
5 Colouring

How many colours do we need to colour the countries of a map in such
a way that adjacent countries are coloured di↵erently? How many days
have to be scheduled for committee meetings of a parliament if every
committee intends to meet for one day and some members of parliament
serve on several committees? How can we find a school timetable of min-
imum total length, based on the information of how often each teacher
has to teach each class?

A vertex colouring of a graph G = (V,E) is a map c:V ! S such
vertex

colouring

that c(v) 6= c(w) whenever v and w are adjacent. The elements of the
set S are called the available colours. All that interests us about S is
its size: typically, we shall be asking for the smallest integer k such that
G has a k-colouring , a vertex colouring c:V ! {1, . . . , k}. This k is the chromatic

number

(vertex-) chromatic number of G; it is denoted by �(G). A graph G with �(G)

�(G) = k is called k-chromatic; if �(G) 6 k, we call G k-colourable.
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Fig. 5.0.1. A vertex colouring V ! {1, . . . , 4}

Note that a k-colouring is nothing but a vertex partition into k
independent sets, now called colour classes ; the non-trivial 2-colourable colour

classes

graphs, for example, are precisely the bipartite graphs. Historically,
the colouring terminology comes from the map colouring problem stated
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above, which leads to the problem of determining the maximum chro-
matic number of planar graphs. The committee scheduling problem, too,
can be phrased as a vertex colouring problem – how?

An edge colouring of G = (V,E) is a map c:E!S with c(e) 6= c(f)edge

colouring

for any adjacent edges e, f . The smallest integer k for which a k-edge-
colouring exists, i.e. an edge colouring c:E ! {1, . . . , k}, is the edge-

chromatic number , or chromatic index , of G; it is denoted by �0(G).
chromatic

index

�0(G) The third of our introductory questions can be modelled as an edge
colouring problem in a bipartite multigraph (how?).

Clearly, every edge colouring of G is a vertex colouring of its line
graph L(G), and vice versa; in particular, �0(G) = �(L(G)). The prob-
lem of finding good edge colourings may thus be viewed as a restriction
of the more general vertex colouring problem to this special class of
graphs. As we shall see, this relationship between the two types of
colouring problem is reflected by a marked di↵erence in our knowledge
about their solutions: while there are only very rough estimates for �,
its sister �0 always takes one of two values, either � or �+1.

5.1 Colouring maps and planar graphs

If any result in graph theory has a claim to be known to the world
outside, it is the following four colour theorem (which implies that every
map can be coloured with at most four colours):

Theorem 5.1.1. (Four Colour Theorem)
Every planar graph is 4-colourable.

Some remarks about the proof of the four colour theorem and its history
can be found in the notes at the end of this chapter. Here, we prove the
following weakening:

Proposition 5.1.2. (Five Colour Theorem)
Every planar graph is 5-colourable.

First proof. Let G be a plane graph with n > 6 vertices and m edges.(4.1.1)
(4.2.10)

We assume inductively that every plane graph with fewer than n vertices
can be 5-coloured. By Corollary 4.2.10,n,m

d(G) = 2m/n 6 2 (3n� 6)/n < 6 ;

let v 2 G be a vertex of degree at most 5. By the induction hypothesis,v

the graph H := G� v has a vertex colouring c:V (H)! {1, . . . , 5}. If cH

uses at most 4 colours for the neighbours of v, we can extend it to a 5-c

colouring of G. Let us assume, therefore, that v has exactly 5 neighbours,
and that these have distinct colours.
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Let D be an open disc around v, so small that it meets only those D

five straight edge segments of G that contain v. Let us enumerate these
segments according to their cyclic position in D as s1, . . . , s5, and let s1, . . . , s5

vvi be the edge containing si (i = 1, . . . , 5; Fig. 5.1.1). Without loss of v1, . . . , v5

generality we may assume that c(vi) = i for each i.

v1

v2

v3

v4

v5

s1

s2

s3
s4

s5 v
P

D

Fig. 5.1.1. The proof of the five colour theorem

Let us show first that every v1– v3 path P ✓ H � {v2, v4} sepa- P

rates v2 from v4 in H. Clearly, this is the case if and only if the cycle
C := vv1Pv3v separates v2 from v4 in G. We prove this by showing that C

v2 and v4 lie in di↵erent faces of C.
Let us pick an inner point x2 of s2 in D and an inner point x4 of

s4 in D. Then in Dr (s1 [ s3) ✓ R2 rC every point can be linked by
a polygonal arc to x2 or to x4. This implies that x2 and x4 (and hence
also v2 and v4) lie in di↵erent faces of C: otherwise D would meet only
one of the two faces of C, which would contradict the fact that v lies on
the frontier of both these faces (Theorem 4.1.1).

Given i, j 2 {1, . . . , 5}, let Hi,j be the subgraph of H induced by Hi,j

the vertices coloured i or j. We may assume that the component C1 of
H1,3 containing v1 also contains v3. Indeed, if we interchange the colours
1 and 3 at all the vertices of C1, we obtain another 5-colouring of H;
if v3 /2 C1, then v1 and v3 are both coloured 3 in this new colouring,
and we may assign colour 1 to v. Thus, H1,3 contains a v1– v3 path P .
As shown above, P separates v2 from v4 in H. Since P \H2,4 = ;,
this means that v2 and v4 lie in di↵erent components of H2,4. In the
component containing v2, we now interchange the colours 2 and 4, thus
recolouring v2 with colour 4. Now v no longer has a neighbour coloured 2,
and we may give it this colour. ⇤

Second proof. As in the first proof, we assume inductively that every
(4.2.10)
(4.2.11)
(4.4.6)planar graph with fewer than |G| vertices can be 5-coloured, and find

a vertex v in G of degree 5. Since K5 6✓ G by Corollary 4.2.11, this v

vertex v has non-adjacent neighbours u,w. Let P = {u, v, w}.
Since minors of planar graphs are again planar, e.g. by Kuratowski’s

theorem, G/P has a 5-colouring by the induction hypothesis. This in-
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duces a 5-colouring of G� v in which u and w receive the same colour,
that of vP from our colouring of G/P . The neighbours of v in this
colouring of G� v thus use at most four colours, and we can colour v
with the fifth colour. ⇤

As a backdrop to the two famous theorems above, let us cite another
well-known result:

Theorem 5.1.3. (Grötzsch 1959)
Every planar graph not containing a triangle is 3-colourable.

5.2 Colouring vertices

How do we determine the chromatic number of a given graph? How can
we find a vertex-colouring with as few colours as possible? How does
the chromatic number relate to other graph invariants, such as average
degree, connectivity or girth?

Straight from the definition of the chromatic number we may derive
the following upper bound:

Proposition 5.2.1. Every graph G with m edges satisfies

�(G) 6 1

2
+
q
2m+ 1

4
.

Proof. Let c be a vertex colouring of G with k = �(G) colours. Then
G has at least one edge between any two colour classes: if not, we could
have used the same colour for both classes. Thus, m> 1

2
k(k�1). Solving

this inequality for k, we obtain the assertion claimed. ⇤

One obvious way to colour a graph G with not too many colours is
the following greedy algorithm: starting from a fixed vertex enumerationgreedy

algorithm

v1, . . . , vn of G, we consider the vertices in turn and colour each vi with
the first available colour – e.g., with the smallest positive integer not
already used to colour any neighbour of vi among v1, . . . , vi�1. In this
way, we never use more than �(G) + 1 colours, even for unfavourable
choices of the enumeration v1, . . . , vn. If G is complete or an odd cycle,
then this is even best possible.

In general, though, this upper bound of �+ 1 is rather generous,
even for greedy colourings. Indeed, when we come to colour the vertex vi
in the above algorithm, we only need a supply of dG[v1,...,vi](vi)+1 rather
than dG(vi) + 1 colours to proceed; recall that, at this stage, the algo-
rithm ignores any neighbours vj of vi with j > i. Hence in most graphs,
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there will be scope for an improvement of the �+1 bound by choosing a
particularly suitable vertex ordering to start with: one that picks vertices
of large degree early (when most neighbours are ignored) and vertices
of small degree last. Locally, the number dG[v1,...,vi](vi) + 1 of colours
required will be smallest if vi has minimum degree in G[v1, . . . , vi]. But
this is easily achieved: we just choose vn first, with d(vn) = �(G), then
choose as vn�1 a vertex of minimum degree in G� vn, and so on.

The least number k such that G has a vertex enumeration in which
each vertex is preceded by fewer than k of its neighbours is called
the colouring number col(G) of G. The enumeration we just discussed

colouring

number

col(G)shows that col(G) 6 maxH✓G �(H) + 1. But for H ✓ G clearly also
col(G) > col(H) and col(H) > �(H) + 1, since the ‘back-degree’ of the
last vertex in any enumeration of H is just its ordinary degree in H,
which is at least �(H). So we have proved the following:

Proposition 5.2.2. Every graph G satisfies

�(G) 6 col(G) = max { �(H) | H ✓ G }+1 .
⇤

The colouring number of a graph is closely related to its arboricity; see
Exercise 14 and the remark following Theorem 2.4.3.

Proposition 5.2.2 shows that every k-chromatic graph has a sub-
graph of minimum degree at least k � 1. In fact, it has a k-chromatic
such subgraph:

Lemma 5.2.3. Every k-chromatic graph has a k-chromatic subgraph of

[7.3]
[9.2.1]
[9.2.3]

[11.2.3]minimum degree at least k� 1.

Proof. Given G with �(G) = k, let H ✓ G be minimal with �(H) = k.
If H had a vertex v of degree dH(v) 6 k� 2, we could extend a (k� 1)-
colouring of H � v to one of H, contradicting the choice of H. ⇤

As we have seen, every graph G satisfies �(G) 6 �(G) + 1, with
equality for complete graphs and odd cycles. In all other cases, this
general bound can be improved a little:

Theorem 5.2.4. (Brooks 1941)
Let G be a connected graph. If G is neither complete nor an odd cycle,

then

�(G) 6 �(G) .
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Proof. We apply induction on |G|. If �(G) 6 2, then G is a path or a cy-
cle, and the assertion is trivial. We therefore assume that� :=�(G)> 3,�

and that the assertion holds for graphs of smaller order. Suppose that
�(G) > �.

Let v 2 G be a vertex and H := G� v. Then �(H) 6 � : by in-v,H

duction, every component H 0 of H satisfies �(H 0) 6 �(H 0) 6 � unless
H 0 is complete or an odd cycle, in which case �(H 0) = �(H 0) + 1 6 �
as every vertex of H 0 has maximum degree in H 0 and one such vertex is
also adjacent to v in G.

Since H can be �-coloured but G cannot, we have the following:

Every �-colouring of H uses all the colours 1, . . . ,� on

the neighbours of v; in particular, d(v) = �.
(1)

Given any �-colouring of H, let us denote the neighbour of v col-
oured i by vi, i = 1, . . . ,�. For all i 6= j, let Hi,j denote the subgraphv1, . . . , v�

of H spanned by all the vertices coloured i or j.Hi,j

For all i 6= j, the vertices vi and vj lie in a common com-

ponent Ci,j of Hi,j .
(2)

Otherwise we could interchange the colours i and j in one of those
components; then vi and vj would be coloured the same, contrary to (1).

Ci,j

Ci,j is always a vi– vj path. (3)

Indeed, let P be a vi– vj path in Ci,j . As dH(vi) 6 ��1, the neighbours
of vi have pairwise di↵erent colours: otherwise we could recolour vi, con-
trary to (1). Hence the neighbour of vi on P is its only neighbour in Ci,j ,
and similarly for vj . Thus if Ci,j 6= P , then P has an inner vertex with
three identically coloured neighbours in H; let u be the first such vertex
on P (Fig. 5.2.1). Since at most ��2 colours are used on the neighbours
of u, we may recolour u. But this makes Pů into a component of Hi,j ,
contradicting (2).

vi

vj

P ů

Ci,j
i

j j

j

j

i

ii

v

u
i

Fig. 5.2.1. The proof of (3) in Brooks’s theorem

For distinct i, j, k, the paths Ci,j and Ci,k meet only in vi. (4)
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For if vi 6= u 2 Ci,j \Ci,k, then u has two neighbours coloured j and two
coloured k, so we may recolour u. In the new colouring, vi and vj lie in
di↵erent components of Hi,j , contrary to (2).

The proof of the theorem now follows easily. If the neighbours of v
are pairwise adjacent, then each has � neighbours in N(v)[{v} already,
so G = G[N(v)[ {v}] = K�+1. As G is complete, there is nothing to
show. We may thus assume that v1v2 /2 G, where v1, . . . , v� derive their v1, . . . , v�

names from some fixed �-colouring c of H. Let u 6= v2 be the neighbour c

of v1 on the path C1,2; then c(u) = 2. Interchanging the colours 1 and 3 u

in C1,3, we obtain a new colouring c0 ofH; let v0i, H
0

i,j , C
0

i,j etc. be defined c0

with respect to c0 in the obvious way. As a neighbour of v1 = v0
3
, our

vertex u now lies in C 0

2,3 , since c0(u) = c(u) = 2. By (4) for c, however,
the path v̊1C1,2 retained its original colouring, so u 2 v̊1C1,2 ✓ C 0

1,2.
Hence u 2 C 0

2,3 \C 0

1,2, contradicting (4) for c0. ⇤

We have so far seen some necessary conditions for high chromaticity,
in the form of upper bounds on �. If �(G) > k, for example, then also
� > k (unless G is complete or an odd cycle), and G has a subgraph of
minimum degree at least k� 1. These conditions are far from su�cient,
though: if G = Kn,n, say, they hold for all k 6 n but �(G) = 2.

It would be nice also to have some su�cient conditions for � > k. If
they are easy to check, they might provide useful certificates for why we
are unable to colour a given graph with few colours. If they could even
be shown to be necessary too, they would ‘explain’ why certain graphs
are highly chromatic – just as the marriage condition in Hall’s theorem
‘explains’ why certain matchings in bipartite graphs fail: its violation
clearly prevents a graph from having the desired matching, and it is
violated every time such a matching fails to exist.

For example, we might try to determine the class Xk of ✓-minimal
graphs that cannot be coloured with fewer than k colours. As is easy
to check (cf. Lemma 12.6.1.), a given graph G satisfies �(G) > k if and (12.6.1)

only if it has a subgraph in Xk, just as in Kuratowski’s planarity theo-
rem with minors or topological minors. So containing any graph from Xk

is a certificate for � > k, and these certificates together ‘explain’ this
phenomenon in the sense discussed.

But will these certificates be easy to find in an arbitrary k-chromatic
graph, or at least easy to check? That is, will it be easy to verify that a
given graph X 2 Xk is indeed in Xk, or even just that �(X) > k? We
shall return to this question in a moment.

One obvious su�cient condition for �(G) > k is that Kk ✓ G. But
this condition is not necessary: as Theorem 5.2.5 will show, k-chromatic
graphs need not even contain a triangle. Hence while Kk certainly lies
in Xk, it is not its only element. Conversely, Lemma 5.2.3 implies that all
the graphs in Xk have minimum degree at least k�1; but not all graphs
of minimum degree k� 1 are in Xk, since they need not satisfy � > k.
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The following theorem of Erdős implies that Xk cannot be finite.
In fact, it implies that for no k is there a finite set X of graphs X with
�(X) > 3 such that every k-chromatic graph has a subgraph in X :

Theorem 5.2.5. (Erdős 1959)[9.2.3]

For every integer k there exists a graph G with girth g(G) > k and

chromatic number �(G) > k.

Theorem 5.2.5 was first proved non-constructively using random
graphs, and we shall give this proof in Chapter 11.2. Constructing graphs
of large chromatic number and girth directly is not easy; cf. Exercise 22
for the simplest case.

The message of Erdős’s theorem is that, contrary perhaps to what
we had hoped, large chromatic number can occur as a purely global
phenomenon: locally, around each vertex, a graph of large girth looks
just like a tree, and in particular is 2-colourable there. But what exactly
can cause high chromaticity as a global phenomenon remains a mystery.

Nevertheless, there exists a simple – though not always short – pro-
cedure to construct all the graphs of chromatic number at least k. For
each k 2 N, let us define the class of k-constructible graphs recursivelyk-con-

structible

as follows:

(i) Kk is k-constructible.

(ii) If G is k-constructible and two vertices x, y of G are non-adjacent,
then also (G+xy)/xy is k-constructible.

(iii) If G1, G2 are k-constructible and there are vertices x, y1, y2 such
that G1 \G2 = {x} and xy1 2 E(G1) and xy2 2 E(G2), then also
(G1 [G2)�xy1 �xy2 + y1y2 is k-constructible (Fig. 5.2.2).

y1 y2

y1 y2

x

xx
1G 2G

=

Fig. 5.2.2. The Hajós construction (iii)

One easily checks inductively that all k-constructible graphs – and
hence their supergraphs – are at least k-chromatic. For example, any
colouring of the graph (G+xy)/xy in (ii) induces a colouring of G, and
hence by inductive assumption uses at least k colours. Similarly, in any
colouring of the graph constructed in (iii) the vertices y1 and y2 do not
both have the same colour as x, so this colouring induces a colouring of
either G1 or G2 and hence uses at least k colours.

It is remarkable, though, that the converse holds too:
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Theorem 5.2.6. (Hajós 1961)
Let G be a graph and k 2 N. Then �(G) > k if and only if G has a k-
constructible subgraph.

Proof. Let G be a graph with �(G) > k; we show that G has a k-
constructible subgraph. Suppose not; then k > 3. Adding some edges
if necessary, let us make G edge-maximal with the property that none
of its subgraphs is k-constructible. Now G is not a complete r-partite
graph for any r: for then �(G) > k would imply r > k, and G would
contain the k-constructible graph Kk.

Since G is not a complete multipartite graph, non-adjacency is not
an equivalence relation on V (G). So there are vertices y1, x, y2 such that
y1x, xy2 /2 E(G) but y1y2 2 E(G). Since G is edge-maximal without x, y1, y2

a k-constructible subgraph, each edge xyi lies in some k-constructible
subgraph Hi of G+xyi (i = 1, 2). H1, H2

Let H 0

2
be an isomorphic copy of H2 that contains x and H2 �H1 H0

2

but is otherwise disjoint from G, together with an isomorphism v 7! v0 v0
etc.

from H2 to H 0

2
that fixes H2 \H 0

2
pointwise. Then H1 \H 0

2
= {x}, so

H := (H1 [H 0

2
)�xy1 �xy0

2
+ y1y

0

2

is k-constructible by (iii). One vertex at a time, let us identify in H each
vertex v0 2 H 0

2
�G with its partner v; since vv0 is never an edge of H,

each of these identifications amounts to a construction step of type (ii).
Eventually, we obtain the graph

(H1 [H2)�xy1 �xy2 + y1y2 ✓ G ;

this is the desired k-constructible subgraph of G. ⇤

Does Hajós’s theorem solve our Kuratowski-type problem for highly
chromatic graphs, which was to find a class of graphs of chromatic num-
ber at least k with the property that every such graph has a subgraph
in this class? Formally it does, albeit with an infinite characterizing
class: the class of k-constructible graphs, which contains Xk. Unlike
Kuratowski’s characterization of planar graphs, however, this does not –
at least not obviously – make Hajós’s theorem a good characterization
of the graphs of chromatic number < k: as one can show, proving that
a given k-constructible graph is indeed k-constructible is just as hard as
proving that a graph of chromatic number > k does indeed need at least
k colours. See the notes for details.

5.3 Colouring edges

Clearly, every graph G satisfies �0(G) > �(G). For bipartite graphs, we
have equality here:
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Proposition 5.3.1. (König 1916)[5.4.5]

Every bipartite graph G satisfies �0(G) = �(G).

Proof. We apply induction on kGk. For kGk = 0 the assertion holds.(1.6.1)

Now assume that kGk > 1, and that the assertion holds for graphs with
fewer edges. Let � := �(G), pick an edge xy 2 G, and choose a �-�, xy

edge-colouring of G� xy by the induction hypothesis. Let us refer to
the edges coloured ↵ as ↵-edges, etc.↵-edge

In G� xy, each of x and y is incident with at most �� 1 edges.
Hence there are ↵,� 2 {1, . . . ,�} such that x is not incident with an↵,�

↵-edge and y is not incident with a �-edge. If ↵ = �, we can colour the
edge xy with this colour and are done; so we may assume that ↵ 6= �,
and that x is incident with a �-edge.

Let us extend this edge to a maximal walkW from x whose edges are
coloured � and ↵ alternately. Since no such walk contains a vertex twice
(why not?), W exists and is a path. Moreover, W does not contain y:
if it did, it would end in y on an ↵-edge (by the choice of �) and thus
have even length, so W +xy would be an odd cycle in G (cf. Proposition
1.6.1). We now recolour all the edges on W , swapping ↵ with �. By the
choice of ↵ and the maximality of W , adjacent edges of G�xy are still
coloured di↵erently. We have thus found a �-edge-colouring of G� xy
in which neither x nor y is incident with a �-edge. Colouring xy with �,
we extend this colouring to a �-edge-colouring of G. ⇤

Theorem 5.3.2. (Vizing 1964)
Every graph G satisfies

�(G) 6 �0(G) 6 �(G)+ 1 .

Proof. We prove the second inequality by induction on kGk. For kGk = 0V,E

it is trivial. For the induction step let G = (V,E) with� :=�(G) > 0 be�

given, and assume that the assertion holds for graphs with fewer edges.
Instead of ‘(�+1)-edge-colouring’ let us just say ‘colouring’.colouring

For every edge e 2 G there exists a colouring of G � e, by the
induction hypothesis. In such a colouring, the edges at a given vertex
v use at most d(v) 6 � colours, so some colour � 2 {1, . . . ,�+ 1} is
missing at v. For any other colour ↵, there is a unique maximal walkmissing

(possibly trivial) starting at v, whose edges are coloured alternately ↵
and �. This walk is a path; we call it the ↵/� - path from v.↵/� - path

Suppose that G has no colouring. Then the following holds:

Given xy 2 E, and any colouring of G� xy in which the

colour ↵ is missing at x and the colour � is missing at y,
the ↵/� - path from y ends in x.

(⇤)
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Otherwise we could interchange the colours ↵ and � along this path and
colour xy with ↵, obtaining a colouring of G (contradiction).

Let xy0 2 G be an edge. By induction, G0 := G� xy0 has a col-
ouring c0. Let ↵ be a colour missing at x in this colouring. Further, let ↵

y0, . . . , yk be a maximal sequence of distinct neighbours of x in G such
that c0(xyi+1) is missing in c0 at yi for every i < k. For each of the
graphs Gi := G�xyi we define a colouring ci, setting Gi

ci(e) :=

⇢
c0(xyj+1) for e = xyj with j 2 {0, . . . , i� 1}
c0(e) otherwise; ci

note that in each of these colourings the same colours are missing at x
as in c0.

Now let � be a colour missing at yk in c0. By (⇤), the ↵/� - path P �

from yk in Gk (with respect to ck) ends in x, with an edge yx coloured �
since ↵ is missing at x. Since y cannot serve as yk+1, by the maximality
of the sequence y0, . . . , yk, we thus have y = yi for some 0 6 i < k
(Fig. 5.3.1). By definition of ck, therefore, � = ck(xyi) = c0(xyi+1). By
the choice of yi+1 this means that � was missing at yi in c0, and hence
also in ci. Now the ↵/� - path P 0 from yi in Gi with respect to ci starts
with yiPyk, since the edges of Px̊ are coloured the same in ci as in ck.
But in c0, and hence in ci, there is no edge at yk coloured �. Therefore
P 0 ends in yk, contradicting (⇤). ⇤

� �

�

�

Gk

yi+1

yi

yk

x

�

�

�

�

P

y0

↵ ↵

↵

↵

�

�

��

Fig. 5.3.1. The ↵/� - path P in Gk = G � xyk

Vizing’s theorem divides the finite graphs into two classes according
to their chromatic index; graphs satisfying �0 = � are called (imagina-
tively) class 1 , those with �0 = �+ 1 are class 2 . There is no good
characterization theorem that enables us to tell these classes apart, be-
cause no easily checkable ‘certificate’ is known for a graph to be class 2.

Regular graphs of large even order and large degree are class 1:

Theorem 5.3.3. (Csaba, Kühn, Lo, Osthus, Treglown 2016)
There exists an n0 2 N such that, for all even n > n0 and d > n/2, every
d-regular graph G of order n satisfies �0(G) = �(G).
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5.4 List colouring

In this section, we take a look at a relatively recent generalization of the
concepts of colouring studied so far. This generalization may seem a little
far-fetched at first glance, but it turns out to supply a fundamental link
between the classical (vertex and edge) chromatic numbers of a graph
and its other invariants.

Suppose we are given a graph G = (V,E), and for each vertex of
G a list of colours permitted at that particular vertex: when can we
colour G (in the usual sense) so that each vertex receives a colour from
its list? More formally, let (Sv)v2V be a family of sets. We call a vertex
colouring c of G with c(v) 2 Sv for all v 2 V a colouring from the

lists Sv. The graph G is called k-list-colourable, or k-choosable, if, fork-choosable

every family (Sv)v2V with |Sv| = k for all v, there is a vertex colouring
of G from the lists Sv. The least integer k for which G is k-choosable is
the list-chromatic number , or choice number ch(G) of G.

choice

number

ch(G) List-colourings of edges are defined analogously. The least inte-
ger k such that G has an edge colouring from any family of lists of
size k is the list-chromatic index ch0(G) of G; formally, we just set
ch0(G) := ch(L(G)), where L(G) is the line graph of G.ch0(G)

In principle, showing that a given graph is k-choosable is more di�-
cult than proving it to be k-colourable: the latter is just the special case
of the former where all lists are equal to {1, . . . , k}. Thus,

ch(G) > �(G) and ch0(G) > �0(G)

for all graphs G.
In spite of these inequalities, many of the known upper bounds for

the chromatic number have turned out to be valid for the choice num-
ber, too. Examples for this phenomenon include Brooks’s theorem and
Proposition 5.2.2; in particular, graphs of large choice number still have
subgraphs of large minimum degree. On the other hand, it is easy to con-
struct graphs for which the two invariants are wide apart (Exercise 30).
Taken together, these two facts indicate a little how far those general
upper bounds on the chromatic number may be from the truth.

The following theorem shows that, in terms of its relationship to
other graph invariants, the choice number di↵ers fundamentally from the
chromatic number. As mentioned before, there are 2-chromatic graphs of
arbitrarily large minimum degree, e.g. the graphs Kn,n. The choice num-
ber, however, will be forced up by large values of invariants like �, " or :

Theorem 5.4.1. (Alon 1993)
There exists a function f :N!N such that, given any integer k, all graphs
G with average degree d(G) > f(k) satisfy ch(G) > k.
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The proof of Theorem 5.4.1 uses probabilistic methods as introduced in
Chapter 11.

Although statements of the form ch(G) 6 k are formally stronger
than the corresponding statement of �(G) 6 k, they can be easier to
prove. A pretty example is the list version of the five colour theorem:
every planar graph is 5-choosable. The proof of this does not use the
five colour theorem (or even Euler’s formula, on which the proof of the
five colour theorem is based). We thus reobtain the five colour theorem
as a corollary, with a very di↵erent proof.

Theorem 5.4.2. (Thomassen 1994)
Every planar graph is 5-choosable.

Proof. We shall prove the following assertion for all plane graphs G with (4.2.8)

at least 3 vertices:

Suppose that every inner face of G is bounded by a trian-

gle and its outer face by a cycle C = v1 . . . vkv1. Suppose

further that v1 has already been coloured with the col-

our 1, and v2 has been coloured 2. Suppose finally that

with every other vertex of C a list of at least 3 colours is

associated, and with every vertex of G�C a list of at least

5 colours. Then the colouring of v1 and v2 can be extended

to a colouring of G from the given lists.

(⇤)

Let us check first that (⇤) implies the assertion of the theorem.
Let any plane graph be given, together with a list of 5 colours for each
vertex. Add edges to this graph until it is a maximal plane graph G.
By Proposition 4.2.8, G is a plane triangulation; let v1v2v3v1 be the
boundary of its outer face. We now colour v1 and v2 (di↵erently) from
their lists, and extend this colouring by (⇤) to a colouring of G from the
lists given.

v2 = w

v1

v

G1

G2

1

2

Fig. 5.4.1. The induction step with a chord vw; here the case
of w = v2
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Let us now prove (⇤), by induction on |G|. If |G| = 3, then G = C
and the assertion is trivial. Now let |G| > 4, and assume (⇤) for
smaller graphs. If C has a chord vw, then vw lies on two unique cy-vw

cles C1, C2 ✓ C + vw with v1v2 2 C1 and v1v2 /2 C2. For i = 1, 2, let
Gi denote the subgraph of G induced by the vertices lying on Ci or in
its inner face (Fig. 5.4.1). Applying the induction hypothesis first to G1

and then – with the colours now assigned to v and w – to G2 yields the
desired colouring of G.

If C has no chord, let v1, u1, . . . , um, vk�1 be the neighbours of vku1, . . . , um

in their natural cyclic order around vk;1 by definition of C, all those
neighbours ui lie in the inner face of C (Fig. 5.4.2). As the inner faces
of C are bounded by triangles, P := v1u1 . . . umvk�1 is a path in G, and
C 0 := P [ (C � vk) a cycle.C0

v1

v2

C0

vk�1

vk

u1

u2
u3

P

Fig. 5.4.2. The induction step without a chord

We now choose two di↵erent colours j, ` 6= 1 from the list of vk and
delete these colours from the lists of all the vertices ui. Then every list of
a vertex on C 0 still has at least 3 colours, so by induction we may colour
C 0 and its interior, i.e. the graph G� vk. At least one of the two colours
j, ` is not used for vk�1, and we may assign that colour to vk. ⇤

As is often the case with induction proofs, the key to the proof above
lies in its delicately balanced strengthening of the assertion proved. Com-
pared with ordinary colouring, the task of finding a suitable strengthen-
ing is helped greatly by the possibility to give di↵erent vertices lists of
di↵erent lengths, and thus to tailor the colouring problem more fittingly
to the structure of the graph. This suggests that maybe in other unsolved
colouring problems too it might be of advantage to aim straight for their
list version, i.e. to prove an assertion of the form ch(G) 6 k instead of
the formally weaker �(G) 6 k. Unfortunately, this approach fails for the
four colour theorem: planar graphs are not in general 4-choosable.

1 as in the first proof of the five colour theorem
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As mentioned before, the chromatic number of a graph and its choice
number may di↵er a lot. Surprisingly, however, no such examples are
known for edge colourings. Indeed it has been conjectured that none
exist:

List Colouring Conjecture. Every graph G satisfies ch0(G) = �0(G).

We shall prove the list colouring conjecture for bipartite graphs. As
a tool we shall use orientations of graphs, defined in Chapter 1.10. If D
is a directed graph and v 2 V (D), we denote by N+(v) the set, and by N+(v)

d+(v) the number, of vertices w such that D contains an edge directed d+(v)

from v to w.
To see how orientations come into play in the context of colouring,

recall the greedy algorithm from Section 5.2. This colours the vertices
of a graph G in turn, following a previously fixed ordering (v1, . . . , vn),
with the smallest available colour. This ordering defines an orientation
of G if we orient every edge vivj ‘backwards’, that is, from vj to vi if
i < j. Then to determine a colour for vj the algorithm only looks at
previously coloured neighbours of vj , those to which vj sends a directed
edge. In particular, if d+(v) < k for all vertices v, the algorithm will use
at most k colours.

If we rewrite the proof of this fact (rather awkwardly) as a formal
induction on k, the essential property of the set U of vertices coloured 1
is that every vertex in G � U sends an edge to U : this ensures that
d+G�U (v) < d+G(v) for all v 2 G� U , so we can colour G� U with the
remaining k� 1 colours by the induction hypothesis.

The following lemma generalizes these observations to list colour-
ing, and to orientations D of G that do not necessarily come from a
vertex enumeration but may contain some directed cycles. Let us call an
independent set U ✓ V (D) a kernel of D if, for every vertex v 2 D�U , kernel

there is an edge in D directed from v to a vertex in U . Note that kernels
of non-empty directed graphs are themselves non-empty.

Lemma 5.4.3. Let H be a graph and (Sv)v2V (H) a family of lists. If H
has an orientation D with d+(v) < |Sv| for every v, and such that every

induced subgraph of D has a kernel, then H can be coloured from the

lists Sv.

Proof. We apply induction on |H|. For |H| = 0 we take the empty
colouring. For the induction step, let |H| > 0. Let ↵ be a colour occur- ↵

ring in one of the lists Sv, and let D be an orientation of H as stated.
The vertices v with ↵ 2 Sv span a non-empty subgraph D0 in D; by D0

assumption, D0 has a kernel U 6= ;. U

Let us colour the vertices in U with ↵, and remove ↵ from the lists
of all the other vertices of D0. Since each of those vertices sends an edge
to U , the modified lists S0

v for v 2 D � U again satisfy the condition
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d+(v) < |S0

v| in D � U . Since D � U is an orientation of H � U , we
can thus colour H �U from those lists by the induction hypothesis. As
none of these lists contains ↵, this extends our colouring U !{↵} to the
desired list colouring of H. ⇤

In our proof of the list colouring conjecture for bipartite graphs we
shall apply Lemma 5.4.3 only to colourings from lists of uniform length k.
However, note that keeping list lengths variable is essential for the proof
of the lemma itself: its simple induction could not be performed with
uniform list lengths.

Theorem 5.4.4. (Galvin 1995)
Every bipartite graph G satisfies ch0(G) = �0(G).

Proof. Let G =: (X [ Y,E), where {X,Y } is a vertex bipartition of G.(2.1.4)

We say that two edges of G meet in X if they share an end in X, and cor-X,Y, E

respondingly for Y . Let �0(G) =: k, and let c be a k-edge-colouring of G.k, c

Clearly, ch0(G) > k; we prove that ch0(G) 6 k. Our plan is to use
Lemma 5.4.3 to show that the line graphH of G is k-choosable. To applyH

the lemma, it su�ces to find an orientation D of H with d+(e) < k for
every vertex e of H, and such that every induced subgraph of D has a
kernel. To define D, consider adjacent e, e0 2 E, say with c(e) < c(e0).D

If e and e0 meet in X, we orient the edge ee0 2 H from e0 towards e; if e
and e0 meet in Y , we orient it from e to e0 (Fig 5.4.3).

1

1

2

2

3

X Y

G

Fig. 5.4.3. Orienting the line graph of G

Let us compute d+(e) for given e 2 E = V (D). If c(e) = i, say,
then every e0 2 N+(e) meeting e in X has its colour in {1, . . . , i� 1},
and every e0 2 N+(e) meeting e in Y has its colour in {i+ 1, . . . , k}.
As any two neighbours e0 of e meeting e either both in X or both in
Y are themselves adjacent and hence coloured di↵erently, this implies
d+(e) < k as desired.

It remains to show that every induced subgraphD0 ofD has a kernel.D0

This, however, is immediate by the stable marriage theorem (2.1.4) forG,
if we interpret the directions inD as expressing preference. Indeed, given
a vertex v 2 X [Y and edges e, e0 2 V (D0) at v, write e <v e0 if the edge
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ee0 of H is directed from e to e0 in D. Then any stable matching in the
graph (X [Y, V (D0)) for this set of preferences is a kernel in D0. ⇤

By Proposition 5.3.1, we now know the exact list-chromatic index (5.3.1)

of bipartite graphs:

Corollary 5.4.5. Every bipartite graph G satisfies ch0(G) =�(G). ⇤

5.5 Perfect graphs

As discussed in Section 5.2, a high chromatic number may occur as a
purely global phenomenon: even when a graph has large girth, and thus
locally looks like a tree, its chromatic number may be arbitrarily high.
Since such ‘global dependence’ is obviously di�cult to deal with, one may
become interested in graphs where this phenomenon does not occur, i.e.
whose chromatic number is high only when there is a local reason for it.

Before we make this precise, let us define two new invariants for
a graph G. The greatest integer r such that Kr ✓ G is the clique

number !(G) of G. The greatest size of a set of independent vertices !(G)

in G is the independence number ↵(G) of G. Clearly, ↵(G) = !(G) and ↵(G)

!(G) = ↵(G).
A graph is called perfect if every induced subgraph H ✓ G has perfect

chromatic number �(H) = !(H), i.e. if the trivial lower bound of !(H)
colours always su�ces to colour the vertices of H. Thus, while proving
an assertion of the form �(G) > k may in general be di�cult, even
in principle, for a given graph G, it can always be done for a perfect
graph simply by exhibiting some Kk+1 subgraph as a ‘certificate’ for
non-colourability with k colours.

At first glance, the structure of the class of perfect graphs appears
somewhat contrived: although it is closed under induced subgraphs (if
only by explicit definition), it is not closed under taking general sub-
graphs or supergraphs, let alone minors (examples?). However, per-
fection is an important notion in graph theory: the fact that several
fundamental classes of graphs are perfect (as if by fluke) may serve as a
superficial indication of this.2

What graphs, then, are perfect? Bipartite graphs are, for instance.
Less trivially, the complements of bipartite graphs are perfect, too –
a fact equivalent to König’s duality theorem 2.1.1 (Exercise 41). The

2 The class of perfect graphs has duality properties with deep connections to
optimization and complexity theory, which are far from understood. Theorem 5.5.6
shows the tip of an iceberg here; for more, the reader is referred to Lovász’s survey
cited in the notes.
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so-called comparability graphs are perfect, and so are the interval graphs
(see the exercises); both these turn up in numerous applications.

In order to study at least one such example in some detail, we prove
here that the chordal graphs are perfect: a graph is chordal (or trian-chordal

gulated) if each of its cycles of length at least 4 has a chord, i.e. if it
contains no induced cycles other than triangles.

To show that chordal graphs are perfect, we shall first characterize
their structure. If G is a graph with induced subgraphs G1, G2 and S,
such that G = G1 [G2 and S = G1 \G2, we say that G arises from G1

and G2 by pasting these graphs together along S.pasting

Proposition 5.5.1. A graph is chordal if and only if it can be con-[12.3.6]

structed recursively by pasting along complete subgraphs, starting from

complete graphs.

Proof. If G is obtained from two chordal graphs G1, G2 by pasting them
together along a complete subgraph, then G is clearly again chordal:
any induced cycle in G lies in either G1 or G2, and is hence a triangle
by assumption. Since complete graphs are chordal, this proves that all
graphs constructible as stated are chordal.

Conversely, let G be a chordal graph. We show by induction on |G|
that G can be constructed as described. This is trivial if G is complete.
We therefore assume that G is not complete, in particular that |G| > 1,
and that all smaller chordal graphs are constructible as stated. Let
a, b 2 G be two non-adjacent vertices, and let X ✓ V (G)r {a, b} be aa, b, X

minimal a–b separator. Let C denote the component of G�X contain-C

ing a, and put G1 := G[V (C) [X] and G2 := G� C. Then G arisesG1, G2

from G1 and G2 by pasting these graphs together along S := G[X].S

Since G1 and G2 are both chordal (being induced subgraphs of G)
and hence constructible by induction, it su�ces to show that S is com-
plete. Suppose, then, that s, t 2 S are non-adjacent. By the minimalitys, t

of X = V (S) as an a–b separator, both s and t have a neighbour in C.
Hence, there is an X-path from s to t in G1; we let P1 be a shortest such
path. Analogously, G2 contains a shortest X-path P2 from s to t. But
then P1[P2 is a chordless cycle of length > 4 (Fig. 5.5.1), contradicting
our assumption that G is chordal. ⇤

Proposition 5.5.2. Every chordal graph is perfect.

Proof. Since complete graphs are perfect, it su�ces by Proposition 5.5.1
to show that any graph G obtained from perfect graphs G1, G2 by past-
ing them together along a complete subgraph S is again perfect. So let
H ✓ G be an induced subgraph; we show that �(H) 6 !(H).

Let Hi := H \ Gi for i = 1, 2, and let T := H \ S. Then T is
again complete, and H arises from H1 and H2 by pasting along T . As
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a

b
S

G1 G2

P1 P2

s

t

Fig. 5.5.1. If G1 and G2 are chordal, then so is G

an induced subgraph of Gi, each Hi can be coloured with !(Hi) colours.
Since T is complete and hence coloured injectively, two such colourings,
one of H1 and one of H2, may be combined into a colouring of H with
max {!(H1),!(H2)} 6 !(H) colours – if necessary by permuting the
colours in one of the Hi. ⇤

By definition, every induced subgraph of a perfect graph is again
perfect. The property of perfection can therefore be characterized by
forbidden induced subgraphs: there exists a set H of imperfect graphs
such that any graph is perfect if and only if it has no induced subgraph
isomorphic to an element of H. (For example, we may choose as H the
set of all imperfect graphs with vertices in N.)

Naturally, one would like to keep H as small as possible. It is one of
the deepest results in graph theory that H need only contain two types of
graph: the odd cycles of length > 5 and their complements. (Neither of
these are perfect; cf. Theorem 5.5.4 below.) This fact, the famous strong
perfect graph conjecture of Berge (1963), was proved only 40 years later:

Theorem 5.5.3. (Chudnovsky, Robertson, Seymour & Thomas 2006)

strong

perfect

graph

theoremA graph G is perfect if and only if neither G nor G contains an odd cycle

of length at least 5 as an induced subgraph.

In the context of perfect graphs, induced cycles of length at least 4 in G
are usually referred to as holes in G, while holes in G are antiholes of G. hole

antihole

In this jargon, the strong perfect graph theorem says that a graph is
perfect if and only if it has neither odd holes nor odd antiholes.

The proof of the strong perfect graph theorem is long and techni-
cal, and it would not be too illuminating to attempt to sketch it. Its
overall design is not unlike our proof that chordal graphs are perfect:
it decomposes the graph under consideration into simpler pieces, which
are shown to be perfect first, in ways that preserve perfection when the
pieces are put back together – much as the decomposition along complete
subgraphs did in the case of chordal graphs.
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To shed more light on the notion of perfection, we instead give
two direct proofs of its most important consequence: the perfect graph

theorem, formerly Berge’s weak perfect graph conjecture:

Theorem 5.5.4. (Lovász 1972)
perfect

graph

theorem
A graph is perfect if and only if its complement is perfect.

We give two proofs for Theorem 5.5.4. The first is based on ideas from
Lovász’s original proof. The second is a magical linear algebra proof,
due to Gasparian (1996), of a slightly stronger theorem of Lovász’s.

The first proof of Theorem 5.5.4 is based on a crucial lemma. Let
G be a graph and x 2 G a vertex, and let G0 be obtained from G by
adding a vertex x0 and joining it to x and all the neighbours of x. We say
that G0 is obtained from G by replicating the vertex x to the pair {x, x0}replicating

a vertex

(Fig. 5.5.2).

X r { x }

x 0

G0

x

G H

Fig. 5.5.2. Replicating the vertex x in the proof of Lemma 5.5.5

Lemma 5.5.5. (Replication Lemma)
Any graph obtained from a perfect graph by replicating a vertex is again

perfect.

Proof. We use induction on the order of the perfect graph considered.
Replicating the vertex of K1 yields K2, which is perfect. For the induc-
tion step, let G be a non-trivial perfect graph, and let G0 be obtained
from G by replicating a vertex x 2 G to a pair {x, x0}. For our proofx, x0

that G0 is perfect it su�ces to show �(G0) 6 !(G0). Indeed, every proper

induced subgraph H 0 of G0 is either isomorphic to an induced subgraph
H of G and hence perfect by assumption, or it is obtained from a proper
induced subgraph of G by replicating x and hence perfect by the induc-
tion hypothesis. Either way, it can be coloured with !(H 0) colours.

Let !(G) =: ! ; then !(G0) 2 {!,!+1}. If !(G0) = !+1, then!

�(G0) 6 �(G)+ 1 = !+1 = !(G0)

and we are done. So let us assume that !(G0) = !. Then x lies in no
K! ✓ G: together with x0, this would yield a K!+1 in G0. Let us colour
G with ! colours. Since every K! ✓ G meets the colour class X of x butX
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not x itself, the graph H := G� (Xr{x}) has clique number !(H) < ! H

(Fig. 5.5.2). Since G is perfect, we may thus colour H with !�1 colours.
Now X is independent, so the set (X r {x})[ {x0} = V (G0 �H) is also
independent. We can therefore extend our (!� 1)-colouring of H to an
!-colouring of G0, showing that �(G0) 6 ! = !(G0) as desired. ⇤

Interestingly, while replicating a vertex preserves perfection, it does
not preserve the property of � = ! if this holds only for the graph itself:
we need that all induced subgraphs have this property too (Exercise 47).

Proof of Theorem 5.5.4. Given a perfect graph G, let us show that G is
perfect too. We prove the following statement first:

Every induced subgraph H of G has a complete subgraph

K that meets all its independent vertex sets of size ↵(H).
(⇤)

For our proof of (⇤), let A be the set of all independent vertex sets A

of size ↵(H) in H. Let A0 = {A0 | A 2 A} be a set of disjoint copies A
0

of the sets in A, one new set A0 for each A 2 A, and let U :=
S

A0 be
their disjoint union. For every vertex v of H write Uv for the set of its Uv

clones in U , one in each A0 with v 2 A.3 These sets Uv may be empty,
but every vertex of H 0 lies in some Uv.

Define a graph H 0 on U by making Uv complete for every v 2 H, H0

and adding all Uu � Uv edges whenever uv is an edge of H. The sets
A0

2 A0 are independent in H 0, because the A 2 A are independent in H.
And H 0 contains no larger independent sets than these A0. Indeed, any
independent set in H 0 meets each Uv in at most one vertex; the ver-
tices v whose Uv it meets are independent in H, so there are at most
↵(H) = |A0| such v; and H 0 has no vertices outside the sets Uv. Since
the A0 are disjoint and all have the same size, the fact that H 0 contains
no larger independent sets than these implies that it cannot be coloured
with fewer than |A0| colours. Thus, �(H 0) = |A0|.

SinceH 0 arises from an induced subgraph ofH by vertex replication,
Lemma 5.5.5 implies that it is perfect. It thus has a complete subgraph
K 0 of order �(H 0). As �(H 0) = |A0| and K 0 has at most one vertex in
each A0, it meets every A0

2 A0.
Let K be the subgraph of H induced by the vertices v for which K 0

meets Uv. This is a complete subgraph of H that meets every A 2 A,
because K 0 meets every A0

2 A0. This completes the proof of (⇤).
Let us now show that G is perfect. Expressed in terms of G, we

have to show that we can cover the vertices of any induced subgraph H
of G by at most ↵(H) complete subgraphs K of H. These can be found
inductively by ↵(H) applications of (⇤), since ↵(H � K) < ↵(H) if
K ✓ H satisfies (⇤). ⇤

3 This can be expressed formally by letting A0 := { (v,A) | v 2 A } for every A 2 A,
and Uv := { (v,A) | v 2 A 2 A} = { (v,A) 2 A0

| A 2 A} for every v 2 V (H).
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The proof of the perfect graph theorem ist best understood if we
start from the last paragraph: once we have shown (⇤), the proof that
G is perfect is easy.

The existence of a complete graph K as in (⇤) follows at once from
the perfection of H if the sets in A provide an optimal colouring of H: if
they cover its vertices and |A| 6 �(H). The first of these requirements,
however, is immaterial. We can just replace H with its subgraph induced
by those of its vertices that are covered byA : that subgraph, too, will
be perfect, and any K found in it will satisfy (⇤) also for the original H.

So assuming that A covers H, how can we prove that a colouring it
induces is optimal? This would be immediate if the A 2 A were disjoint:
since they all have the same size, any colouring with fewer colours would
need a larger colour class, which does not exist since the sets in A have
size ↵(H). The trick, now, is simply to make the sets in A disjoint, as is
done first thing in the proof of (⇤). The obvious way to copy the structure
of H to the enlarged vertex set without creating any larger independent
sets, then, is to endow it with the edges as in the definition of H 0 in the
proof. This, in turn, motivates the notion of vertex replication.

All we need to complete the proof now is that the expanded graphH 0

is again perfect. This is Lemma 5.5.5.

Since the following characterization of perfection is symmetrical in
G and G, it clearly implies Theorem 5.5.4. As our proof of Theorem
5.5.6 will again be from first principles, we thus obtain a second and
independent proof of the perfect graph theorem.

Theorem 5.5.6. (Lovász 1972)
A graph G is perfect if and only if

|H| 6 ↵(H) ·!(H) (⇤)

for all induced subgraphs H ✓ G.

Proof. Let us write V (G) =: {v1, . . . , vn}, and put ↵ := ↵(G) andvi, n

! := !(G). The necessity of (⇤) is immediate: if G is perfect, then every↵,!

induced subgraph H of G can be partitioned into at most !(H) colour
classes each containing at most ↵(H) vertices, and (⇤) follows.

To prove su�ciency, we apply induction on n = |G|. Assume that
every induced subgraph H of G satisfies (⇤), and suppose that G is not
perfect. By the induction hypothesis, every proper induced subgraph
of G is perfect. Hence, every non-empty independent set U ✓ V (G)
satisfies

�(G�U) = !(G�U) = ! . (1)

Indeed, while the first equality is immediate from the perfection ofG�U ,
the second is easy: ‘6’ is obvious, while �(G � U) < ! would imply
�(G) 6 !, so G would be perfect contrary to our assumption.
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Let us apply (1) to a singleton U = {u} and consider an !-colouring
of G�u. Let K be the vertex set of any K! in G. Clearly,

if u /2 K then K meets every colour class of G�u; (2)

if u 2 K then K meets all but exactly one colour class of G�u. (3)

Let A0 = {u1, . . . , u↵} be an independent set in G of size ↵. A0

Let A1, . . . , A! be the colour classes of an !-colouring of G � u1, let
A!+1, . . . , A2! be the colour classes of an !-colouring of G � u2, and
so on; altogether, this gives us ↵!+1 independent sets A0, A1, . . . , A↵! Ai

in G. For each i = 0, . . . ,↵!, there exists by (1) a K! ✓ G�Ai; we
denote its vertex set by Ki. Ki

Note that if K is the vertex set of any K! in G, then

K \Ai = ; for exactly one i 2 {0, . . . ,↵!}. (4)

Indeed, if K \A0 = ; then K \Ai 6= ; for all i 6= 0, by definition of Ai

and (2). Similarly if K \A0 6= ;, then |K \A0| = 1, so K \Ai = ; for
exactly one i 6= 0: apply (3) to the unique vertex u 2 K \A0, and (2)
to all the other vertices u 2 A0.

Let A = (aij) be the real (↵!+ 1)⇥ n matrix whose rows are the A

incidence vectors of the sets Ai with V (G): where aij = 1 if vj 2 Ai, and
aij = 0 otherwise. Similarly, let B denote the real n⇥ (↵!+1) matrix B

whose columns are the incidence vectors of the sets Kj with V (G). Now
while |Ai \Ki| = 0 for all i by the choice of Ki, we have Ai \Kj 6= ;
and hence |Ai \Kj | = 1 whenever i 6= j, by (4). Thus,

J := AB

is the (↵!+1)⇥ (↵!+1) matrix with zero entries in the main diagonal
and all other entries 1.

It is easy to see that J is non-singular, and hence has rank ↵!+1.
But A, which has n columns, cannot have lower rank than J . Hence
n > ↵!+1, which contradicts (⇤) for H := G. ⇤
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5.6 �-bounded graph properties

Our motivation for considering perfect graphs in the last section was
that high chromaticity is easier to understand for these graphs than in
general: if a perfect graph has chromatic number at least r, it has a local
reason for this in the form of a Kr subgraph. It turned out that perfec-
tion has structural implications far beyond this. We may ask, therefore,
whether graph properties defined by a slightly weaker condition might
still imply some interesting structure for the graphs that have them.

Consider any graph property G which, like perfection, is closed un-
der taking induced subgraphs: a class that contains all induced sub-
graphs of its elements. We call G �-bounded if there exists a function�-bounded

f :N!N, called a �-bounding function, such that �(G) 6 f(r) for all�-bounding

graphs G 2 G of clique number !(G) 6 r, for all r 2 N. In particular,
then, �(G) 6 f(!(G)); but note that for individual functions f this
is a weaker condition. Perfection, for example, is �-bounded with �-
bounding function f(r) = r.

Qualitatively, graphs in a �-bounded class G have complete sub-
graphs as large as desired as soon as their chromatic number is big
enough: that is the idea behind the notion of �-boundedness. Quanti-
tatively, if f is a �-bounding function for G, then any G 2 G with
�(G) > f(r) contains a Kr+1, for every r 2 N.

Not all graph classes that are closed under taking induced subgraphs
are �-bounded: the triangle-free graphs, for example, are not, by Erdős’s
Theorem 5.2.5. So which classes are?

Every graph property G that is closed under induced subgraphs is
characterized by the class H of graphs that are not in G and are minimal
with this property under the induced-subgraph relation: an arbitrary
graph G lies in G if and only if it has no induced subgraph in H. One
way to search for �-bounded graph properties, therefore, is to examine
those characterized in this way by some particularly simple classes H.

The strong perfect graph theorem implies that G is �-bounded when
H consists of all odd holes and antiholes. But since �-boundedness is
weaker than perfection, we can makeH smaller, thereby making G larger:

Theorem 5.6.1. (Scott & Seymour 2016)
The graphs with no odd hole are �-bounded.

Theorem 5.6.1 is one of the earliest results of its kind proved in the
wake of the strong perfect graph theorem. It has since been strength-
ened in various ways, see the notes. The notion of �-boundedness itself
is much older. It was introduced by Gyárfás in 1975, who later proved
the following pretty result:

Proposition 5.6.2. If P is any fixed path, then the graphs not con-

taining P as an induced subgraph are �-bounded.
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We shall derive Proposition 5.6.2 from a lemma that weakens the
assumption of not containing the given path to better support induction:

Lemma 5.6.3. There is a function g:N2 !N such that �(G) 6 g(c, k)
for every connected graph G satisfying

(i) �(G[N(v)]) 6 c for every vertex v 2 G;

(ii) G has a vertex v at which no induced path of length k starts.

Proof. We prove by induction on k that the function g defined recursively
by g(c, 1) := 1 and g(c, k) := g(c, k� 1)+ c+1, for all c 2 N and k > 1,
is as desired. The induction starts with k = 1, in which case G = K1

by (ii).
For the induction step pick v 2 G as in (ii). Since G is connected,

every component C of G �N(v) � v has a neighbour u in N(v). By
induction, �(G[V (C) [ {u}]) 6 g(c, k � 1), so also �(C) 6 g(c, k � 1).
Combining such colourings of all these C with a (c+1)-colouring of v and
its neighbours, which exists by (i), yields a g(c, k)-colouring of G. ⇤

Proof of Proposition 5.6.2. Fix any k 2 N. Let f :N! N be defined
recursively by f(1) := 1 and f(r) := g(f(r � 1), k) for r > 1, where
g is the function from Lemma 5.6.3. We prove by induction on r that
every graph G that contains no path of length k induced and is such
that !(G) 6 r satisfies �(G) 6 f(r).

The induction starts at r = 1, in which case G consists of isolated
vertices. For the induction step let Gv := G[N(v)] for vertices v of G.
As !(G) 6 r we have !(Gv) 6 r� 1, and hence �(Gv) 6 f(r� 1), for
every v. By Lemma 5.6.3 with c = f(r�1) this yields �(G) 6 f(r). ⇤

Proposition 5.6.2 is a special case of a more sweeping conjecture.
As we noted earlier for triangles, excluding a graph H will not define
a �-bounded graph property if H contains a cycle: by Theorem 5.2.5
there are graphs of arbitrarily large chromatic number and girth greater
than g(H), which thus do not contain H but have clique number 2.

The following conjecture claims that this is the only obstruction to
�-boundedness: that excluding any graph that does not contain a cycle
will define a �-bounded class.

Conjecture. (Gyárfás 1975; Sumner 1981)
If F is any fixed forest, then the graphs not containing F as an induced

subgraph are �-bounded.
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Exercises

1.� Show that the four colour theorem does indeed solve the map colouring
problem stated in the first sentence of the chapter. Conversely, does
the 4-colourability of every map imply the four colour theorem?

2.� Show that, for the map colouring problem above, it su�ces to con-
sider maps such that no point lies on the boundary of more than three
countries. How does this a↵ect the proof of the four colour theorem?

3. Try to turn the proof of the five colour theorem into one of the four
colour theorem, as follows. Defining v and H as before, assume induc-
tively that H has a 4-colouring; then proceed as before. Where does
the proof fail?

4. Calculate the chromatic number of a graph in terms of the chromatic
numbers of its blocks.

5.� Let G be a graph, and let k 2 N.

(i) Show that G has chromatic number at most k if and only if there
exists a homomorphism from G to Kk.

(ii) Show that G is bipartite if and only if there exists a homomor-
phism from G to K2 or to an even cycle.

(iii) Are there homomorphisms from C17 to C7, from C7 to C17,
from C16 to C7, and from C17 to C6?

6. Show that graphs of large girth and without a given minor are ‘nearly
bipartite’ in the following sense. Let H be a fixed graph and C a fixed
odd cycle. Use Theorem 7.2.6 to show that if G is a graph of su�ciently
large girth (depending only on H and C) that does not contain H as a
minor, then there is a homomorphism from G to C.

7. For every n > 1, find a bipartite graph on 2n vertices, ordered in such
a way that the greedy algorithm uses n rather than 2 colours.

8. Consider the following approach to vertex colouring. First, find a max-
imal independent set of vertices and colour these with colour 1; then
find a maximal independent set of vertices in the remaining graph and
colour those 2, and so on. Compare this algorithm with the greedy
algorithm: which is better?

9. Show that the bound of Proposition 5.2.2 is always at least as sharp as
that of Proposition 5.2.1.

A k-chromatic graph G is called critically k-chromatic, or just critical , if
�(G � v) < k for every v 2 V (G).

10. Determine the critical 3-chromatic graphs.

11.+ Show that every critical k-chromatic graph is (k � 1) - edge-connected.

12. Formalize and prove the following statement: assuming large average
degree drives the colouring number up but not the chromatic number.
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13. Write col0(G) for the least number of colours used by the greedy algo-
rithm for a suitable vertex ordering of a graph G. Does every G satisfy
col0(G) = col(G) or col0(G) = �(G)?

14. Find a function f such that every graph of arboricity at least f(k) has
colouring number at least k, and a function g such that every graph of
colouring number at least g(k) has arboricity at least k, for all k 2 N.

15. Given k 2 N, find a constant ck > 0 such that every large enough
graph G with ↵(G) 6 k contains a cycle of length at least ck |G|.

16.� Find a graph G for which Brooks’s theorem yields a significantly weaker
bound on �(G) than Proposition 5.2.2.

17.+ Show that, in order to prove Brooks’s theorem for a graph G = (V, E),
we may assume that (G) > 2 and �(G) > 3. Then prove the theorem
under these assumptions, showing first the following two lemmas.

(i) Let v1, . . . , vn be an enumeration of V . If every vi (i < n) has
a neighbour vj with j > i, and if v1vn, v2vn 2 E but v1v2 /2 E,
then the greedy algorithm uses at most �(G) colours.

(ii) If G is not complete, it has a vertex vn with non-adjacent neigh-
bours v1, v2 that do not separate G.

18.+ Show that the following statements are equivalent for a graph G:

(i) �(G) 6 k;

(ii) G has an orientation without directed paths of length k;

(iii) G has an acyclic such orientation (one without directed cycles).

19. Given a graph G and k 2 N, let PG(k) denote the number of vertex
colourings V (G) ! {1, . . . , k}. Show that PG is a polynomial in k of
degree n := |G|, in which the coe�cient of kn is 1 and the coe�cient
of kn�1 is �kGk. (PG is called the chromatic polynomial of G.)

(Hint. Apply induction on kGk.)

20.+ Determine the class of all graphs G for which PG(k) = k (k�1)n�1. (As
in the previous exercise, let n := |G|, and let PG denote the chromatic
polynomial of G.)

21. Show that for every k 2 N there is a unique ✓-minimal ‘Kuratowski
class’ Xk of k-chromatic graphs such that every k-chromatic graph has
a subgraph in Xk, but that for k > 3 this class Xk is never finite.

22. For every k 2 N, construct a triangle-free k-chromatic graph. Can you
even make them C4-free?

23. Consider an infinite matrix whose rows and columns are both indexed
by N r {0}. For all i, j 2 N r {0} join the element vij in row i and
column j to every element of column i + j. Prove that the resulting
graph contains no triangle. What is its chromatic number?
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24. In the definition of ‘k-constructible’, replace axioms (ii) and (iii) by

(ii)0 Every supergraph of a k-constructible graph is k-constructible.

(iii)0 If x, y1, y2 are distinct vertices of a graph G and y1y2 2 E(G),
and if both G + xy1 and G + xy2 are k-constructible, then G is
k-constructible.

Show that a graph is k-constructible with respect to this new definition
if and only if its chromatic number is at least k.

25.� An n ⇥ n - matrix with entries from {1, . . . , n} is called a Latin square

if every element of {1, . . . , n} appears exactly once in each column and
exactly once in each row. Recast the problem of constructing Latin
squares as a colouring problem.

26. Without using Proposition 5.3.1, show that �0(G) = k for every k-
regular bipartite graph G.

27. Prove Proposition 5.3.1 from the statement of the previous exercise.

28.+ A forest is called linear if all its components are paths. Show that every
cubic graph has an edge-decomposition into two linear forests.

29.� Without using Theorem 5.4.2, show that every plane graph is 6-list-
colourable.

30. For every integer k, find a 2-chromatic graph whose choice number is
at least k.

31.� Find a general upper bound for ch0(G) in terms of �0(G).

32. Compare the choice number of a graph with its colouring number:
which is greater? Can you prove the analogue of Theorem 5.4.1 for
the colouring number (directly, without using any major theorem)?

33.+ Prove that the choice number of Kr
2 is r.

34. The total chromatic number �00(G) of a graph G = (V, E) is the least
number of colours needed to colour the vertices and edges of G simulta-
neously so that any adjacent or incident elements of V [E are coloured
di↵erently. The total colouring conjecture says that �00(G) 6 �(G)+2.
Bound the total chromatic number from above in terms of the list-
chromatic index, and use this bound to deduce a weakening of the
total colouring conjecture from the list colouring conjecture.

35.� Does every oriented graph have a kernel? If not, does every graph have
an orientation in which every induced subgraph has a kernel? If not,
does every graph have an orientation that has a kernel?

36.+ Prove that every directed graph without odd directed cycles has a kernel.

37. Show that every bipartite planar graph is 3-list-colourable.

(Hint. Apply the previous exercise and Lemma 5.4.3.)

38.� Show that perfection is closed neither under edge deletion nor under
edge contraction.
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39.� Deduce Theorem 5.5.6 from the strong perfect graph theorem.

40. Let H1 and H2 be two sets of imperfect graphs, each minimal with
the property that a graph is perfect if and only if it has no induced
subgraph in Hi (i = 1, 2). Do H1 and H2 contain the same graphs, up
to isomorphism?

41. Use König’s Theorem 2.1.1 to show that the complement of any bipar-
tite graph is perfect.

42. Using the results of this chapter, find a one-line proof of the following
theorem of König, the dual of Theorem 2.1.1: in any bipartite graph
without isolated vertices, the minimum number of edges meeting all
vertices equals the maximum number of independent vertices.

43. A graph is called a comparability graph if there exists a partial ordering
of its vertex set such that two vertices are adjacent if and only if they
are comparable. Show that every comparability graph is perfect.

44. A graph G is called an interval graph if there exists a set { Iv | v 2 V (G) }

of real intervals such that Iu \ Iv 6= ; if and only if uv 2 E(G).

(i) Show that every interval graph is chordal.

(ii) Show that the complement of any interval graph is a compara-
bility graph.

(Conversely, a chordal graph is an interval graph if its complement is a
comparability graph; this is a theorem of Gilmore and Ho↵man (1964).)

45. Show that �(H) 2 {!(H) , !(H) + 1} for every line graph H.

46.+ Characterize the graphs whose line graphs are perfect.

47. Let G0 be obtained from a graph G by replicating a vertex. If G satisfies
� = !, does G0 too?

48. Show that a graph G is perfect if and only if every non-empty induced
subgraph H of G contains an independent set A ✓ V (H) such that
!(H � A) < !(H).

49.+ Consider the graphs G for which every induced subgraph H has the
property that every maximum-size complete subgraph of H meets every
maximum-size independent vertex set in H.

(i) Show that these graphs G are perfect.

(ii) Show that these graphs G are precisely the graphs not containing
an induced copy of P 3.

50.+ Show that in every perfect graph G one can find a set A of independent
vertex sets and a set K of vertex sets of complete subgraphs such thatS

A = V (G) =
S

K and every set in A meets every set in K.

(Hint. Lemma 5.5.5.)

51.+ Let G be a perfect graph. As in the proof of Theorem 5.5.4, replace
every vertex v of G with a perfect graph Gv (not necessarily complete),
adding all Gu–Gv edges whenever uv is an edge of G. Show that the
resulting graph G0 is again perfect.
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52. Show that �(G) > max { !(G), d|G|/↵(Ge)} for all graphs G.

(i)� Find an example of G where this inequality is strict.

(ii)+ Prove that all graphs G obtained from cycles by repeated vertex
replication satisfy it with equality.

53.� Discuss why �-boundedness is defined only for graph properties that
are closed under induced subgraphs. Support your arguments by the
construction of a class that satisfies the definition of �-boundedness but
is not closed under induced subgraphs, so that the graphs in this class
are very similar to the triangle-free graphs.

54.� Reduce the Gyárfás-Sumner conjecture to trees: prove that if not con-
taining any fixed tree as an induced subgraph is a �-bounded property
then so is that of not containing any fixed forest.

Notes
The authoritative reference work on all questions of graph colouring is T.R.
Jensen & B. Toft, Graph Coloring Problems, Wiley 1995. Starting with a
brief survey of the most important results and areas of research in the field,
this monograph gives a detailed account of over 200 open colouring problems,
complete with extensive background surveys and references. Most of the re-
marks below are discussed comprehensively in this book, and all the references
for this chapter can be found there. A book specifically on edge colouring
is L.M. Favrholdt, D. Scheide, M. Stiebitz & B. Toft, Graph Edge Coloring:
Vizing’s Theorem and Goldberg’s Conjecture, Wiley 2012.

The four colour problem, whether every map can be coloured with four
colours so that adjacent countries are shown in di↵erent colours, was raised by
a certain Francis Guthrie in 1852. He put the question to his brother Frederick,
who was then a mathematics undergraduate in Cambridge. The problem was
first brought to the attention of a wider public when Cayley presented it to
the London Mathematical Society in 1878. A year later, Kempe published an
incorrect proof, which was in 1890 modified by Heawood into our first proof
of the five colour theorem. In 1880, Tait announced ‘further proofs’ of the
four colour conjecture, which never materialized; see the notes for Chapter 10.
Our second proof of the five colour theorem dates back at least to 1972, when
Woodall used it in his first graph theory course.

The first widely accepted proof of the four colour theorem was published
by Appel and Haken in 1977. The proof builds on ideas that can be traced back
as far as Kempe’s paper, and were developed largely by Birkho↵ and Heesch.
Very roughly, the proof sets out first to show that every plane triangulation
must contain at least one of 1482 certain ‘unavoidable configurations’. In a
second step, a computer is used to show that each of those configurations is
‘reducible’, i.e., that any plane triangulation containing such a configuration
can be 4-coloured by piecing together 4-colourings of smaller plane triangula-
tions. Taken together, these two steps amount to an inductive proof that all
plane triangulations, and hence all planar graphs, can be 4-coloured.

Appel & Haken’s proof has not been immune to criticism, not only be-
cause of their use of a computer. The authors responded with a 741 page long
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algorithmic version of their proof, which added more configurations to the
‘unavoidable’ list: K. Appel & W. Haken, Every Planar Map is Four Color-
able, American Mathematical Society 1989. A much shorter proof, which is
based on the same ideas (and, in particular, uses a computer in the same way)
but can be more readily verified both in its verbal and its computer part,
has been given by N. Robertson, D. Sanders, P.D. Seymour & R. Thomas, The
four-colour theorem, J.Comb.Theory, Ser. B 70 (1997), 2–44.

A relatively short proof of Grötzsch’s theorem was found by C. Thomassen,
A short list color proof of Grötzsch’s theorem, J.Comb.Theory, Ser. B 88
(2003), 189–192. Although not touched upon in this chapter, colouring prob-
lems for graphs embedded in surfaces other than the plane form a substantial
and interesting part of colouring theory; see B. Mohar & C. Thomassen, Graphs
on Surfaces, Johns Hopkins University Press 2001.

The k-chromatic subgraph H with �(H) > k � 1 in Lemma 5.2.3 cannot
in general be chosen with �(H) = k � 1. See Jensen & Toft, Chapter 5. In
conjunction with Theorem 1.4.3, Lemma 5.2.3 implies that graphs of large
chromatic number have highly connected subgraphs. Some of these also have
large chromatic number themselves; this was proved by Alon, Kleitman, Saks,
Seymour and Thomassen, Subgraphs of large connectivity and chromatic num-
ber in graphs of large chromatic number, J.Graph Theory 11 (1987), 367–371.

The proof of Brooks’s theorem indicated in Exercise 17, where the greedy
algorithm is applied to a carefully chosen vertex ordering, is due to Lovász
(1973). Lovász (1968) was also the first to construct graphs of arbitrarily
large girth and chromatic number, graphs whose existence Erdős had proved
by probabilistic methods ten years earlier in Graph theory and probability,
Can. J.Math. 11 (1959), 34–38. Another constructive proof can be found in
J. Nešetřil & V. Rödl, Sparse Ramsey graphs, Combinatorica 4 (1984), 71–78.

A. Urquhart, The graph constructions of Hajós and Ore, J.Graph The-
ory 26 (1997), 211–215, showed that not only do the graphs of chromatic
number at least k each contain a k-constructible graph (as by Hajós’s theo-
rem); they are in fact all themselves k-constructible. Note that, in the course
of constructing a given graph, the order of the graphs constructed on the
way can go both up and down, depending on which rule is applied at each
step. This means that there is no obvious upper bound on the number of
steps needed to construct a given graph, and indeed no such bound is known.
In particular, Hajós’s theorem does not provide bounded-length ‘certificates’
for the property of having chromatic number at least k. Unlike Kuratowski’s
theorem, it is therefore not a ‘good characterization’ in the sense of complexity
theory. (See Chapter 12.7, the notes for Chapter 10, and the end of the notes
for Chapter 12 for more details.)

Algebraic tools for showing that the chromatic number of a graph is large
have been developed by Kleitman & Lovász (1982), by Alon & Tarsi (see Alon’s
paper cited below), and by Babson & Kozlov (2007).

Theorem 5.3.3 was proved by B. Csaba, D. Kühn, A. Lo, D. Osthus and
A. Treglown, Proof of the 1-factorization and Hamilton decomposition conjec-
tures, Memoirs of the AMS 244 (2016), arXiv:1401.4164.

List colourings were first introduced in 1976 by Vizing. Among other
things, Vizing proved the list-colouring equivalent of Brooks’s theorem. Voigt
(1993) constructed a plane graph of order 238 that is not 4-choosable; thus,
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Thomassen’s list version of the five colour theorem is best possible. A stim-
ulating survey on the list-chromatic number and how it relates to the more
classical graph invariants (including a proof of Theorem 5.4.1) is given by
N. Alon, Restricted colorings of graphs, in (K. Walker, ed.) Surveys in Combi-
natorics, LMS Lecture Notes 187, Cambridge University Press 1993. Both the
list colouring conjecture and Galvin’s proof of the bipartite case are originally
stated for multigraphs. Kahn (1994) proved that the conjecture is asymptot-
ically correct, as follows: given any ✏ > 0, every graph G with large enough
maximum degree satisfies ch0(G) 6 (1 + ✏)�(G).

The total colouring conjecture (Exercise 34) was proposed around 1965
by Vizing and by Behzad; see Jensen & Toft for details.

A comprehensive treatment of perfect graphs is given in A. Schrijver,
Combinatorial optimization, Springer 2003. See also Perfect Graphs by
J. Ramı́rez-Alfonśın & B. Reed (eds.), Wiley 2001.

Our proof of the perfect graph theorem, Theorem 5.5.4, is taken from the
article of M. Preissmann and A. Sebő in that volume. Our proof of Theorem
5.5.6, which implies the perfect graph theorem, is due to G.S. Gasparian, Min-
imal imperfect graphs: a simple approach, Combinatorica 16 (1996), 209–212.

Theorem 5.5.3 is proved in M. Chudnovsky, N. Robertson, P.D. Seymour
and R. Thomas, The strong perfect graph theorem, Ann.Math. 164 (2006),
51–229, arXiv:math/0212070. This proof is elucidated by N. Trotignon in his
2013 survey on the arXiv:1301.5149. Chudnovsky, Cornuejols, Liu, Seymour
and Vušković, Recognizing Berge graphs, Combinatorica 25 (2005), 143–186,
constructed an O(n9) algorithm testing for odd holes and antiholes, and thus
by the strong perfect graph theorem also for perfection.

Theorem 5.6.1 is due to A. Scott and P.D. Seymour, Induced subgraphs
of graphs with large chromatic number. I. Odd holes, J.Comb.Theory, Ser. B
121 (2016), 68–84, arXiv:1410.4118. It has since been shown that it suf-
fices to exclude holes of certain lengths, such as large odd holes, or more
generally holes of any specified length modulo k, for any fixed k. See,
A. Scott and P.D. Seymour, Induced subgraphs of graphs with large chro-
matic number. X. Holes of specific residue, Combinatorica 39 (2019), 1105–
1132, arXiv:1705.04609. Our proof of Proposition 5.6.2 is from A. Scott and
P.D. Seymour, A survey on �-boundedness, J.Graph Theory 95 (2020), 473–
504, arXiv:1812.07500. References for the Gyárfás-Sumner conjecture and the
origin of Proposition 5.6.2 can also be found there.

The property of not containing any subdivision of some fixed tree as an
induced subgraph was shown to be �-bounded by A.D. Scott, Induced trees in
graphs of large chromatic number, J.Graph Theory 24 (1997), 297–311. Not
containing any subdivision of an arbitrary fixed graph H induced, however, is
not a �-bounded property; see J. Kozik et al, Triangle-free intersection graphs
of line segments with large chromatic number, J.Comb.Theory, Ser. B 105
(2014), 6–10, arXiv:1209.1595.

The structure of graphs forced by forbidding some fixed induced sub-
graph or subgraphs, as in the strong perfect graph theorem and Section 5.6,
has been studied more generally. One of the central problems is the Erdős-

Hajnal conjecture that the graphs without some fixed induced subgraph have
much larger sets of vertices that are either independent or induce a complete
subgraph than arbitrary graphs do. See Chapter 9.1 for a precise statement.




