
2 Matching
Covering

and Packing

Suppose we are given a graph and are asked to find in it as many in-
dependent edges as possible. How should we go about this? Will we
be able to pair up all its vertices in this way? If not, how can we be
sure that this is indeed impossible? Somewhat surprisingly, this basic
problem does not only lie at the heart of numerous applications, it also
gives rise to some rather interesting graph theory.

A set M of independent edges in a graph G = (V,E) is called a
matching . M is a matching of U ✓ V if every vertex in U is incident matching

with an edge in M . The vertices in U are then called matched (by M); matched

vertices not incident with any edge of M are unmatched .
A k-regular spanning subgraph is called a k-factor . Thus, a sub- factor

graph H ✓ G is a 1-factor of G if and only if E(H) is a matching of V .
The problem of how to characterize the graphs that have a 1-factor, i.e.
a matching of their entire vertex set, will be our main theme in the first
two sections of this chapter.

A generalization of the matching problem is to find in a given graph
G as many disjoint subgraphs as possible that are each isomorphic to
an element of a given class H of graphs. This is known as the packing packing

problem. It is related to the covering problem, which asks how few covering

vertices of G su�ce to meet all its subgraphs isomorphic to a graph
in H. Clearly, we need at least as many vertices for such a cover as
the maximum number k of graphs from H that we can pack disjointly
into G. If there is no cover by just k vertices, perhaps there is always
a cover by at most f(k) vertices, where f(k) may depend on H but not



38 2. Matching, Covering and Packing

on G? In Section 2.3 we shall prove that when H is the class of cycles,
then there is such a function f .

In Section 2.4 we consider packing and covering in terms of edges:
we ask how many edge-disjoint spanning trees we can find in a given
graph, and how few trees in it will cover all its edges. In Section 2.5
we prove a path cover theorem for directed graphs, which implies the
well-known duality theorem of Dilworth for partial orders.

2.1 Matching in bipartite graphs

For this whole section, we let G = (V,E) be a fixed bipartite graph withG = (V,E)

bipartition {A,B}. Vertices denoted as a, a0 etc. will be assumed to lieA,B

in A, vertices denoted as b etc. will lie in B.a, b etc.

How can we find a matching in G with as many edges as possible?
Let us start by considering an arbitrary matching M in G. A path in G
which starts in A at an unmatched vertex and then contains, alternately,
edges from ErM and from M , is an alternating path with respect to M .alternating

path

Note that the path is allowed to be trivial, i.e. to consist of its starting
vertex only. An alternating path P that ends in an unmatched vertex
of B is called an augmenting path (Fig. 2.1.1), because we can use it

augment-

ing path

to turn M into a larger matching: the symmetric di↵erence of M with
E(P ) is again a matching (consider the edges at a given vertex), and the
set of matched vertices is increased by two, the ends of P .

M

A B A B

P M 0

Fig. 2.1.1. Augmenting the matching M by the alternating
path P

Alternating paths play an important role in the practical search for
large matchings. In fact, if we start with any matching and keep apply-
ing augmenting paths until no further such improvement is possible, the
matching obtained will always be an optimal one, a matching with the
largest possible number of edges (Exercise 1). The algorithmic problem
of finding such matchings thus reduces to that of finding augmenting
paths – which is an interesting and accessible algorithmic problem.

Our first theorem characterizes the maximal cardinality of a matching
in G by a kind of duality condition. Let us call a set U ✓ V a (vertex)

cover of E if every edge of G is incident with a vertex in U .cover
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Theorem 2.1.1. (König 1931)
The maximum cardinality of a matching in G is equal to the minimum

cardinality of a vertex cover of its edges.

Proof. Let M be a matching in G of maximum cardinality. From every M

edge in M let us choose one of its ends: its end in B if some alternating
path ends in that vertex, and its end in A otherwise (Fig. 2.1.2). We
shall prove that the set U of these |M | vertices covers E; since any vertex U

cover of E must coverM , there can be none with fewer than |M | vertices,
and so the theorem will follow.

U \ A

U \ B

Fig. 2.1.2. The vertex cover U

Note that if an alternating path P ends in a vertex b 2 B, then b 2 U :
as M is a largest matching, P is not an augmenting path, so b is matched
to some a 2 A and was put in U when we considered the edge ab 2 M
while constructing U .

To show that U covers E, let an edge ab 2 E be given. If a 2 U we
are done, so assume that a /2 U . To prove b 2 U , it su�ces to show that
some alternating path ends in b. If a is unmatched, then ab is such a
path. If not, we have ab0 2 M for some b0 2 B. Since a /2 U , there exists
an alternating path P ending in b0. Depending on whether or not b 2 P ,
either Pb or Pb0ab is an alternating path ending in b. ⇤

Let us return to our main problem, the search for some necessary
and su�cient conditions for the existence of a 1-factor. In our present
case of a bipartite graph, we may as well ask more generally when G
contains a matching of A; this will define a 1-factor of G if |A| = |B|,
a condition that has to hold anyhow if G is to have a 1-factor.

A condition clearly necessary for the existence of a matching of A
is that every subset of A has enough neighbours in B, i.e. that

marriage

condition
|N(S)| > |S| for all S ✓ A.

The following marriage theorem says that this obvious necessary condi-
tion is in fact su�cient:
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Theorem 2.1.2. (Hall 1935)[2.2.3]

G contains a matching of A if and only if |N(S)| > |S| for all S ✓ A.

We give three proofs, of rather di↵erent character.1 In each proof we
assume that G satisfies the marriage condition and find a matching of A.

First proof. We show that for every matching M of G that leaves aM

vertex a 2 A unmatched there is an augmenting path with respect to M .a

Let A0 and B0 be the sets of vertices in A and B that can be reached
by an alternating path from a. Any such path ending at an unmatched
b0 2 B0 is augmenting, so we may assume that all b0 2 B0 are matched.
Their M -neighbours clearly lie in A0, but a 2 A0 is not among these.
Hence by the marriage condition, A0 also sends an edge a0b to a vertex
b /2 B0. Appending this edge to an alternating a–a0 path yields an alter-
nating a–b path. This places b in B0, contradicting its choice. ⇤

Second proof. We apply induction on |A|. For |A| = 1 the assertion
is true. Now let |A| > 2, and assume that the marriage condition is
su�cient for the existence of a matching of A when |A| is smaller.

If |N(S)| > |S|+1 for every non-empty set S ( A, we pick an edge
ab 2 G and consider the graph G0 := G� {a, b} obtained by deleting its
ends. Then every non-empty set S ✓ Ar {a} satisfies

|NG0(S)| > |NG(S)|� 1 > |S| ,

so by the induction hypothesis G0 contains a matching of Ar {a}. To-
gether with the edge ab, this yields a matching of A in G.

Suppose now that A has a non-empty proper subset A0 with |B0| =
|A0| for B0 := N(A0). By the induction hypothesis, G0 := G[A0 [B0]
contains a matching of A0. But G�G0 satisfies the marriage condition
too: for any set S ✓ A r A0 with |NG�G0(S)| < |S| we would have
|NG(S [A0)| < |S [A0|, contrary to our assumption. Again by induc-
tion, G�G0 contains a matching of ArA0. Putting the two matchings
together, we obtain a matching of A in G. ⇤

For our last proof, let H be an edge-minimal subgraph of G thatH

satisfies the marriage condition and contains A. Note that dH(a) > 1
for every a 2 A, by the marriage condition with S = {a}.

Third proof. We show that dH(a) = 1 for every a 2 A. The edges of H
then form a matching of A, since by the marriage condition no two such
edges can share a vertex in B.

Suppose a has distinct neighbours b1, b2 in H. By definition of H,
the graphs H � ab1 and H � ab2 violate the marriage condition. So for

1 The theorem can also be derived easily from König’s theorem; see Exercise 5.
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A1

A2

a

b2

b1

B1

Fig. 2.1.3. B1 contains b2 but not b1

i = 1, 2 there is a set Ai ✓ A containing a such that |Ai| > |Bi| for
Bi := NH�abi(Ai) (Fig. 2.1.3). Since b1 2 B2 and b2 2 B1,

|NH(A1 \A2 r {a})| 6 |B1 \B2|
= |B1|+ |B2|� |B1 [B2|
= |B1|+ |B2|�

��NH(A1 [A2)|
6 |A1|� 1+ |A2|� 1� |A1 [A2|
= |A1 \A2|� 2

= |A1 \A2 r {a}|� 1 .

Hence H violates the marriage condition, contrary to assumption. ⇤

This last proof has a pretty ‘dual’, which begins by showing that
dH(b) 6 1 for every b 2 B. See Exercise 6 and its hint for details.

Corollary 2.1.3. Every k-regular (k > 1) bipartite graph has a 1-factor.

Proof. If G is k-regular, then clearly |A| = |B|; it thus su�ces to show by
Theorem 2.1.2 that G contains a matching of A. Now every set S ✓ A
is joined to N(S) by a total of k |S| edges, and these are among the
k |N(S)| edges of G incident with N(S). Therefore k |S| 6 k |N(S)|, so
G does indeed satisfy the marriage condition. ⇤

In some real-life applications, matchings are not chosen on the basis
of global criteria for the entire graph but evolve as the result of inde-
pendent decisions made locally by the participating vertices. A typical
situation is that vertices are not indi↵erent to which of their incident
edges are picked to match them, but prefer some to others. Then if M
is a matching and e = ab is an edge not in M such that both a and
b prefer e to their current matching edge (if they are matched), then a
and b may agree to change M locally by including e and discarding their
earlier matching edges. The matchingM , although perhaps of maximum
size, would thus be unstable.
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More formally, call a family (6v)v2V of linear orderings 6v on E(v)preferences

a set of preferences for G. Then call a matching M in G stable if for
every edge e 2 ErM there exists an edge f 2 M such that e and f havestable

matching

a common vertex v with e <v f . The following result is sometimes called
the stable marriage theorem; see Exercises 16 and 17 for a discussion of
alternative proofs.

Theorem 2.1.4. (Gale & Shapley 1962)[5.4.4]

For every set of preferences, G has a stable matching.

Proof. Call a matching M in G better than a matching M 0 6= M if M
makes the vertices in B happier than M 0 does, that is, if every vertex b
in an edge f 0

2 M 0 is incident also with some f 2 M such that f 0 6b f .
We shall construct a sequence of better and better matchings. Since
these can increase the happiness of a fixed vertex b at most d(b) times,
this process will terminate.

Given a matching M , call a vertex a 2 A acceptable to b 2 B if
e = ab 2 E rM and any edge f 2 M at b satisfies f <b e. Call a 2 A
happy with M if a is unmatched or its matching edge f 2 M satisfies
f >a e for all edges e = ab such that a is acceptable to b.

Starting with the empty matching, let us construct a sequence of
matchings that keep all the vertices in A happy. Given such a match-
ing M , consider a vertex a 2 A that is unmatched but acceptable to
some b 2 B. (If no such a exists, terminate the sequence.) Add to M
the 6a-maximal edge ab such that a is acceptable to b, and discard from
M any other edge at b.

Clearly, each matching in our sequence is better than the previous
and keeps the vertices in A happy (which they initially are, whenM = ;).
So the sequence continues until it terminates with a matching M such
that no unmatched vertex in A is acceptable to any of its neighbours
in B. As every matched vertex in A is happy with M , this matching is
stable. ⇤

Despite its seemingly narrow formulation, the marriage theorem
counts among the most frequently applied graph theorems, both out-
side graph theory and within. Often, however, recasting a problem in
the setting of bipartite matching requires some clever adaptation. As a
simple example, we now use the marriage theorem to derive one of the
earliest results of graph theory, a result whose original proof is not all
that simple, and certainly not short:

Corollary 2.1.5. (Petersen 1891)
Every regular graph of positive even degree has a 2-factor.
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Proof. Let G be any 2k-regular graph (k > 1), without loss of generality (1.8.1)

connected. By Theorem 1.8.1, G contains an Euler tour v0e0 . . . e`�1v`,
with v` = v0. We replace every vertex v by a pair (v�, v+), and every
edge ei = vivi+1 by the edge v+i v

�

i+1
(Fig. 2.1.4). The resulting bipartite

graph G0 is k-regular, so by Corollary 2.1.3 it has a 1-factor. Collapsing
every vertex pair (v�, v+) back into a single vertex v, we turn this 1-
factor of G0 into a 2-factor of G. ⇤

v

v�

v+

Fig. 2.1.4. Splitting vertices in the proof of Corollary 2.1.5

2.2 Matching in general graphs

Given a graph G, let us denote by CG the set of its components, and by CG

q(G) the number of its odd components, those of odd order. If G has a q(G)

1-factor, then clearly
Tutte’s

conditionq(G�S) 6 |S| for all S ✓ V (G),

since every odd component of G�S will send a factor edge to S.

G

S S

GS

Fig. 2.2.1. Tutte’s condition q(G � S) 6 |S| for q = 3, and the
contracted graph GS from Theorem 2.2.3.

Again, this obvious necessary condition for the existence of a 1-factor
is also su�cient:
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Theorem 2.2.1. (Tutte 1947)
A graph G has a 1-factor if and only if q(G�S) 6 |S| for all S ✓ V (G).

Proof. Let G = (V,E) be a graph without a 1-factor. Our task is to findV,E

a bad set S ✓ V , one that violates Tutte’s condition.bad set

We may assume that G is edge-maximal without a 1-factor. Indeed,
if G0 is obtained from G by adding edges and S ✓ V is bad for G0, then
S is also bad for G: any odd component of G0 � S is the union of
components of G�S, and one of these must again be odd.

What does G look like? Clearly, if G contains a bad set S then, by
its edge-maximality and the trivial forward implication of the theorem,

all the components of G�S are complete and every vertex

s 2 S is adjacent to all the vertices of G� s.
(⇤)

But also conversely, if a set S ✓ V satisfies (⇤) then either S or the
empty set must be bad: if S is not bad we can join the odd components
of G� S disjointly to S and pair up all the remaining vertices – unless
|G| is odd, in which case ; is bad.

So it su�ces to prove that G has a set S of vertices satisfying (⇤).
Let S be the set of vertices that are adjacent to every other vertex. IfS

this set S does not satisfy (⇤), then some component of G�S has non-
adjacent vertices a, a0. Let a, b, c be the first three vertices on a shortesta, b, c

a–a0 path in this component; then ab, bc 2 E but ac /2 E. Since b /2 S,
there is a vertex d 2 V such that bd /2 E. By the maximality of G, thered

is a matching M1 of V in G+ ac, and a matching M2 of V in G+ bd.M1,M2

P
c

a

b

d

C
. . .

2 21

1

1

Fig. 2.2.2. Deriving a contradiction if S does not satisfy (⇤)

Let P = d . . . v be a maximal path in G starting at d with an edgev

from M1 and containing alternately edges from M1 and M2 (Fig. 2.2.2).
If the last edge of P lies in M1, then v = b, since otherwise we could
continue P . Let us then set C := P + bd. If the last edge of P lies in M2,
then by the maximality of P the M1-edge at v must be ac, so v 2 {a, c};
then let C := dPvbd. This is again a cycle, since b cannot be an inner
vertex of P : those are incident with M2-edges from G, which b is not.

In every case C is an even cycle with every other edge in M2, and
whose only edge not in E is bd. Replacing in M2 its edges on C with the
edges of C�M2, we obtain a matching of V in E, a contradiction. ⇤
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Corollary 2.2.2. (Petersen 1891)
Every bridgeless cubic graph has a 1-factor.

Proof. We show that any bridgeless cubic graph G satisfies Tutte’s con-
dition. Let S ✓ V (G) be given, and consider an odd component C of
G�S. Since G is cubic, the degrees (in G) of the vertices in C sum to an
odd number, but only an even part of this sum arises from edges of C.
So G has an odd number of S–C edges, and therefore has at least 3 such
edges (since G has no bridge). The total number of edges between S and
G�S thus is at least 3q(G�S). But it is also at most 3|S|, because G
is cubic. Hence q(G�S) 6 |S|, as required. ⇤

In order to shed a little more light on the techniques used in match-
ing theory, we now give a second proof of Tutte’s theorem. In fact,
we shall prove a slightly stronger result, a result that places a structure
interesting from the matching point of view on an arbitrary graph. If the
graph happens to satisfy the condition of Tutte’s theorem, this structure
will at once yield a 1-factor.

A non-empty graph G = (V,E) is called factor-critical if G has no factor-

critical

1-factor but for every vertex v 2 G the graph G� v has a 1-factor. We
call a vertex set S ✓ V matchable to CG�S if the (bipartite2) graph GS , matchable

which arises from G by contracting the components C 2 CG�S to sin-
gle vertices and deleting all the edges inside S, contains a matching
of S. (Formally, GS is the graph with vertex set S [ CG�S and edge set GS

{ sC | 9 c 2 C : sc 2 E }; see Fig. 2.2.1.)

Theorem 2.2.3. (Gallai 1964; Edmonds 1965)
Every graph G has a set S of vertices with the following two properties:

(i) S is matchable to CG�S ;

(ii) Every component of G�S is factor-critical.

Given any such set S, the graph G contains a 1-factor if and only if

|S| = |CG�S |.

For any given G, the assertion of Tutte’s theorem follows easily from
this result. Indeed, by (i) and (ii) we have |S| 6 |CG�S | = q(G� S)
(since factor-critical graphs have odd order); thus Tutte’s condition of
q(G � S) 6 |S| implies |S| = |CG�S |, and the existence of a 1-factor
follows from the last statement of Theorem 2.2.3.

Proof of Theorem 2.2.3. Note first that the last assertion of the theorem (2.1.2)

follows at once from the assertions (i) and (ii): if G has a 1-factor, we
have q(G � S) 6 |S| and hence |S| = |CG�S | as above; conversely if

2 except for the – permitted – case that S or CG�S is empty
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|S| = |CG�S |, then the existence of a 1-factor follows straight from (i)
and (ii).

We now prove the existence of a set S satisfying (i) and (ii), by
induction on |G|. For |G| = 0 we may take S = ;. Now let G be given
with |G| > 0, and assume the assertion holds for graphs with fewer
vertices.

Consider the sets T ✓ V (G) for which Tutte’s condition fails worst,
i.e. for which

d(T ) := dG(T ) := q(G�T )� |T |d

is maximum, and let S be a largest such set T . Note that d(S)> d(;)> 0.S

We first show that every component C 2 CG�S =: C is odd. If |C|C

is even, pick a vertex c 2 C, and consider T := S [ {c}. As C � c has
odd order it has at least one odd component, which is also a component
of G�T . Therefore

q(G�T ) > q(G�S)+ 1 while |T | = |S|+1 ,

so d(T ) > d(S) contradicting the choice of S.
Next we prove the assertion (ii), that every C 2 C is factor-critical.

Suppose there exist C 2 C and c 2 C such that C 0 := C � c has no
1-factor. By the induction hypothesis (and the fact that, as shown ear-
lier, for fixed G our theorem implies Tutte’s theorem) there exists a set
S0 ✓ V (C 0) with

q(C 0 �S0) > |S0| .

Since |C| is odd and hence |C 0| is even, the numbers q(C 0�S0) and |S0|
are either both even or both odd, so they cannot di↵er by exactly 1. We
may therefore sharpen the above inequality to

q(C 0 �S0) > |S0|+2 ,

giving dC0(S0) > 2. Then for T := S [ {c}[S0 we have

d(T ) > d(S)� 1� 1+ dC0(S0) > d(S) ,

where the first ‘�1’ comes from the loss of C as an odd component
and the second comes from including c in the set T . As before, this
contradicts the choice of S.

It remains to show that S is matchable to CG�S . If not, then by
the marriage theorem there exists a set S0 ✓ S that sends edges to fewer
than |S0| components in C. Since the other components in C are also
components of G� (S r S0), the set T = S r S0 satisfies d(T ) > d(S),
contrary to the choice of S. ⇤
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Let us consider once more the set S from Theorem 2.2.3, together S

with any matching M in G = (V,E). As before, we write C := CG�S . V, C

Let us denote by kS the number of edges in M with at least one end
in S, and by kC the number of edges in M with both ends in G� S. kS , kC

Since each C 2 C is odd, at least one of its vertices is not incident with
an edge of the second type. Therefore every matching M satisfies

kS 6 |S| and kC 6 1

2

⇣
|V |� |S|� |C|

⌘
. (1)

Moreover, G contains a matching M0 with equality in both cases: first M0

choose |S| edges between S and
S
C according to (i), and then use (ii) to

find a suitable set of 1

2

�
|C|� 1

�
edges in every component C 2 C. This

matching M0 thus has exactly

|M0| = |S|+ 1

2

⇣
|V |� |S|� |C|

⌘
(2)

edges.
Now (1) and (2) together imply that every matching M of maxi-

mum cardinality satisfies both parts of (1) with equality: by |M | > |M0|
and (2), M has at least |S|+ 1

2

�
|V |� |S|� |C|

�
edges, which implies by

(1) that neither of the inequalities in (1) can be strict. But equality
in (1), in turn, implies that M has the structure described above: by
kS = |S|, every vertex s 2 S is the end of an edge st 2 M with t 2 G�S,
and by kC = 1

2

�
|V |� |S|� |C|

�
exactly 1

2
(|C|� 1

�
edges of M lie in C,

for every C 2 C. Finally, since these latter edges miss only one vertex in
each C, the ends t of the edges st above lie in di↵erent components C
for di↵erent s.

The seemingly technical Theorem 2.2.3 thus hides a wealth of struc-
tural information: it contains the essence of a detailed description of all
maximum-cardinality matchings in all graphs. A reference to the full
statement of this result, the Gallai-Edmonds structure theorem, is given
in the notes at the end of this chapter.

2.3 The Erdős-Pósa theorem

Much of the charm of König’s and Hall’s theorems in Section 2.1 lies
in the fact that they guarantee the existence of the desired matching as
soon as some obvious obstruction does not occur. In König’s theorem,
we can find k independent edges in our graph unless we can cover all its
edges by fewer than k vertices (in which case it is obviously impossible).

More generally, if G is an arbitrary graph, not necessarily bipartite,
and H is any class of graphs, we might compare the largest number k
of graphs from H (not necessarily distinct) that we can pack disjointly
into G with the smallest number s of vertices of G that will cover all



48 2. Matching, Covering and Packing

its subgraphs in H. If s can be bounded by a function of k, i.e. inde-
pendently of G, we say that H has the Erdős-Pósa property . (Thus,Erdős-Pósa

property

formally, H has this property if there exists an N!N function k 7! f(k)
such that, for every k and G, either G contains k disjoint subgraphs each
isomorphic to a graph in H, or there is a set U ✓ V (G) of at most f(k)
vertices such that G�U has no subgraph in H.)

Our aim in this section is to prove the theorem of Erdős and Pósa
that the class of all cycles has this property: we shall find a function f
(about 4k log k) such that every graph contains either k disjoint cycles
or a set of at most f(k) vertices covering all its cycles.

We begin by proving a stronger assertion for cubic graphs. For k 2

N, put

sk :=

⇢
4krk if k > 2
1 if k 6 1

where rk := log k+ log log k+4 .
rk, sk

Lemma 2.3.1. Let k 2 N, and let H be a cubic multigraph. If |H| > sk,
then H contains k disjoint cycles.

Proof. We apply induction on k. For k 6 1 the assertion is trivial, so let(1.3.5)

k > 2 be given for the induction step. Let C be a shortest cycle in H.
We first show that H �C contains a subdivision of a cubic multi-

graph H 0 with |H 0| > |H|�2|C|. Let m be the number of edges betweenm

C and H �C. Since H is cubic and d(C) = 2, we have m 6 |C|. We
now consider bipartitions {V1, V2} of V (H), beginning with V1 := V (C)
and allowing V2 = ;. If H[V2] has a vertex of degree at most 1 we
move this vertex to V1, obtaining a new partition {V1, V2} crossed by
fewer edges. Suppose we can perform a sequence of n such moves, butn

no more. (Our assumptions imply n 6 3, but we do not formally need
this.) Then the resulting partition {V1, V2} is crossed by at most m�n
edges. And H[V2] has at most m � n vertices of degree less than 3,
because each of these is incident with a crossing edge. These vertices
have degree exactly 2 in H[V2], since we could not move them to V1. Let
H 0 be the cubic multigraph obtained from H[V2] by suppressing these
vertices. Then

|H 0| > |H|� |C|�n� (m�n) > |H|� 2|C| ,

as desired.
To complete the proof, it su�ces to show that |H 0| > sk�1. Since

|C| 6 2 log |H| by Corollary 1.3.5 (or by |H| > sk, if |C| = g(H) 6 2),
and |H| > sk > 6, we have

|H 0| > |H|� 2|C| > |H|� 4 log |H| > sk � 4 log sk .

(In the last inequality we use that the function x 7! x� 4 log x increases
for x > 6.)
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It thus remains to show that sk � 4 log sk > sk�1. For k = 2 this is
clear, so we assume that k > 3. Then rk 6 4 log k (which is obvious for
k > 4, while the case of k = 3 has to be calculated), and hence

sk � 4 log sk = 4(k� 1)rk +4 log k+4 log log k+16

�
�
8+4 log k+4 log rk

�

> sk�1 +4 log log k+8� 4 log(4 log k)

= sk�1 . ⇤

Theorem 2.3.2. (Erdős & Pósa 1965)
There is a function f :N!N such that, given any k 2 N, every graph

contains either k disjoint cycles or a set of at most f(k) vertices meeting

all its cycles.

Proof. We show the result for f(k) := bsk + k� 1c. Let k be given, and
let G be any graph. We may assume that G contains a cycle, and so it
has a maximal subgraph H in which every vertex has degree 2 or 3. Let
U be its set of degree 3 vertices. U

Let C be the set of all cycles in G that avoid U and meetH in exactly
one vertex. Let Z ✓ V (H)r U be the set of those vertices. For each Z

z 2 Z pick a cycle Cz 2 C that meets H in z, and put C0 := {Cz | z 2 Z }.
By the maximality of H, the cycles in C0 are disjoint.

Let D be the set of the 2-regular components of H that avoid Z.
Then C0[D is another set of disjoint cycles. If |C0[D| > k, we are done.
Otherwise we can add to Z one vertex from each cycle in D to obtain a
set X of at most k� 1 vertices that meets all the cycles in C and all the X

2-regular components of H. Now consider any cycle of G that avoids X.
By the maximality of H it meets H. But it is not a component of H,
it does not lie in C, and it does not contain an H- path between distinct
vertices outside U (by the maximality of H). So this cycle meets U .

We have shown that every cycle in G meets X [U . As |X| 6 k� 1,
it thus su�ces to show that |U | < sk unless H contains k disjoint cycles.
But this follows from Lemma 2.3.1 applied to the multigraph obtained
from H by suppressing its vertices of degree 2. ⇤

A very short proof of Theorem 2.3.2 as such, with a recursively de-
fined (and much worse) bound, is indicated in Exercise 11 of Chapter 9.

Our proof of Theorem 2.3.2 can be adapted to give an analogous
result for packing cycles edge-disjointly and covering them by edges;
this is outlined in Exercise 22 of Chapter 7. A simpler proof of the edge
version using Ramsey’s theorem is indicated in Exercise 12 of Chapter 9.

We shall also meet the Erdős-Pósa property again in Chapter 12.
There, a considerable extension of Theorem 2.3.2 will appear as an un-
expected and easy corollary of the theory of graph minors.
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2.4 Tree packing and arboricity

In this section we consider packing and covering in terms of edges rather
than vertices. How many edge-disjoint spanning trees can we find in a
given connected graph? And how few trees, not necessarily edge-disjoint,
su�ce to cover all its edges? These two questions have two classical the-
orems answering them. But rather than proving these theorems directly,
we shall obtain them both as corollaries of a beautiful recent unification
due to Bowler and Carmesin: the packing-covering theorem.

To motivate the tree packing problem, assume for a moment that
our graph represents a communication network, and that for every choice
of two vertices we want to be able to find k edge-disjoint paths between
them. Menger’s theorem (3.3.6) in the next chapter will tell us that such
paths exist as soon as our graph is k-edge-connected, which is clearly also
necessary. This is a good theorem, but it does not tell us how to find
those paths; in particular, having found them for one pair of endvertices
we are not necessarily better placed to find them for another pair. If our
graph has k edge-disjoint spanning trees, however, there will always be k
canonical such paths, one in each tree. Once we have stored those trees
in our computer, we shall always be able to find the k paths quickly,
between any given pair of vertices.

When does a graph G have k edge-disjoint spanning trees? If it
does, it clearly must be k-edge-connected. The converse, however, is
easily seen to be false (try k = 2); indeed it is not even clear that any
edge-connectivity will imply the existence of k edge-disjoint spanning
trees. (But see Corollary 2.4.2 below.)

Here is another necessary condition. If G has k edge-disjoint span-
ning trees, then with respect to any partition of V (G) into r sets, every
spanning tree of G has at least r�1 cross-edges, edges whose ends lie incross-edges

di↵erent partition sets. (Why?) Thus if G has k edge-disjoint spanning
trees, it has at least k (r�1) cross-edges. This condition is also su�cient:

Theorem 2.4.1. (Nash-Williams 1961; Tutte 1961)
A multigraph contains k edge-disjoint spanning trees if and only if for

tree

packing

theorem

[8.6.9] every partition P of its vertex set it has at least k (|P |� 1) cross-edges.

Theorem 2.4.1 has a striking corollary: 2k-edge-connectedness is
enough to ensure the existence of k edge-disjoint spanning trees.

Corollary 2.4.2. Every 2k-edge-connected multigraph G has k edge-[6.4.4]

disjoint spanning trees.

Proof. Every class in a vertex partition of G is joined to other partition
classes by at least 2k edges. Hence, for any partition into r sets, G has
at least 1

2

Pr
i=1

2k = kr cross-edges. The assertion thus follows from
Theorem 2.4.1. ⇤
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Note that the quantitative condition on cross-edges in Theorem 2.4.1
is equivalent to asking the same only for partitions into connected vertex
sets: any other partition is refined by such a partition, and if the latter
has enough cross-edges (even though it has more classes) then clearly so
does the former. The tree packing theorem thus says that a multigraph
has k edge-disjoint spanning trees as soon as all its contraction minors
have enough edges to support k edge-disjoint spanning trees.

We shall meet Theorem 2.4.1 again in Chapter 8.6, where we prove
an infinite analouge. This is based not on ordinary spanning trees (for
which the result is false) but on ‘topological spanning trees’: the analog-
ous structures in a topological space formed by the graph together with
its ends, points at infinity that make it compact.

Let us now turn to the covering problem. To bring out its duality to
the packing problem, we begin by rephrasing the latter. Let us say that
some given subgraphs of a multigraph G form an edge-decomposition

of G if their edge sets partition E(G). Our spanning tree problem can
now be recast as follows: into how many connected spanning subgraphs
can we edge-decompose G? Since a spanning subgraph is connected if
and only if it has an edge in every bond, the packing problem in this new
guise has a ‘dual’ reminiscent of Theorems 1.5.1 and 1.9.4: into how few

acyclic subgraphs – those whose complement meets all their circuits –
can we edge-decompose G?

Let us say that some given graphs, not necessarily subgraphs of G,
cover its edges if every edge of G lies in at least one of them. Our dual cover

problem, then, is for which multigraphs G can we cover their edges by
at most k trees.

An obvious necessary condition is that every set U ✓ V (G) induces
at most k (|U |� 1) edges, no more than |U |� 1 for each tree. Or, to
phrase it dually to the tree packing condition, that no ‘deletion minor’
(subgraph) of G has too many edges to be covered by k trees.

Once more, this condition turns out to be su�cient too:

Theorem 2.4.3. (Nash-Williams 1964)
The edges of a multigraph G = (V,E) can be covered by at most k trees

tree

covering

theorem
if and only if kG[U ]k 6 k (|U |� 1) for every non-empty set U ✓ V .

The least number of trees that can cover the edges of a graph is
its arboricity . By Theorem 2.4.3, the arboricity of a graph is a measure arboricity

for its maximum local density: it has small arboricity if and only if it is
‘nowhere dense’ in the sense that it has no subgraph H with "(H) large.

We finally come to the packing-covering theorem. Recall from Chap-
ter 1.10 that when we form a contraction minor G/P of a multigraph G,
we keep all the edges of G between di↵erent partition classes: edges
between the same two classes U,U 0

2 P become parallel edges of G/P .
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Theorem 2.4.4. (Bowler & Carmesin 2015)
For every connected multigraph G = (V,E) and every k 2 N there is a

packing-

covering

theorem
partition P of V such that every G[U ] with U 2 P has k edge-disjoint

spanning trees and the edges of G/P can be covered by k spanning trees.

Before we prove the packing-covering theorem, let us deduce Theo-
rems 2.4.1 and 2.4.3.

Proof of Theorem 2.4.1 (assuming Theorem 2.4.4).
Suppose a multigraph G has at least k (|P | � 1) cross-edges for every
partition P of V (G). Let P be the partition provided by Theorem 2.4.4.
By the theorem, G/P has k spanning trees covering its edges. Since
kG/Pk > k (|P |� 1), they must be edge-disjoint. Combining them with
the edge-disjoint spanning trees in the G[U ] that are also provided by
Theorem 2.4.4, we obtain the desired k spanning trees of G. ⇤

Proof of Theorem 2.4.3 (assuming Theorem 2.4.4).
Suppose every U ✓ V induces at most k (|U |�1) edges in G. Let C be a
component ofG, and P the partition of V (C) provided by Theorem 2.4.4.
For each U 2 P , each of the k edge-disjoint spanning trees of G[U ] that
the theorem provides has |U |� 1 edges, so all the edges of G[U ] lie in
these trees. Combining these trees with the spanning trees of C/P that
cover its edges, also provided by Theorem 2.4.4, we obtain k spanning
trees of C covering its edges. These can be combined to k forests covering
the edges of G. Add edges to turn these into the desired k trees. ⇤

Given the power of the packing-covering theorem, its proof is strik-
ingly short and elegant. To prepare some notation, consider a spanning
tree T of G, a chord e, and an edge f 2 T on its fundamental cycle Ce.
Then T 0 = T + e� f is another spanning tree: this is immediate from
Corollary 1.5.2, because T 0 is still connected and has the same number of
edges as T . One says that T 0 is obtained from T by exchanging f for e.

Now let T = (Tj)j=1,...,k be a family of spanning trees of G. Call aT , k

sequence (e0, . . . , en) of edges of G an exchange chain with respect to T ,
started by e0, if en lies on none of these trees but for every i < n there

exchange

chain

i 7! j(i) exists j =: j(i) such that ei+1 is a chord of Tj whose fundamental cycle
with respect to Tj contains ei.

Let us write E(T ) :=
S
{E(T ) | T 2 T } for any such family.E(T )

Lemma 2.4.5. If e0 starts an exchange chain with respect to T and

lies in two of its trees, then there is a family T 0
of k spanning trees of G

such that E(T ) ( E(T 0).

Proof. Choose (e0, . . . , en) of minimum length among the exchange
chains with respect to T that start with e0. Then its elements ei are
distinct. And no ei lies on the fundamental cycle with respect to any
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tree in T of any e` with ` > i+1: if it did, we could omit ei+1, . . . , e`�1

from our sequence, contradicting its minimality.
For i = 0, . . . , n inductively, we shall define families T i = (T i

j )j=1,...,k T i
j

of spanning trees of G such that, for all i 6 ` < n,

(i) E(T i) = E(T );

(ii) ei lies in two of the trees in the family T i;

(iii) e`+1 is a chord of T i
j(`) and has the same fundamental cycle there

as with respect to Tj(`).

Note that these families have the same index set as T , and we continue
to use the map i 7! j(i) from the indices of our exchange chain to the j(i)

indices of T i that we defined together with T .
For i = 0 the family T 0 := T is as required. Given i < n, let T i+1

T
i

be obtained from T i by replacing T i
j(i) with T i

j(i)+ ei+1� ei =: T i+1

j(i) and
letting T i+1

j := T i
j for all other j.

By (iii) for i with ` = i, the modified tree T i+1

j(i) is again a spanning
tree of G: recall that ei lies on the fundamental cycle of ei+1 with respect
to Tj(i), by definition of j(i).

Assertion (i) for i+1< n follows from (i)–(iii) for i: we are not losing
ei by (ii), and we are not gaining ei+1, since it lies on the fundamental
cycle of ei+2 with respect to Tj(i+1), and hence is already in T i

j(i+1)
2 T i

by (iii).
To verify (ii) for i+1 < n, note first that j(i+1) 6= j(i), because

ei+1 is a chord of Tj(i) but lies on Tj(i+1). Now ei+1 2 T i
j(i+1)

= T i+1

j(i+1)

as noted above, as well as ei+1 2 T i+1

j(i) , by definition of this tree.
For a proof of (iii) for i+1 < n consider any i+1 6 ` < n. As long

as j(`) 6= j(i), we have T i
j(`) = T i+1

j(`) , and the assertion follows from (iii)
for i. Now consider the case that j(`) = j(i) =: j. Then e`+1 is a chord
of T i

j by (iii) for i, and T i+1

j = T i
j + ei+1 � ei. As ei+1 6= e`+1 since

i 6= `, our edge e`+1 is still a chord of T i+1

j . As noted at the start of
the proof, its fundamental cycle with respect to Tj does not contain ei.
Hence (iii) for i implies (iii) for i+1.

It remains to check that T 0 := T n satisfies E(T ) ( E(T 0). As
en 2 E(T 0) by definition of T 0 = T n, and en /2 E(T ) by assumption,
all we have to check is that E(T ) ✓ E(T 0). Now E(T ) = E(T n�1), by
(i) for i = n� 1. But the only edge we deleted from any tree in T n�1

when we turned it into T n was en�1. By (ii) for i = n�1, this edge also
lay on another tree in T n�1, which we left unchanged for T n. ⇤

Proof of Theorem 2.4.4. Let T = (T1, . . . , Tk) be a family of k
spanning trees of G, chosen with E(T ) maximal. Let D be the set of all
edges of G that start an exchange chain with respect to T . These include
all edges not in E(T ), since they form singleton exchange chains. Let P
be the partition of V into the vertex sets of the components of (V,D).
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For the theorem’s packing assertion, let U 2 P be given. For all
j = 1, . . . , k let Sj be the subgraph of Tj induced on U by its edges in D.
These forests Sj are edge-disjoint, since by the maximality of E(T ) and
Lemma 2.4.5 no edge in D lies in more than one Tj . Let us show that
the Sj are connected.

Since the edges from D form a connected submultigraph on U, it
su�ces to show that for every edge uu0

2 D with u, u0
2 U there is a

u–u0 path in Sj . This is clear if uu0 lies in Tj , and hence in Sj . If it
does not, then the path uTju0 still has all its edges e in D, and hence lies
in Sj : if e0, . . . , en is an exchange chain witnessing that e0 = uu0

2 D,
then e, e0, . . . en is an exchange chain putting e in D, because e lies on
the fundamental cycle of e0 with respect to Tj .

As every Tj induces connected subgraphs Sj on the partition classes
of P , contracting these Sj turns the Tj into spanning trees T 0

j of G/P .
These T 0

j cover all the edges of G/P , since ErE(T ) ✓ D. ⇤

The packing-covering theorem di↵ers from both the tree packing
and the tree covering theorem in a fundamental way. The non-trivial
directions of the latter two theorems each obtain a structural assertion
about a graph, the existence of a packing or covering, as a consequence
of quantitative assumptions about all their minors of a certain type:
contraction minors for the packing theorem, and ‘deletion minors’ – i.e.,
subgraphs – for the covering theorem. This format makes them interest-
ing: they o↵er valuable structural information for one graph in exchange
for less valuable quantitative information about many smaller graphs.

The packing-covering theorem, by contrast, makes a structural as-
sertion about every graph: with no need for any assumptions at all,
neither quantitative nor qualitative.

The packing-covering theorem extends to infinite graphs in two in-
terestingly di↵erent ways; see Exercises 20 and 131 in Chapter 8.

2.5 Path covers

Let us return once more to König’s duality theorem for bipartite graphs,
Theorem 2.1.1. If we orient every edge of G from A to B, the theorem
tells us how many disjoint directed paths we need in order to cover all
the vertices of G: every directed path has length 0 or 1, and clearly the
number of paths in such a ‘path cover’ is smallest when it contains as
many paths of length 1 as possible – in other words, when it contains a
maximum-cardinality matching.

In this section we put the above question more generally: how many
paths in a given directed graph will su�ce to cover its entire vertex set?
Of course, this could be asked just as well for undirected graphs. As it
turns out, however, the result we shall prove is rather more trivial in



2.5 Path covers 55

the undirected case (exercise), and the directed case will also have an
interesting corollary.

A directed path is a directed graph P 6= ; with distinct vertices
x0, . . . , xk and edges e0, . . . , ek�1 such that ei is an edge directed from
xi to xi+1, for all i < k. In this section, path will always mean ‘directed path

path’. The vertex xk above is the last vertex of the path P , and when P
is a set of paths we write ter(P) for the set of their last vertices. A path ter(P)

cover of a directed graph G is a set of disjoint paths in G which together path cover

contain all the vertices of G.

Theorem 2.5.1. (Gallai & Milgram 1960)
Every directed graph G has a path cover P and an independent set

{ vP | P 2 P } of vertices such that vP 2 P for every P 2 P.

Proof. Clearly, G has a path cover, e.g. by trivial paths. We prove by
induction on |G| that for every path cover P = {P1, . . . , Pm} with ter(P) P, Pi

minimal there is a set { vP | P 2 P } as claimed. For each i, let vi denote vi

the last vertex of Pi.
If ter(P) = {v1, . . . , vm} is independent there is nothing more to

show, so we assume that G has an edge from v2 to v1. Since P2v2v1
is again a path, the minimality of ter(P) implies that v1 is not the
only vertex of P1; let v be the vertex preceding v1 on P1. Then v

P 0 := {P1v, P2, . . . , Pm} is a path cover of G0 := G� v1 (Fig. 2.5.1). P
0, G0

Clearly, any independent set of representatives for P 0 in G0 will also work
for P in G, so all we have to check is that we may apply the induction
hypothesis to P 0. It thus remains to show that ter(P 0) = {v, v2, . . . , vm}
is minimal among the sets of last vertices of path covers of G0.

. . .

v1 v2

P1 P2

v

Pm

Fig. 2.5.1. Path covers of G and G0

Suppose then that G0 has a path cover P 00 with ter(P 00) ( ter(P 0).
If a path P 2 P 00 ends in v, we may replace P in P 00 by Pvv1 to obtain
a path cover of G whose set of last vertices is a proper subset of ter(P),
contradicting the choice of P. If a path P 2 P 00 ends in v2 (but none in v),
we similarly replace P in P 00 by Pv2v1 to obtain a contradiction to the
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minimality of ter(P). Hence ter(P 00) ✓ {v3, . . . , vm}. But now P 00 and
the trivial path {v1} together form a path cover of G that contradicts
the minimality of ter(P). ⇤

As a corollary to Theorem 2.5.1 we obtain a classical result from
the theory of partial orders. Recall that a subset of a partially ordered
set (P,6) is a chain in P if its elements are pairwise comparable; it ischain

an antichain if they are pairwise incomparable.antichain

Corollary 2.5.2. (Dilworth 1950)
In every finite partially ordered set (P,6), the minimum number of

chains with union P is equal to the maximum cardinality of an antichain

in P .

Proof. If A is an antichain in P of maximum cardinality, then clearly
P cannot be covered by fewer than |A| chains. The fact that |A| chains
will su�ce follows from Theorem 2.5.1 applied to the directed graph on
P with the edge set { (x, y) | x < y }. ⇤

Exercises

1. Let M be a matching in a bipartite graph G. Show that if M is sub-
optimal, i.e. contains fewer edges than some other matching in G, then
G contains an augmenting path with respect to M . Does this fact
generalize to matchings in non-bipartite graphs?

2. (continued)

Describe an algorithm that finds, as e�ciently as possible, a matching
of maximum cardinality in any bipartite graph.

3. Show that if there exist injective functions A ! B and B ! A between
two infinite sets A and B then there exists a bijection A ! B.

4. Moving alternately, two players jointly construct a path in some fixed
graph G. If v1 . . . vn is the path constructed so far, the player to move
next has to find a vertex vn+1 such that v1 . . . vn+1 is again a path.
Whichever player cannot move loses. For which graphs G does the first
player have a winning strategy, for which the second?

5.� Derive the marriage theorem from König’s theorem.

6. Let G and H be defined as for the third proof of Hall’s theorem. Show
that dH(b) 6 1 for every b 2 B, and deduce the marriage theorem.

7. Does our first proof of the marriage theorem use the assumption that
the graph is finite? If so, can it be adapted so that it works for infinite
graphs too?
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8. Let k be an integer. Show that any two partitions of a finite set into
k-sets admit a common choice of representatives.

9. Let A be a finite set with subsets A1, . . . , An, and let d1, . . . , dn 2 N.
Show that there are disjoint subsets Dk ✓ Ak, with |Dk| = dk for all
k 6 n, if and only if

���
[

i2I

Ai

��� >
X

i2I

di

for all I ✓ {1, . . . , n}.

10.+ Prove that in an n-set X there are never more than
�

n
bn/2c

�
subsets

such that none of these contains another.

(Hint. Construct
�

n
bn/2c

�
chains covering the power set lattice of X.)

11. Let G be a bipartite graph with bipartition {A, B}. Assume that
�(G) > 1, and that d(a) > d(b) for every edge ab with a 2 A. Show
that G contains a matching of A.

12. Find a bipartite graph with a set of preferences such that no matching
of maximum size is stable and no stable matching has maximum size.
Find a non-bipartite graph with a set of preferences that has no stable
matching.

13.� Consider the algorithm described in the proof of the stable marriage
theorem. Observe that once a vertex of B is matched, she remains
matched and gets happier with every change of her matching edge.
On the other hand, show that the sequence of matching edges incident
with a given vertex of A makes this vertex unhappier with every change
(disregarding the interim periods when he is unmatched).

14. Show that all stable matchings of a given graph cover the same vertices.
(In particular, they have the same size.)

15.+ Show that the algorithm in our proof of Theorem 2.1.4 produces a
matching M such that no other stable matching makes any vertex in A
happier or any vertex in B unhappier than he or she is in M . Consider
only matched vertices for happiness.

16.+ Show that the following ‘obvious’ algorithm need not produce a stable
matching in a bipartite graph. Start with any matching. If the current
matching is not maximal, add an edge. If it is maximal but not stable,
insert an edge that creates instability, deleting any current matching
edges at its ends.

17. Show that the union of two partial orderings 61,62 of a finite set P
has a ‘dominating antichain’, a set A ✓ P such that no two elements
of A are related in either 61 or 62 and for every x 2 P there exists an
a 2 A such that x 61 a or x 62 a. Deduce Theorem 2.1.4.

18. Find a set S for Theorem 2.2.3 when G is a forest.
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19. A graph G is called (vertex-) transitive if, for any two vertices v, w 2 G,
there is an automorphism of G mapping v to w. Using the observa-
tions following the proof of Theorem 2.2.3, show that every transitive
connected graph of even order contains a 1-factor.

20.+ Show that a graph G contains k independent edges if and only if
q(G � S) 6 |S| + |G| � 2k for all sets S ✓ V (G).

21.� Find a cubic graph without a 1-factor.

22.+ Derive the marriage theorem from Tutte’s theorem.

23.� Disprove the analogue of König’s theorem (2.1.1) for non-bipartite
graphs, but show that H = {K2

} has the Erdős-Pósa property.

24. Let T be a tree and T a set of subtrees of T . Show that the maximum
number of disjoint trees in T equals the least cardinality of a set X of
vertices such that T � X contains no tree from T .

25. For cubic graphs, Lemma 2.3.1 is considerably stronger than the Erdős-
Pósa theorem. Extend the lemma to arbitrary multigraphs of minimum
degree > 3, by finding a function g:N!N such that every multigraph of
minimum degree > 3 and order at least g(k) contains k disjoint cycles,
for all k 2 N. Alternatively, show that no such function g exists.

26. Given a graph G, let ↵(G) denote the largest size of a set of independent
vertices in G. Prove that the vertices of G can be covered by at most
↵(G) disjoint subgraphs each isomorphic to a cycle or a K2 or K1.

27. Show that if G has two edge-disjoint spanning trees, it has a connected
spanning subgraph all whose degrees are even.

28. In the proofs of Theorems 2.4.1, 2.4.3 and 2.4.4, there is exactly one
place where we use that we are working with multigraphs. Where is it?

29. Find the error in the following short ‘proof’ of Theorem 2.4.1. Call a
partition non-trivial if it has at least two classes and at least one of the
classes has more than one element. We show by induction on |V |+ |E|

that G = (V, E) has k edge-disjoint spanning trees if every non-trivial
partition of V into r sets (say) has at least k(r � 1) cross-edges. The
induction starts trivially with G = K1 if we allow k copies of K1 as a
family of k edge-disjoint spanning trees of K1. We now consider the
induction step. If every non-trivial partition of V into r sets (say) has
more than k(r � 1) cross-edges, we delete any edge of G and are done
by induction. So V has a non-trivial partition {V1, . . . , Vr} with exactly
k(r�1) cross-edges. Assume that |V1| > 2. If G0 := G[V1] has k disjoint
spanning trees, we may combine these with k disjoint spanning trees
that exist in G/V1 by induction. We may thus assume that G0 has
no k disjoint spanning trees. Then by induction it has a non-trivial
vertex partition {V 0

1 , . . . , V 0
s} with fewer than k(s � 1) cross-edges.

Then {V 0
1 , . . . , V 0

s , V2, . . . , Vr} is a non-trivial vertex partition of G into
r + s � 1 sets with fewer than k(r � 1) + k(s � 1) = k((r + s � 1) � 1)
cross-edges, a contradiction.
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30. A graph G is called balanced if "(H) 6 "(G) for every subgraph H ✓ G.

(i) Find a few natural classes of balanced graphs.

(ii) Show that the arboricity of a balanced graph is bounded above
by its average degree. Is it even bounded by "? Or by " + 1?

(iii) Characterize, in terms of the balanced graphs or otherwise, the
graphs G such that "(H) > "(G) for every induced subgraph
H ✓ G.

31. Rephrase König’s and Dilworth’s theorems as pure existence statements
without any inequalities.

32.� Prove the undirected version of the theorem of Gallai & Milgram (with-
out using the directed version).

33. Derive the marriage theorem from the theorem of Gallai & Milgram.

34.� Show that a partially ordered set of at least rs + 1 elements contains
either a chain of size r + 1 or an antichain of size s + 1.

35. Prove the following dual version of Dilworth’s theorem: in every finite
partially ordered set (P,6), the minimum number of antichains with
union P is equal to the maximum cardinality of a chain in P .

36. Derive König’s theorem from Dilworth’s theorem.

37. Find a partially ordered set that has no infinite antichain but is not a
union of finitely many chains.

Notes

There is a very readable and comprehensive monograph about matching in
finite graphs: L. Lovász & M.D. Plummer, Matching Theory , Annals of Dis-
crete Math. 29, North Holland 1986. Two other very comprehensive sources
are A. Schrijver, Combinatorial optimization, Springer 2003, and A. Frank,
Connections in combinatorial optimization, Oxford University Press 2011. All
the references for the results in this chapter can be found in these books.

All the main theorems in this chapter are of a particularly attractive
type, which they share with several other fundamental theorems in graph the-
ory. They each assert that in some obvious inequality we can attain equality,
or that some obvious potential obstruction to some desirable property must
necessarily occur in all graphs that fail to have this property. Phrased in
yet another way, these theorems provide easily checked ‘certificates’ for the
absence of some desirable property, which comes with its own obvious certifi-
cate when it does hold. The theorems of König, Hall, Tutte, Dilworth, and
Nash-Williams proved in this chapter can all be viewed in this way.

As we shall see in Chapter 3, König’s Theorem of 1931 is no more than
the bipartite case of a more general theorem that is also of this type, which is
generally attributed to Menger (1927). However, Menger missed the bipartite
case in his original proof. When Menger showed König his theorem and proof
during a visit to Budapest in 1930, they seem to have noticed this gap. König
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published is proof in two papers of 1931 and 1933, and quotes Menger as
claiming to have settled this case independently.

At the time, neither of these results was nearly as well known as Hall’s
marriage theorem, which he proved even later, in 1935. To this day, Hall’s
theorem remains one of the most applied graph-theoretic results. The first
two of our proofs are folklore. The edge-minimal subgraph approach of our
third proof can be traced back to a paper of Rado (1967); our version and its
dual, Exercise 6, are due to Kriesell.

More on the stable marriage theorem can be found in D. Gusfield &
R.W. Irving, The Stable Marriage Problem: Structure and Algorithms, MIT
Press 1989, and in A. Tamura, Transformation from arbitrary matchings to
stable matchings, J.Comb.Theory, Ser. A 62 (1993), 310–323. How the world
outside mathematics sees the stable marriage theorem can be gleaned from
https://www.nobelprize.org/prizes/economic-sciences/2012/shapley/facts/.

Our proof of Tutte’s 1-factor theorem is based on a proof by Lovász
(1975). Our extension of Tutte’s theorem, Theorem 2.2.3 (including the infor-
mal discussion following it) is a lean version of a comprehensive structure the-
orem for matchings, due to Gallai (1964) and Edmonds (1965). See Lovász &
Plummer for a detailed statement and discussion of this theorem.

Theorem 2.3.2 is due to P. Erdős & L. Pósa, On independent circuits con-
tained in a graph, Canad. J.Math. 17 (1965), 347–352. Our proof is essentially
due to M. Simonovits, A new proof and generalization of a theorem of Erdős
and Pósa on graphs without k + 1 independent circuits, Acta Sci. Hungar 18
(1967), 191–206. Calculations such as in Lemma 2.3.1 are standard for proofs
where one aims to bound one numerical invariant in terms of another. This
book does not emphasize this aspect of graph theory, but it is not atypical.

There is also an analogue of the Erdős-Pósa theorem for directed graphs,
due to B. Reed, N. Robertson, P.D. Seymour and R. Thomas, Packing directed
circuits, Combinatorica 16 (1996), 535–554. Its proof is more di�cult than
the undirected case; see Chapter 12.6, and in particular Theorem 12.6.5, for a
glimpse of the techniques used.

The tree packing theorem, Theorem 2.4.1, was proved independently by
Nash-Williams and Tutte; both papers are contained in J. Lond.Math. Soc. 36
(1961). The tree covering theorem, Theorem 2.4.3, is due to C.St.J.A. Nash-
Williams, Decompositions of finite graphs into forests, J. Lond.Math. Soc. 39
(1964), 12. The partitions whose existence is asserted by the packing-covering
theorem, Theorem 2.4.4, were first constructed explicitly by B. Jackson and
T. Jordán, Brick partitions of graphs, Discrete Math. 310 (2010), 270–275.
They may not be unique, and are interesting in their own right; see the paper,
and Frank’s monograph cited earlier, for more.

The packing-covering theorem itself, together with its direct proof that
does not rely on the classical tree packing and covering theorems but implies
them, is from N. Bowler and J. Carmesin, Matroid intersection, base packing
and base covering for infinite matroids, Combinatorica 35 (2015), 153–180,
arXiv:1202.3409.

It has long been known that the tree packing and covering theorems can
be naturally expressed in terms of matroids; see Schrijver’s book cited earlier.
However it was only recently when infinite matroids were axiomatized and
thus made accessible to systematic study, forcing the translation of quanti-
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tative assertions about finite matroids into structural ones to make them
meaningful also for infinite matroids, that Bowler and Carmesin found the
packing-covering theorem. The main focus of their paper is to show how the
unproved infinite version of the packing-covering theorem for matroids, the
packing-covering conjecture, plays a central role in infinite matroid theory.
The conjecture implies, among other things, the Aharoni-Berger theorem for
infinite graphs (Theorem 8.4.4), one of the deepest theorems in graph theory.

The packing-covering theorem extends to infinite graphs in two ways:
with ordinary spanning trees (Exercise 20, Ch. 8), and with ‘topological’ span-
ning trees (Exercise 131, Ch. 8). These infinite versions also follow from two
cases of the infinite packing-covering conjecture that Bowler and Carmesin
prove in their paper, those for finitary and for cofinitary matroids.

An interesting vertex analogue of Corollary 2.4.2 is to ask which connec-
tivity forces the existence of k spanning trees T1, . . . , Tk, all rooted at a given
vertex r, such that for every vertex v the k paths vTir are independent. For
example, if G is a cycle then deleting the edge left or right of r produces two
such spanning trees. A. Itai and A. Zehavi, Three tree-paths, J.Graph Theory
13 (1989), 175–187, conjectured that  > k should su�ce. This conjecture has
been proved for k 6 4; see S. Curran, O. Lee & X. Yu, Chain decompositions
and independent trees in 4-connected graphs, Proc. 14th Ann. ACM SIAM
symposium on Discrete algorithms (Baltimore 2003), 186–191.

Theorem 2.5.1 is due to T. Gallai & A.N. Milgram, Verallgemeinerung
eines graphentheoretischen Satzes von Rédei, Acta Sci. Math. (Szeged) 21
(1960), 181–186.




