all X ✓ V (as in Proposition 6.1.1). However, the
value is the same for all cuts:

3 The number c(S, S) is defined in (1) of Section 6.1.
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Proposition 6.2.1. Every cut (S, S) in N satisfies f(S, S) = f(s, V ).

Proof. As in the proof of Proposition 6.1.1, we have

f(S, S) = f(S, V )� f(S, S)

=
(F1)

f(s, V ) +
X

v2Sr{s}

f(v, V ) � 0

=
(F2
0
)

f(s, V ) .

⇤

The common value of f(S, S) in Proposition 6.2.1 will be called the total
value of f and denoted by |f |;4 the flow shown in Figure 6.2.1 has total total

value |f |
value 3.

By (F3), we have

|f | = f(S, S) 6 c(S, S)

for every cut (S, S) in N . Hence the total value of a flow in N is never
larger than the smallest capacity of a cut. The following max-flow min-

cut theorem states that this upper bound is always attained by some
flow:

Theorem 6.2.2. (Ford & Fulkerson 1956)
In every network, the maximum total value of a flow equals the minimum

max-flow

min-cut

theorem
capacity of a cut.

Proof. Let N = (G, s, t, c) be a network, and G =: (V,E). We shall define
a sequence f0, f1, f2, . . . of integral flows in N of strictly increasing total
value, i.e. with

|f0| < |f1| < |f2| < . . .

Clearly, the total value of an integral flow is again an integer, so in fact
|fn+1| > |fn|+ 1 for all n. Since all these numbers are bounded above
by the capacity of any cut in N , our sequence will terminate with some
flow fn. Corresponding to this flow, we shall find a cut of capacity
cn = |fn|. Since no flow can have a total value greater than cn, and no
cut can have a capacity less than |fn|, this number is simultaneously the
maximum and the minimum referred to in the theorem.

For f0, we set f0(
!e) := 0 for all !e 2

!
E. Having defined an integral

flow fn in N for some n 2 N, we denote by Sn the set of all vertices v Sn

such that G contains an s–v walk x0e0 . . . e`�1x` with

fn(
!ei) < c(!ei)

4 Thus, formally, |f | may be negative. In practice, however, we can change the
sign of |f | simply by swapping the roles of s and t.
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for all i < `; here, !ei := (ei, xi, xi+1) (and, of course, x0 = s and x` = v).
If t 2 Sn, let W = x0e0 . . . e`�1x` be the corresponding s–t walk;W

without loss of generality we may assume that W does not repeat any
vertices. Let

✏ := min { c(!ei)� fn(
!ei) | i < ` } .✏

Then ✏ > 0, and since fn (like c) is integral by assumption, ✏ is an integer.
Let

fn+1:
!e 7!

8
><

>:

fn(
!e)+ ✏ for !e = !ei, i = 0, . . . , `� 1;

fn(
!e)� ✏ for !e =  ei, i = 0, . . . , `� 1;

fn(
!e) for e /2 W .

Intuitively, fn+1 is obtained from fn by sending additional flow of value ✏
along W from s to t (Fig. 6.2.2).
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Fig. 6.2.2. An ‘augmenting path’ W with increment ✏ = 2, for
constant flow fn = 0 and capacities c = 3

Clearly, fn+1 is again an integral flow in N . Let us compute its total
value |fn+1| = fn+1(s, V ). Since W contains the vertex s only once, !e0
is the only triple (e, x, y) with x = s and y 2 V whose f -value was
changed. This value, and hence that of fn+1(s, V ) was raised. Therefore
|fn+1| > |fn| as desired.

If t /2 Sn, then (Sn, Sn) is a cut in N . By (F3) for fn, and the
definition of Sn, we have

fn(
!e) = c(!e)

for all !e 2

!
E(Sn, Sn), so

|fn| = fn(Sn, Sn) = c(Sn, Sn)

as desired. ⇤

Since the flow constructed in the proof of Theorem 6.2.2 is integral,
we have also proved the following:

Corollary 6.2.3. In every network (with integral capacity function)

there exists an integral flow of maximum total value. ⇤
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6.3 Group-valued flows

Let G = (V,E) be a multigraph. If f and g are two circulations on G
with values in the same abelian group H, then (f + g): !e 7! f(!e)+ g(!e) f + g

and �f : !e 7! �f(!e) are again circulations. The circulations on G with �f

values in H thus form a group in a natural way.
An H-flow in our terminology5 is a circulation f :

!
E !H that is H-flow

nowhere zero, one that satisfies f(!e) 6= 0 for all !e 2

!
E. Note that the

set of H-flows on G is not closed under addition: if two H-flows add up
to zero on some oriented edge !e, then their sum is no longer an H-flow.
By Corollary 6.1.2, a graph with an H-flow cannot have a bridge.

For finite groupsH, the number ofH-flows onG – and, in particular,
their existence – surprisingly depends only on the order of H, not on H
itself:

Theorem 6.3.1. (Tutte 1954)
For every multigraph G there exists a polynomial P such that, for any

finite abelian group H, the number of H-flows on G is P
�
|H|� 1

�
.

Proof. Let G =: (V,E); we use induction on m := |E|. Let us assume (6.1.1)
(6.1.3)

first that all the edges of G are loops. Then, given any finite abelian
group H, every map

!
E !H r {0} is an H-flow on G. Since |

!
E| = |E|

when all edges are loops, there are
�
|H|� 1

�m
such maps, and P := xm

is the polynomial sought.
Now assume there is an edge e0 = xy 2 E that is not a loop; let e0 = xy

!e0 := (e0, x, y) and E0 := Er {e0}. We consider the multigraphs E0

G1 := G� e0 and G2 := G/e0 .

By the induction hypothesis, there are polynomials Pi for i = 1, 2 such P1, P2

that, for any finite abelian group H and k := |H|� 1, the number of k

H-flows on Gi is Pi(k). We shall prove that the number of H-flows on G
equals P2(k)�P1(k); then P := P2 �P1 is the desired polynomial.

Let H be given, and let F denote the set of all H-flows on G. Our H,F

aim is to show that

|F | = P2(k)�P1(k) . (1)

The H-flows on G1 are precisely the restrictions to
�!
E0 of those H-

circulations on G that are zero on e0 but nowhere else. Let us denote
the set of these circulations on G by F1; then F1

|F1| = P1(k).

5 To avoid cumbersome repetitions of the phrase ‘nowhere zero’ before ‘H-flow’,
we deviate slightly here from standard terminology. See the footnote in the notes.
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Let F2 denote the set of H-circulations on G that are non-zero ex-
cept possibly on e0. TheH-flows f on G2 define circulations f 0

2 F2 on G
as in the proof of Lemma 6.1.3, where ': f 7! f 0 is injective. This map '
is also surjective: use Proposition 6.1.1 with X = {x, y} to check (F2)
at ve0 for the map f induced naturally on

!
E(G/e0) by a given f 0

2 F2,
and note that ' sends f to f 0 since f 0 is determined uniquely on !e0
and  e0 by its values on

!
E r {!e0,  e0}. Thus,

|F2| = P2(k).

As F1 ✓ F2 and F = F2 rF1, we have (1) as desired. ⇤

The polynomial P of Theorem 6.3.1 is known as the flow polynomial
flow

polynomial

of G.

Corollary 6.3.2. If H and H 0
are two finite abelian groups of equal

[6.4.5]
[6.6.1]

order, then G has an H-flow if and only if G has an H 0
-flow. ⇤

Corollary 6.3.2 has fundamental implications for the theory of al-
gebraic flows: it indicates that crucial di�culties in existence proofs of
H-flows are unlikely to be of a group-theoretic nature. On the other
hand, being able to choose a convenient group can be quite helpful; we
shall see a pretty example for this in Proposition 6.4.5.

Let k > 1 be an integer and G = (V,E) a multigraph. A Z-flow fk

on G such that 0 < |f(!e)| < k for all !e 2

!
E is called a k-flow . Clearly,k-flow

any k-flow is also an `-flow for all ` > k. Thus, we may ask which is
the least integer k such that G admits a k-flow – assuming that such a k
exists. We call this least k the flow number of G and denote it by '(G);flow

number

if G has no k-flow for any k, we put '(G) := 1.'(G)

The task of determining flow numbers quickly leads to some of the
deepest open problems in graph theory. We shall consider these later
in the chapter. First, however, let us see how k-flows are related to the
more general concept of H-flows.

There is an intimate connection between k-flows and Zk-flows. Let
�k denote the natural homomorphism i 7! i from Z to Zk. By compo-�k

sition with �k, every k-flow defines a Zk-flow. As the following theorem
shows, the converse holds too: from every Zk-flow on G we can construct
a k-flow on G. In view of Corollary 6.3.2, this means that the general
question about the existence of H-flows for arbitrary groups H reduces
to the corresponding question for k-flows.

Theorem 6.3.3. (Tutte 1950)

[6.4.1]
[6.4.2]
[6.4.3]
[6.4.5] A multigraph admits a k-flow if and only if it admits a Zk-flow.
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Proof. Let g be a Zk-flow on a multigraph G = (V,E); we construct a
k-flow f on G. We may assume without loss of generality that G has g

no loops. Let F be the set of all functions f :
!
E ! Z that satisfy (F1), F

|f(!e)| < k for all !e 2

!
E, and �k � f = g; note that, like g, any f 2 F is

nowhere zero.
Let us show first that F 6= ;. Since we can express every value

g(!e) 2 Zk as i with |i| < k and then put f(!e) := i, there is clearly a map
f :
!
E!Z such that |f(!e)| < k for all !e 2

!
E and �k �f = g. For each edge

e 2 E, let us choose one of its two orientations and denote this by !e. We
may then define f 0:

!
E!Z by setting f 0(!e) := f(!e) and f 0( e) := �f(!e)

for every e 2 E. Then f 0 is a function satisfying (F1) and with values in
the desired range; it remains to show that �k � f 0 and g agree not only
on the chosen orientations !e but also on their inverses  e. Since �k is a
homomorphism, this is indeed so:

(�k � f 0)( e) = �k(�f(!e)) = �(�k � f)(!e) = �g(!e) = g( e) .

Hence f 0
2 F , so F is indeed non-empty.

Our aim is to find an f 2 F that satisfies Kirchho↵’s law (F2), and
is thus a k-flow. As a candidate, let us consider an f 2 F for which the f

sum

KK(f) :=
X

x2V

|f(x, V )|

of all deviations from Kirchho↵’s law is least possible. We shall prove
that K(f) = 0; then, clearly, f(x, V ) = 0 for every x, as desired.

SupposeK(f) 6= 0. Since f satisfies (F1), and hence
P

x2V f(x, V ) =
f(V, V ) = 0, there exists a vertex x with x

f(x, V ) > 0 . (1)

Let X ✓ V be the set of all vertices x0 for which G contains a walk X

x0e0 . . . e`�1x` from x to x0 such that f(ei, xi, xi+1) > 0 for all i < `;
furthermore, let X 0 := X r {x}. X0

We first show that X 0 contains a vertex x0 with f(x0, V ) < 0. By
definition of X, we have f(e, x0, y) 6 0 for all edges e = x0y such that
x0

2 X and y 2 X. In particular, this holds for x0 = x. Thus, (1) implies
f(x,X 0) > 0. Then f(X 0, x) < 0 by (F1), as well as f(X 0, X 0) = 0.
Therefore

X

x02X0

f(x0, V ) = f(X 0, V ) = f(X 0, X)+ f(X 0, x)+ f(X 0, X 0) < 0 ,

so some x0
2 X 0 must indeed satisfy x0

f(x0, V ) < 0 . (2)
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As x0
2 X, there is an x–x0 walk W = x0e0 . . . e`�1x` such thatW

f(ei, xi, xi+1) > 0 for all i < `. We now modify f by sending some flow
back along W , letting f 0:

!
E!Z be given byf 0

f 0: !e 7!

8
><

>:

f(!e)� k for !e = (ei, xi, xi+1), i = 0, . . . , `� 1;

f(!e)+ k for !e = (ei, xi+1, xi), i = 0, . . . , `� 1;

f(!e) for e /2 W .

By definition of W , we have |f 0(!e)| < k for all !e 2

!
E. Hence f 0, like f ,

lies in F .
How does the modification of f a↵ect K? At all inner vertices v

of W , as well as outside W , the deviation from Kirchho↵’s law remains
unchanged:

f 0(v, V ) = f(v, V ) for all v 2 V r {x, x0}. (3)

For x and x0, on the other hand, we have

f 0(x, V ) = f(x, V )� k and f 0(x0, V ) = f(x0, V )+ k . (4)

Since g is a Zk-flow and hence

�k(f(x, V )) = g(x, V ) = 0 2 Zk

and

�k(f(x
0, V )) = g(x0, V ) = 0 2 Zk ,

f(x, V ) and f(x0, V ) are both multiples of k. Thus f(x, V ) > k and
f(x0, V ) 6 �k, by (1) and (2). But then (4) implies that

|f 0(x, V )| < |f(x, V )| and |f 0(x0, V )| < |f(x0, V )| .

Together with (3), this gives K(f 0) < K(f), a contradiction to the choice
of f .

Therefore K(f) = 0 as claimed, and f is indeed a k-flow. ⇤

Since the sum of two circulations with values in Zk is another such
circulation, Zk-flows are often easier to construct (by summing over suit-
able partial flows) than k-flows. In this way, Theorem 6.3.3 may be of
considerable help in determining whether or not some given graph has
a k-flow. In the following sections we shall meet a number of examples
for this.

Although Theorem 6.3.3 tells us whether a given multigraph admits
a k-flow (assuming we know the value of its flow-polynomial for k� 1),
it does not say anything about the number of such flows. By a recent
result of Kochol, this number is also a polynomial in k, whose values can
be bounded above and below by the corresponding values of the flow
polynomial. See the notes for details.
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6.4 k-Flows for small k

Trivially, a graph has a 1-flow (the empty set) if and only if it has no
edges. In this section we collect a few simple examples of su�cient
conditions under which a graph has a 2-, 3- or 4-flow. More examples
can be found in the exercises.

Proposition 6.4.1. A graph has a 2-flow if and only if all its degrees

are even.

Proof. By Theorem 6.3.3, a graph G = (V,E) has a 2-flow if and only if (6.3.3)

it has a Z2-flow, i.e. if and only if the constant map
!
E!Z2 with value 1

satisfies (F2). This is the case if and only if all degrees are even. ⇤

For the remainder of this chapter, let us call a graph even if all its vertex
even

graph

degrees are even.

Proposition 6.4.2. A cubic graph has a 3-flow if and only if it is bi-

partite.

Proof. Let G = (V,E) be a cubic graph. Let us assume first that (1.6.1)
(6.3.3)

G has a 3-flow, and hence also a Z3-flow f . We show that any cycle
C = x0 . . . x`x0 in G has even length (cf. Proposition 1.6.1). Consider
two consecutive edges on C, say ei�1 := xi�1xi and ei := xixi+1. If f
assigned the same value to these edges in the direction of the forward
orientation of C, i.e. if f(ei�1, xi�1, xi) = f(ei, xi, xi+1), then f could
not satisfy (F2) at xi for any non-zero value of the third edge at xi.
Therefore f assigns the values 1 and 2 to the edges of C alternately, and
in particular C has even length.

Conversely, let G be bipartite, with vertex bipartition {X,Y }. Since
G is cubic, the map

!
E!Z3 defined by f(e, x, y) := 1 and f(e, y, x) := 2

for all edges e = xy with x 2 X and y 2 Y is a Z3-flow on G. By
Theorem 6.3.3, then, G has a 3-flow. ⇤

What are the flow numbers of the complete graphs Kn? For odd
n > 1, we have '(Kn) = 2 by Proposition 6.4.1. Moreover, '(K2) = 1,
and '(K4) = 4; this is easy to see directly (and it follows from Proposi-
tions 6.4.2 and 6.4.5). Interestingly, K4 is the only complete graph with
flow number 4:

Proposition 6.4.3. For all even n > 4, '(Kn) = 3.

Proof. Proposition 6.4.1 implies that '(Kn) > 3 for even n. We show, (6.3.3)

by induction on n, that every G = Kn with even n > 4 has a 3-flow.
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For the induction start, let n = 6. Then G is the edge-disjoint union
of three graphs G1, G2, G3, with G1, G2 = K3 and G3 = K3,3. Clearly
G1 and G2 each have a 2-flow, while G3 has a 3-flow by Proposition 6.4.2.
The union of all these flows is a 3-flow on G.

Now let n > 6, and assume the assertion holds for n� 2. Clearly,
G is the edge-disjoint union of a Kn�2 and a graph G0 = (V 0, E0) with
G0 = Kn�2 ⇤ K2. The Kn�2 has a 3-flow by induction. By Theo-
rem 6.3.3, it thus su�ces to find a Z3-flow on G0. For every vertex z of
the Kn�2 ✓ G0, let fz be a Z3-flow on the triangle zxyz ✓ G0, where
e = xy is the edge of the K2 in G0. Let f :

�!
E0 !Z3 be the sum of these

flows. Clearly, f is nowhere zero, except possibly in (e, x, y) and (e, y, x).
If f(e, x, y) 6= 0, then f is the desired Z3-flow on G0. If f(e, x, y) = 0,
then f + fz (for any z) is a Z3-flow on G0. ⇤

Proposition 6.4.4. Every 4-edge-connected graph has a 4-flow.

Proof. Let G = (V,E) be a 4-edge-connected graph. By Corollary 2.4.2,(2.4.2)

G has two edge-disjoint spanning trees Ti, i = 1, 2. For each edge e /2 Ti

let Ci,e be the fundamental cycle with respect to Ti containing e, and let
fi,e be a Z4-flow of value i around Ci,e – more precisely: a circulationf1,e, f2,e !
E!Z4 with values i and �i on the edges of Ci,e and zero elsewhere.

Let f1 :=
P

e/2T1
f1,e. Since each e /2 T1 lies on only one cycle C1,e0f1

(namely, for e = e0), f1 takes only the values 1 and �1 (= 3) outside T1.
Let

F := { e 2 E(T1) | f1(e) = 0 }

and f2 :=
P

e2F f2,e. As above, f2(e) = 2 = �2 for all e 2 F . Nowf2

f := f1+f2 is the sum of circulations with values in Z4, and hence itselff

a circulation with values in Z4. Moreover, f is nowhere zero: on edges
in F it takes the value 2, on edges of T1 � F it agrees with f1 (and is
hence non-zero by the choice of F ), and on all edges outside T1 it takes
one of the values 1 or 3. Hence, f is a Z4-flow on G, and the assertion
follows by Theorem 6.3.3. ⇤

Our next proposition describes the graphs with a 4-flow in terms
of those with a 2-flow. Given integers m,n > 2, write Zm ⇥Zn for theZm ⇥Zn

group whose elements are the pairs (a, b) with a 2 Zm and b 2 Zn and
where (a, b)+ (a0, b0) := (a+ a0, b+ b0).

Proposition 6.4.5.

(i) A graph has a 4-flow if and only if it is the union of two even

subgraphs.

(ii) A cubic graph has a 4-flow if and only if it is 3-edge-colourable.

Proof. By Corollary 6.3.2 and Theorem 6.3.3, a graph has a 4-flow if and(6.3.2)
(6.3.3)

only if it has a Z2

2
-flow, where Z2

2
:= Z2 ⇥Z2. Assertion (i) now follows

from Proposition 6.4.1.
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(ii) Let G = (V,E) be a cubic graph. We assume first that G has a
Z2

2
-flow f , and define an edge colouring E!Z2

2
r{0}. As a = �a for all

a 2 Z2

2
, we have f(!e) = f( e) for every !e 2

!
E; let us colour the edge

e with this colour f(!e). Now if two edges with a common end v had
the same colour, then these two values of f would sum to zero; by (F2),
f would then assign zero to the third edge at v. As this contradicts the
definition of f , our edge colouring is correct.

Conversely, since the three non-zero elements of Z2

2
sum to zero,

every 3-edge-colouring c:E!Z2

2
r{0} defines a Z2

2
-flow on G by letting

f(!e) = f( e) = c(e) for all !e 2

!
E. ⇤

Corollary 6.4.6. Every cubic 3-edge-colourable graph is bridgeless. ⇤

6.5 Flow-colouring duality

In this section we shall see a surprising connection between flows and
colouring: every k-colouring of a plane multigraph gives rise to a k-flow
on its dual, and vice versa. In this way, the investigation of k-flows on
arbitrary graphs, not necessarily planar, appears as a natural general-
ization of the familiar map colouring problems in the plane.

Let G = (V,E) and G⇤ = (V ⇤, E⇤) be dual plane multigraphs. (This G = (V,E)
G⇤= (V ⇤, E⇤)

implies that G and G⇤ are connected; see Chapter 4.6.) For simplicity,
let us assume that G and G⇤ have neither bridges nor loops and are
non-trivial. For edge sets F ✓ E, let us write

F ⇤ := { e⇤ 2 E⇤ | e 2 F } . F ⇤

Conversely, if a subset of E⇤ is given, we shall usually write it immedi-
ately in the form F ⇤, and thus let F ✓ E be defined implicitly via the
bijection e 7! e⇤.

Suppose we are given a circulation g on G⇤: how can we employ the
duality between G and G⇤ to derive from g some information about G?
The most general property of all circulations is Proposition 6.1.1, which
says that g(X,X) = 0 for all X ✓ V ⇤. By Proposition 4.6.1, the bonds
E⇤(X,X) in G⇤ correspond precisely to the cycles in G. Thus if we take
the composition f of the maps e 7! e⇤ and g, and sum its values over
the edges of a cycle in G, then this sum should again be zero. Our first
aim is to formalize and prove this observation.

Of course, there is still a technical hitch: since g takes its arguments
not in E⇤ but in

�!
E⇤, we cannot simply define f as above: we first have

to refine the bijection e 7! e⇤ into one from
!
E to

�!
E⇤, i.e. assign to every

!e 2

!
E canonically one of the two orientations of e⇤. This will be the

purpose of our first lemma. After that, we shall show that f does indeed
sum to zero along any cycle in G.
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If C = v0 . . . v`�1v0 is a cycle with edges ei = vivi+1 (and v` := v0),
we shall call

!
C := { (ei, vi, vi+1) | i < ` }!

C

a cycle with orientation. Note that this definition of
!
C depends on thecycle with

orientation

vertex enumeration chosen to denote C: every cycle has two orienta-
tions. Conversely, of course, C can be reconstructed from the set

!
C . In

practice, we shall therefore speak about C freely even when, formally,
only

!
C has been defined.

Lemma 6.5.1. There exists a bijection
⇤: !e 7! !e ⇤

from
!
E to

�!
E⇤

with

the following properties:

(i) The underlying edge of
!e ⇤

is always e⇤, i.e. !e ⇤
is one of the two

orientations
�!
e⇤,
 �
e⇤ of e⇤;

(ii) If C ✓ G is a cycle, F := E(C), and if X ✓ V ⇤
is such that

F ⇤ = E⇤(X,X), then there exists an orientation
!
C of C with

{ !e ⇤ | !e 2

!
C } =

�!
E⇤(X,X).

The proof of Lemma 6.5.1 is not entirely trivial: it is based on the
so-called orientability of the plane, and we cannot give it here. Still,
the assertion of the lemma is intuitively plausible. Indeed if we de-
fine for e = vw and e⇤ = xy the assignment (e, v, w) 7! (e, v, w)⇤ 2

{(e⇤, x, y), (e⇤, y, x)} simply by turning e and its ends clockwise onto e⇤

(Fig. 6.5.1), then the resulting map !e 7! !e ⇤ satisfies the two assertions
of the lemma.

X

X

!
C

Fig. 6.5.1. Oriented cycle-cut duality

Consider a fixed bijection ⇤: !e 7! !e ⇤ as provided by Lemma 6.5.1.!e ⇤

Given an abelian group H, let f :
!
E !H and g:

�!
E⇤ !H be two mapsf, g

such that

f(!e) = g(!e ⇤)
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for all !e 2

!
E. For

!
F ✓

!
E, we set

f(
!
F ) :=

X

~e 2 ~F

f(!e) . f(
!
C ) etc.

Lemma 6.5.2.

(i) The map g satisfies (F1) if and only if f does.

(ii) The map g is a circulation on G⇤
if and only if f satisfies (F1)

and f(
!
C ) = 0 for every cycle

!
C with orientation.

Proof. Assertion (i) follows from Lemma 6.5.1 (i) and the fact that !e 7!
(1.9.3)
(4.6.1)
(6.1.1)!e ⇤ is bijective.

For the forward implication of (ii), let us assume that g is a circu-
lation on G⇤, and consider a cycle C ✓ G with some given orientation.
Let F := E(C). By Proposition 4.6.1, F ⇤ =: E⇤(X,X) is a bond of G⇤.
By definition of f and g, Lemma 6.5.1 (ii) and Proposition 6.1.1 give

f(
!
C ) =

X

~e 2 ~C

f(!e) =
X

~d 2
�!
E⇤ (X,X)

g(
!
d) = g(X,X) = 0

for one of the two orientations
!
C of C. Then, by f(

 
C ) = �f(

!
C ), also

the corresponding value for our given orientation of C must be zero.
For the backward implication it su�ces by (i) to show that g sat-

isfies (F2). Let v 2 V ⇤ be given. By Lemma 1.9.3, the cut E⇤(v) is a
disjoint union of bonds D⇤ = E⇤(X,X); let us name these so that always
v 2 X. Since every edge in these bonds is incident with v, we then have
�!
E⇤(X,X) ✓

�!
E⇤(v) also for the oriented edges.

By Proposition 4.6.1, each of the sets D ✓ E is the edge set of a
cycle C in G, which by Lemma 6.5.1 (ii) has an orientation

!
C such that

{ !e ⇤ | !e 2

!
C } =

�!
E⇤(X,X) .

Hence g(X,X) = f(
!
C ) = 0 by definition of f and g, giving

g(v, V ⇤) =
X

X

g(X,X) = 0

as desired. ⇤

With the help of Lemma 6.5.2, we can now prove our colouring-flow
duality theorem for plane multigraphs. If P = v0 . . . v` is a path with
edges ei = vivi+1 (i < `), we set (depending on our vertex enumeration
of P )

!
P := { (ei, vi, vi+1) | i < ` } !

P

and call
!
P a v0 ! v` path. Again, P may be given implicitly by

!
P .

v0 ! v`
path



170 6. Flows

Theorem 6.5.3. (Tutte 1954)
For every dual pair G,G⇤

of plane multigraphs,

�(G) = '(G⇤) .

Proof. Let G =: (V,E) and G⇤ =: (V ⇤, E⇤). For |G| 2 {1, 2} the assertion(1.5.5)

is easily checked; we shall assume that |G| > 3, and apply induction onV,E

the number of bridges in G. If e 2 G is a bridge then e⇤ is a loop,V ⇤, E⇤

and G⇤ � e⇤ is a plane dual of G/e (why?). Hence, by the induction
hypothesis,

�(G) = �(G/e) = '(G⇤ � e⇤) = '(G⇤) ;

for the first and the last equality we use that, by |G| > 3, e is not the
only edge of G.

So all that remains to be checked is the induction start: let us
assume that G has no bridge. If G has a loop, then G⇤ has a bridge, and
�(G) = 1 = '(G⇤) by convention. So we may also assume that G has
no loop. Then �(G) is finite; we shall prove for given k > 2 that G isk

k-colourable if and only if G⇤ has a k-flow. As G – and hence G⇤ – has
neither loops nor bridges, we may apply Lemmas 6.5.1 and 6.5.2 to G
and G⇤. Let !e 7! !e ⇤ be a bijection between

!
E and

�!
E⇤ as in Lemma 6.5.1.

We first assume that G⇤ has a k-flow. Then G⇤ also has a Zk-flow g.g

As before, let f :
!
E!Zk be defined by f(!e) := g(!e ⇤). We shall use f tof

define a vertex colouring c:V !Zk of G.
Let T be a normal spanning tree ofG, with root r, say. Put c(r) := 0.

For every other vertex v 2 V let c(v) := f(
!
P ), where

!
P is the r! v

path in T . To check that this is a proper colouring, consider an edge
e = vw 2 E. As T is normal, we may assume that v < w in the tree-order
of T . If e is an edge of T then c(w)� c(v) = f(e, v, w) by definition of c,
so c(v) 6= c(w) since g (and hence f) is nowhere zero. If e /2 T , let

!
P

denote the v!w path in T . Then

c(w)� c(v) = f(
!
P ) = �f(e, w, v) 6= 0

by Lemma 6.5.2 (ii).
Conversely, we now assume that G has a k-colouring c. Let us definec

f :
!
E!Z by

f(e, v, w) := c(w)� c(v) ,f

and g:
�!
E⇤ ! Z by g(!e ⇤) := f(!e). Clearly, f satisfies (F1) and takesg

values in {±1, . . . ,±(k�1)}, so by Lemma 6.5.2 (i) the same holds for g.
By definition of f , we further have f(

!
C ) = 0 for every cycle

!
C with

orientation. By Lemma 6.5.2 (ii), therefore, g is a k-flow. ⇤
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6.6 Tutte’s flow conjectures

How can we determine the flow number of a graph? Indeed, does every
(bridgeless) graph have a flow number, a k-flow for some k? Can flow
numbers, like chromatic numbers, become arbitrarily large? Can we
characterize the graphs admitting a k-flow, for given k?

Of these four questions, we shall answer the second and third in this
section: we prove that every bridgeless graph has a 6-flow. In particular,
a graph has a flow number if and only if it has no bridge. The ques-
tion asking for a characterization of the graphs with a k-flow remains
interesting for k = 3, 4, 5. Partial answers are suggested by the following
three conjectures of Tutte, who initiated algebraic flow theory on graphs.

The oldest and best known of the Tutte conjectures is his 5-flow

conjecture:

Five-Flow Conjecture. (Tutte 1954)
Every bridgeless multigraph has a 5-flow.

Which graphs have a 4-flow? By Proposition 6.4.4, the 4-edge-
connected graphs are among them. The Petersen graph (Fig. 6.6.1), on
the other hand, is an example of a bridgeless graph without a 4-flow:
since it is cubic but not 3-edge-colourable, it cannot have a 4-flow by
Proposition 6.4.5 (ii).

Fig. 6.6.1. The Petersen graph

Tutte’s 4-flow conjecture states that the Petersen graph must be
present in every graph without a 4-flow:

Four-Flow Conjecture. (Tutte 1966)
Every bridgeless multigraph not containing the Petersen graph as a mi-

nor has a 4-flow.

By Proposition 1.7.3, we may replace the word ‘minor’ in the 4-flow
conjecture by ‘topological minor’.
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Even if true, the 4-flow conjecture will not be best possible: a K11,
for example, contains the Petersen graph as a minor but has a 4-flow,
even a 2-flow. The conjecture appears more natural for sparser graphs;
a proof for cubic graphs was announced in 1998 by Robertson, Sanders,
Seymour and Thomas, which however still has not been published in full.

A cubic bridgeless graph or multigraph without a 4-flow (equiva-
lently, without a 3-edge-colouring) is called a snark . The 4-flow conjec-snark

ture for cubic graphs says that every snark contains the Petersen graph
as a minor; in this sense, the Petersen graph has thus been shown to be
the smallest snark. Snarks form the hard core both of the four colour
theorem and of the 5-flow conjecture: the four colour theorem is equi-
valent to the assertion that no snark is planar (exercise), and it is not
di�cult to reduce the 5-flow conjecture to the case of snarks.6 However,
although the snarks form a very special class of graphs, none of the
problems mentioned seems to become much easier by this reduction.7

Three-Flow Conjecture. (Tutte 1972)
Every multigraph without a cut consisting of exactly one or exactly three

edges has a 3-flow.

Again, the 3-flow conjecture will not be best possible: it is easy to con-
struct graphs with three-edge cuts that have a 3-flow (exercise).

By our duality theorem (6.5.3), all three flow conjectures are true
for planar graphs and thus motivated: the 3-flow conjecture translates
to Grötzsch’s theorem (5.1.3), the 4-flow conjecture to the four colour
theorem (since the Petersen graph is not planar, it is not a minor of a
planar graph), the 5-flow conjecture to the five colour theorem.

We finish this section with the main result of the chapter:

Theorem 6.6.1. (Seymour 1981)
Every bridgeless multigraph has a 6-flow.

Proof. We prove by induction on |G| that, given any bridgeless multi-

(3.3.6)
(6.1.3)
(6.3.2)
(6.3.3) graph G = (V,E) and a vertex u of G, there exists a (Z2 ⇥ Z3)-flow

f = f2 ⇥ f3 on G such that f2 is zero on all the edges at u. By Corol-u

lary 6.3.2 and Theorem 6.3.3, then, G will also have a 6-flow.
The induction starts trivially with |G| = 1, since loops are ignored

in (F1) and (F2). So let G be given for the induction step. This is
trivial if G is disconnected or has a cutvertex, so we assume that G is
2-connected. Then G�u is connected.

6 The same applies to another well-known conjecture, the cycle double cover con-

jecture; see Exercise 17.
7 That snarks are elusive has been known to mathematicians for some time; cf.

Lewis Carroll, The Hunting of the Snark , Macmillan 1876.
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If G�u has a bridge, e say, let {V1, V2} be the partition of V (G�u)
underlying its cut {e}. For i = 1, 2 the sets Ui := Vi[{u} are connected
inG; we contract them to formGi :=G/Ui with contracted vertex ui. By
the induction hypothesis, Gi has a (Z2 ⇥Z3)-flow f i = f i

2
⇥ f i

3
in which

f i
2
is zero on ui. Replacing f1

3
with �f1

3
if necessary we may assume

that it agrees with f2

3
on !e and  e . Now f := f1 [ f2 is a (Z2⇥Z3)-flow

on G whose first component f2 is zero on all the edges at u, as desired.

Fig. 6.6.2. Constructing f when G � u has a bridge

It remains to consider the case that G�u is bridgeless. As G�u is
connected, this makes it 2-edge-connected. Let H be the union of two H

edge-disjoint paths inG�u between distinct neighbours of u; these paths
exist by Menger’s theorem 3.3.6 (ii). Note that H is an even connected
submultigraph of G�u (Figure 6.6.3).

Fig. 6.6.3. Constructing f when G � u has no bridge

LetG1 be the minor ofG obtained by contracting the edges ofH to a G1, u1

vertex u1, and let G2 be obtained from G1 by contracting a u–u1 edge e1 e1

to a vertex u2. Both G1 and G2 are bridgeless, because contracting edges G2, u2

never creates a bridge. By the induction hypothesis, G2 has a (Z2⇥Z3)-
flow f2

2
⇥ f2

3
with f2

2
zero on all the edges at u2. By Lemma 6.1.3,

f2

3
extends to a Z3-circulation f1

3
on G1 that is non-zero everywhere

except possibly on e1. As G1 has at least two u–u1 edges, however, we
can modify f1

3
to make it non-zero on all the edges of G1, including e1.

Applying Lemma 6.1.3 once more, we extend f1

3
to a Z3-circulation f3

on G that is non-zero on all edges not in H.
As H is even and f2

2
maps all the edges at u2 to zero, we can

extend f2

2
to a Z2-circulation f2 on G� e1 that maps all its edges at u to
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zero, by letting f2(
!e) := 1 2 Z2 for all edges e of H. Setting f2 to zero

on e1 too then turns it into a Z2-circulation on G. Now f := f2⇥ f3 is a
(Z2⇥Z3)-flow on G with f2 zero on all the edges at u, as desired. ⇤

Exercises

1.� Prove Proposition 6.2.1 by induction on |S|.

2. (i)� Given n 2 N, find a capacity function for the network below such
that the algorithm from the proof of the max-flow min-cut theorem will
need more than n augmenting paths W if these are badly chosen.

s t

(ii)+ Show that, if all augmenting paths are chosen as short as possible,
their number is bounded by a function of the size of the network.

3.+ Derive Menger’s Theorem 3.3.5 from the max-flow min-cut theorem.

(Hint. The edge version is easy. For the vertex version, apply the edge
version to a suitable auxiliary graph.)

4.� Let f :
!
E ! H be a circulation on G and g: H ! H 0 a group homomor-

phism. Show that g � f is a circulation on G. Is g � f an H 0-flow if f is
an H-flow?

5. View the group of circulations on a graph with values in Z2 as a vector
space over Z2. Find a space in Chapter 1.9 to which it is isomorphic,
and write down an explicit isomorphism.

6. Let H be an abelian group, G = (V, E) a connected graph, T a spanning
tree, and f a map from the orientations of the edges in E rE(T ) to H
that satisfies (F1). Show that f extends uniquely to a circulation on G
with values in H.

7. (continued)

Let VH = VH(G) be the group of all maps V !H, and EH = EH(G) the

group of all maps
!
E !H satisfying (F1), both with pointwise addition.

Every ' 2 VH defines a  2 EH by  (e, x, y) := '(y) �'(x).

(i) Show that these  form a subgroup BH = BH(G) of EH with

BH = { 2 EH |  (
!
C ) = 0 for every oriented cycle C ✓ G },

where  (
!
C ) :=

P
~e2 ~C

 (!e).

(ii) Show that every map
!
E(T )!H satisfying (F1) extends uniquely

to a map in BH .
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8.+ (continued)

Let CH denote the group of all circulations on G with values in H.

(i) Show that EH/BH is isomorphic to CH .

(ii) Show that EH/CH is isomorphic to BH .

9.� Given k > 1, show that a graph has a k-flow if and only if each of its
blocks has a k-flow.

10.� Show that '(G/e) 6 '(G) whenever G is a multigraph and e an edge
of G. Does this imply that, for every k, the class of all multigraphs
admitting a k-flow is closed under taking minors?

11.� Work out the flow number of K4 directly, without using any results
from the text.

12. Let G be a graph with a k-flow, where k > 3. Find a cubic graph that
has a k-flow and from which G can be obtained by contracting edges
and identifying nonadjacent vertices. Can you find a construction that
does not require the assumption of k > 3?

Do not use the 6-flow Theorem 6.6.1 for the following three exercises.

13. Show that '(G) < 1 for every bridgeless multigraph G.

14. Let G be a bridgeless connected graph with n vertices and m edges. By
considering a normal spanning tree of G, show that '(G) 6 m�n+2.

15. Assume that a graph G has m spanning trees such that no edge of G
lies in all of these trees. Show that '(G) 6 2m.

16. Show that every graph with a Hamilton cycle has a 4-flow. (A Hamilton

cycle of G is a cycle in G that contains all the vertices of G.)

17. A family of (not necessarily distinct) subgraphs of a graph G is called
a double cover of G if every edge of G lies on exactly two of these sub-
graphs. The cycle double cover conjecture asserts that every bridgeless
multigraph admits a double cover by cycles. Prove the conjecture for
graphs with a 4-flow.

18.� Determine the flow number of C5
⇤ K1, the wheel with 5 spokes.

19. Find bridgeless graphs G and H = G � e such that 2 < '(G) < '(H).

20. Prove Proposition 6.4.1 without using Theorem 6.3.3.

21.+ Prove that a plane triangulation is 3-colourable if and only if all its
vertices have even degree.

22. Show that the 3-flow conjecture for planar multigraphs is equivalent to
Grötzsch’s Theorem 5.1.3.

23. (i)� Show that the four colour theorem is equivalent to the non-exist-
ence of a planar snark, i.e. to the statement that every cubic bridgeless
planar multigraph has a 4-flow.

(ii) Can ‘bridgeless’ in (i) be replaced by ‘3-connected’?
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24.+ Show that a graph G = (V, E) has a k-flow if and only if it has an
orientation D that directs, for every X ✓ V , at least 1/k of the edges
in E(X, X) from X towards X.

Notes

Network flow theory is an application of graph theory that has had a major
and lasting impact on its development over decades. As is illustrated already
by the fact that Menger’s theorem can be deduced easily from the max-flow
min-cut theorem (Exercise 3), the interaction between graphs and networks
may go either way: while ‘pure’ results in areas such as connectivity, matching
and random graphs have found applications in network flows, the intuitive
power of the latter has boosted the development of proof techniques that have
in turn brought about theoretic advances.

The classical reference for network flows is L.R. Ford & D.R. Fulkerson,
Flows in Networks, Princeton University Press 1962. More recent and compre-
hensive accounts are given by R.K. Ahuja, T.L. Magnanti & J.B. Orlin, Net-
work flows, Prentice-Hall 1993, by A. Frank in his chapter in the Handbook of
Combinatorics (R.L. Graham, M. Grötschel & L. Lovász, eds.), North-Holland
1995, and by A. Schrijver, Combinatorial optimization, Springer 2003. An in-
troduction to graph algorithms in general is given in A. Gibbons, Algorithmic
Graph Theory , Cambridge University Press 1985.

If one recasts the maximum flow problem in linear programming terms,
one can derive the max-flow min-cut theorem from the linear programming
duality theorem; see A. Schrijver, Theory of integer and linear programming ,
Wiley 1986.

The more algebraic theory of group-valued flows and k-flows has been
developed largely by Tutte; he gives a thorough account in his monograph
W.T. Tutte, Graph Theory , Addison-Wesley 1984. The fact that the number
of k-flows of a multigraph is a polynomial in k, whose values can be bounded
in terms of the corresponding values of the flow polynomial, was proved by
M. Kochol, Polynomials associated with nowhere-zero8 flows, J.Comb.Theory,
Ser. B 84 (2002), 260–269.

Tutte’s flow conjectures are covered also in F. Jaeger’s survey, Nowhere-
zero flow problems, in (L.W. Beineke & R.J. Wilson, eds.) Selected Topics
in Graph Theory 3, Academic Press 1988. For the flow conjectures, see also
T.R. Jensen & B. Toft, Graph Coloring Problems, Wiley 1995. The 6-flow the-
orem is due to P.D. Seymour, Nowhere-zero 6-flows, J.Comb.Theory, Ser. B
30 (1981), 130–135. This paper also indicates how Tutte’s 5-flow conjecture
reduces to snarks. Our proof is from M. Devos and K. Nurse, A short proof
of Seymour’s 6-flow theorem, arXiv:2307.04768. The proof of the 4-flow con-
jecture for cubic graphs announced in 1998 Robertson, Sanders, Seymour and
Thomas has not yet been entirely written up. C. Thomassen, The weak 3-flow
conjecture and the weak circular flow conjecture, J.Comb.Theory, Ser. B 102
(2012), 521–529, proved that every graph of large enough edge-connectivity k

8 In the literature, the term ‘flow’ is often used to mean what we have called ‘cir-
culation’, i.e. flows are not required to be nowhere zero unless this is stated explicitly.
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has a 3-flow. Thomassen’s proof yields this for k = 8, and was later improved
to give k = 6.

Finally, Tutte discovered a 2-variable polynomial associated with a graph,
which generalizes both its chromatic polynomial and its flow polynomial.
What little is known about this Tutte polynomial can hardly be more than
the tip of the iceberg: it has far-reaching, and largely unexplored, connections
to areas as diverse as knot theory and statistical physics. See D.J.A. Welsh,
Complexity: knots, colourings and counting (LMS Lecture Notes 186), Cam-
bridge University Press 1993.




