11 Random Graphs

At various points in this book, we already encountered the following fun-
damental theorem of Erdés: for every integer k there is a graph G with
9(G) > k and x(G) > k. In plain English: there exist graphs combining
arbitrarily large girth with arbitrarily high chromatic number.

How could one prove such a theorem? The standard approach would
be to construct a graph with those two properties, possibly in steps
by induction on k. However, this is anything but straightforward: the
global nature of the second property forced by the first, namely, that
the graph should have high chromatic number ‘overall’” but be acyclic
(and hence 2-colourable) locally, flies in the face of any attempt to build
it up, constructively, from smaller pieces that have the same or similar
properties.

In his pioneering paper of 1959, Erdos took a radically different
approach: for each n he defined a probability space on the set of graphs
with n vertices, and showed that, for some carefully chosen probability
measures, the probability that an n-vertex graph has both of the above
properties is positive for all large enough n.

This approach, now called the probabilistic method, has since un-
folded into a sophisticated and versatile proof technique, in graph the-
ory as much as in other branches of discrete mathematics. The theory
of random graphs is now a subject in its own right. The aim of this
chapter is to offer an elementary but rigorous introduction to random
graphs: no more than is necessary to understand its basic concepts, ideas
and techniques, but enough to give an inkling of the power and elegance
hidden behind the calculations.

Erdés’s theorem asserts the existence of a graph with certain prop-
erties: it is a perfectly ordinary assertion showing no trace of the ran-
domness employed in its proof. There are also results in random graphs
that are generically random even in their statement: these are theorems
about almost all graphs, a notion we shall meet in Section 11.3. In the
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last section, we give a detailed proof of a theorem of Erdds and Rényi
that illustrates a proof technique frequently used in random graphs, the
so-called second moment method.

11.1 The notion of a random graph

Let V be a fixed set of n elements, say V = {0,...,n—1}. Our aim is
to turn the set G of all graphs on V' into a probability space, and then
to consider the kind of questions typically asked about random objects:
What is the probability that a graph G € G has this or that property?
What is the expected value of a given invariant on G, say its expected
girth or chromatic number?

Intuitively, we should be able to generate G randomly as follows.
For each e € [V]? we decide by some random experiment whether or not
e shall be an edge of GG; these experiments are performed independently,
and for each the probability of success — i.e. of accepting e as an edge
for G — is equal to some fixed! number p € [0,1]. Then if Gy is some
fixed graph on V', with m edges say, the elementary event {Gy} has a
probability of pmq(g)fm (where ¢ := 1 —p): with this probability, our
randomly generated graph G is this particular graph Go. (The proba-
bility that G is isomorphic to G will usually be greater.) But if the
probabilities of all the elementary events are thus determined, then so
is the entire probability measure of our desired space G. Hence all that
remains to be checked is that such a probability measure on G, one for
which all individual edges occur independently with probability p, does
indeed exist.?

In order to construct such a measure on G formally, we start by
defining for every potential edge e € [V]? its own little probability space
Qe := {0, 1.}, choosing P.({1.}) := p and P.({0.}) := ¢ as the prob-
abilities of its two elementary events. As our desired probability space
G = G(n,p) we then take the product space

Q= H Q..

ec[V]2

1 Often, the value of p will depend on the cardinality n of the set V on which our
random graphs are generated; thus, p will be the value p = p(n) of some function
n +— p(n). Note, however, that V (and hence n) is fixed for the definition of G:
for each n separately, we are constructing a probability space of the graphs G on
V ={0,...,n—1}, and within each space the probability that e € [V]? is an edge of
G has the same value for all e.

2 Any reader ready to believe this may skip ahead now to the end of Proposi-
tion 11.1.1, without missing anything.
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Thus, formally, an element of €2 is a map w assigning to every e € [V]?
either O, or 1., and the probability measure P on € is the product mea-
sure of all the measures P.. In practice, of course, we identify w with
the graph G on V whose edge set is

EG)={e|w(e) =11},

and call G a random graph on V with edge probability p.

Following standard probabilistic terminology, we may now call any
set of graphs on V an event in G(n,p). In particular, for every e € [V]?
the set

Ae i ={w | wle) =1.}

of all graphs G on V with e € E(G) is an event: the event that e is an
edge of G. For these events, we can now prove formally what had been
our guiding intuition all along:

Proposition 11.1.1. The events A, are independent and occur with
probability p.

Proof. By definition,

Ao = {1} x ] Qo

e'#e

Since PP is the product measure of all the measures P., this implies

P(A) =p-[[1=p.

e'F#e
Similarly, if {e1,...,ex} is any subset of [V]2, then

P(Aelﬂ...mAek):]P’({lel}x...x{lek}x I1 Q)
e¢{er,....ex}

O

As noted before, P is determined uniquely by the value of p and our
assumption that the events A. are independent. In order to calculate
probabilities in G(n, p), it therefore generally suffices to work with these
two assumptions: our concrete model for G(n,p) has served its purpose
and will not be needed again.

As a simple example of such a calculation, consider the event that G
contains some fixed graph H on a subset of V' as a subgraph; let |H| =: k
and ||H|| =: £. The probability of this event H C G is the product of
the probabilities A, over all the edges e € H, so P[H C G] = p*. In

random
graph

event

Ae
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contrast, the probability that H is an induced subgraph of G is péq(g)fz:
now the edges missing from H are required to be missing from G too,
and they do so independently with probability g.

The probability py that G has an induced subgraph isomorphic
to H is usually more difficult to compute: since the possible instances
of H on subsets of V' overlap, the events that they occur in G are not
independent. However, the sum (over all k-sets U C V') of the proba-
bilities P [ H = G[U]] is always an upper bound for pg, since pg is the
measure of the union of all those events. For example, if H = K*, we
have the following trivial upper bound on the probability that G' contains
an induced copy of H:

Lemma 11.1.2. For all integers n,k with n > k > 2, the probability
that G € G(n,p) has a set of k independent vertices is at most

Proof. .The probability that a fixed k-set U C V is independent in
G is ¢\2/. The assertion thus follows from the fact that there are only
(%) such sets U. O

Analogously, the probability that G' € G(n,p) contains a K* is at
most

Now if k is fixed, and n is small enough that these bounds for the prob-
abilities P[a(G) > k] and P[w(G) > k| sum to less than 1, then G
contains graphs that have neither property: graphs which contain nei-
ther a K* nor a K* induced. But then any such n is a lower bound for
the Ramsey number of k!

As the following theorem shows, this lower bound is quite close to
the upper bound of 22*=3 implied by the proof of Theorem 9.1.1:

Theorem 11.1.3. (Erdés 1947)
For every integer k > 3, the Ramsey number of k satisfies

R(k) > 2F/2.

Proof. For k = 3 we trivially have R(3) > 3 > 23/2 so0let k > 4. We show
that, for all n < 2%/? and G € G(n, %), the probabilities P[a(G) > k]
and P[w(G) > k] are both less than 7.

Since p = ¢ = 3, Lemma 11.1.2 and the analogous assertion for w(G)
imply the following for all n < 2%/2 (use that k! > 2% for k > 4):
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In the context of random graphs, most of the familiar graph in-
variants (like average degree, connectivity, chromatic number, and so
on) may be interpreted as a non-negative random wariable on G(n,p),
a function

X:G(n,p) —[0,50).

The mean or expected value of X is the number

E(X):= Y P{G}) X(G).

GeG(n,p)

If X takes integers as values, we can compute E(X) alternatively by
summing over these values k:

E(X)=> P[X>k] =) k-P[X=k].

k>1 k>1

Note also that the operator E, the ezpectation, is linear: we have
E(X+Y) = E(X)+E(Y) and E(AX) = AE(X) for any two random
variables X, Y on G(n,p) and A > 0.

Since our probability spaces are finite, the expectation can often be
computed by a simple application of double counting, a standard com-
binatorial technique we met before in the proof of Corollary 4.2.10. For
example, if X is a random variable on G(n,p) that counts the number
of subgraphs of G in some fixed set H of graphs on V', then E(X), by
definition, counts the number of pairs (G, H) such that H € #H and
H C G, each weighted with the probability P({G}). Algorithmically,
we compute E(X) by going through the graphs G € G(n,p) in an ‘outer
loop’ and performing, for each G, an ‘inner loop’ that runs through the
graphs H € H and counts ‘P({G}) whenever H C G. Alternatively,
we may count the same set of weighted pairs with H in the outer and
G in the inner loop. This amounts to adding up, over all H € H, the
probabilities P[H C G|:

E(X)=Y [{HeH:HCG}H -PHG}H) = > P[HCG]

GeG(n,p) HeH

random
variable

mean

expectation
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To illustrate this once in detail, and to introduce the probabilis-
tic terminology commonly used at this point, let us compute the ex-
pected number of cycles of some given length k£ > 3 in a random graph
G € G(n,p). (We shall also need this for our proof of Erdds’s theorem in
Section 11.2.) Let X:G(n,p) — N be the random variable that assigns
to a random graph G its number of k-cycles, the number of subgraphs
isomorphic to C¥.

How many potential such cycles are there? In other words, how
large is the set Cy of all k-cycles with vertices in V7 Since there are

n)g:=nn-1)n-2)---(n—k+1)

ways of choosing a sequence of k distinct vertices in V, and each k-cycle
is identified by 2k of those sequences, clearly

ICk| = (n)x/2k . (1)

Lemma 11.1.4. The expected number of k-cycles in G € G(n,p) is

Proof. Consider for every fixed C € C its indicator random variable
Xc:G(n,p)—{0,1}, defined by

1 if C C G;

Xeo: G { =

© ~ 0 otherwise.

Since X takes only 1 as a positive value, its expectation E(X¢) equals
the measure P [ X = 1] of the set of all graphs in G(n, p) that contain C'.
But this is just the probability that C' C G:

E(Xc) =P[C CG] =" (2)

Our random variable X assigns to every graph G its number of
k-cycles. Hence

X(G) = Y Xe(@)

C’eCk
for every G, or X = > X¢ for short. Since the expectation is linear,
applying this with (1) and (2) yields
_ _ _ Mk
E(X)= Y E(X¢)= Y P[CCG]=-Lp
CelCy CeCy

as claimed. O
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Computing the mean of a random variable X can be a simple and
effective way to establish the existence of a graph G such that X(G) < a
for some fixed a > 0 and, moreover, G has some desired property P. In-
deed, if the expected value of X is small, then X(G) cannot be large for
more than a few graphs in G(n, p), because X (G) > 0 for all G € G(n, p).
Hence X must be small for many graphs in G(n, p), and it is reasonable
to expect that among these we may find one with the desired property P.

This simple idea lies at the heart of countless non-constructive exist-
ence proofs using random graphs, including the proof of Erdés’s theorem
presented in the next section. Quantified, it takes the form of the fol-
lowing lemma, whose proof follows at once from the definition of the
expectation and the additivity of P:

Lemma 11.1.5. (Markov’s Inequality)
Let X > 0 be a random variable on G(n,p) and a > 0. Then

P[X >a] <EX)/a.
Proof.

E(X) =Y P{G}) -X(G) > > P{G}H-a=P[X >a]-a.

GeG(n,p) A O

11.2 The probabilistic method

Very roughly, the probabilistic method in discrete mathematics has devel-
oped from the following idea. In order to prove the existence of an object
with some desired property, one defines a probability space on some
larger — and certainly non-empty — class of objects, and then shows that
an element of this space has the desired property with positive prob-
ability. The ‘objects’ inhabiting this probability space may be of any
kind: partitions or orderings of the vertices of some fixed graph arise as
naturally as mappings, embeddings and, of course, graphs themselves.
In this section, we illustrate the probabilistic method by giving a detailed
account of one of its earliest results: of Erdds’s classic theorem on large
girth and chromatic number (Theorem 5.2.5).

Erdds’s theorem says that, given any positive integer k, there is a
graph G with girth g(G) > k and chromatic number x(G) > k. Let us
call cycles of length at most k short, and sets of |G|/k or more vertices
big. For a proof of Erdés’s theorem, it suffices to find a graph G without
short cycles and without big independent sets of vertices: then the colour
classes in any vertex colouring of G are small (not big), so we need more
than k colours to colour G.

[11.2.2]
[11.4.1]
[11.4.3]

short
big/small
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How can we find such a graph G? If we choose p small enough, then
a random graph in G(n,p) is unlikely to contain any (short) cycles. If
we choose p large enough, then G is unlikely to have big independent
vertex sets. So the question is: do these two ranges of p overlap, that
is, can we choose p so that, for some n, it is both small enough to give
Plg < k] < % and large enough for P[a > n/k] < $? If so, then
G(n,p) will contain at least one graph without either short cycles or big
independent sets.

Unfortunately, such a choice of p is impossible: the two ranges of p
do not overlap! As we shall see in Section 11.4, we must keep p below
n~! to make the occurrence of short cycles in G unlikely — but for any
such p there will most likely be no cycles in G at all (Exercise 18), so G
will be bipartite and hence have at least n/2 independent vertices.

But all is not lost. In order to make big independent sets unlikely,
we shall fix p above n~!, at n°~! for some ¢ > 0. Fortunately, though,
if € is small enough then this will produce only few short cycles in G,
even compared with n (rather than, more typically, with n*). If we then
delete a vertex in each of those cycles, the graph H obtained will have
no short cycles, and its independence number «(H) will be at most that
of G. Since H is not much smaller than G, its chromatic number will
thus still be large, so we have found a graph with both large girth and
large chromatic number.

To prepare for the formal proof of Erdds’s theorem, we first show
that an edge probability of p = n¢~! is indeed always large enough to
ensure that G € G(n,p) ‘almost surely’ has no big independent set of
vertices. More precisely, we prove the following stronger assertion:

Lemma 11.2.1. Let k > 0 be an integer, and let p = p(n) be a function
of n such that p(n) > 16k?/n for n large. Then

lim Pla >

n— oo

in/k]=0.

Proof. For all integers n > r > 2 and G € G(n,p), Lemma 11.1.2 implies®

Pla>r] < (")

r

Hence if p > 16k%/n and r > %n/k; > 2, then

n —pr2 o2 2 _
Pla>r] < 2% pri/d ¢ gne—pnt/16kT < one—n ()

n—oo

As ais an integer and thus P[a > r] = P[a > In/k] for r = [in/k],
this implies the assertion.

3 To see the second inequality, count the subsets of an n-set. For the third, note
that 1 —p < e~ P for all p: compare the functions z +— e® and x — z+ 1 for z = —p.
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We are now ready to prove Theorem 5.2.5, which we restate:

Theorem 11.2.2. (Erdés 1959) [9.2.3]
For every integer k there exists a graph H with girth g(H) > k and
chromatic number x(H) > k.

(11.1.5)
Proof. Assume that k > 3, fix e with 0 < € < 1/k, and let p := n¢~!. Let (11.1.4)
X (@) denote the number of short cycles in a random graph G € G(n, p), pe X
i.e. its number of cycles of length at most k.
By Lemma 11.1.4, we have
a (n)l 2 1 : i,% 1
:Z% <Y ' < S(k—2)n"p;
i=3 i=3
note that (np)’ < (np)¥, because np = n° > 1. By Lemma 11.1.5,
P[X >n/2] < E(X)/(n /2)
< (k—2)nF1pk
— (k‘ 2)nk 1 (e 1k
= (k—2)nk
As ke —1 < 0 by our choice of ¢, this implies that
nh_)rr;OP[X >n/2] =
Let n be large enough that P[X >n/2] < 2 andP[a > in/k] < n
the latter is possible by our choice of p and Lemma 11.2.1. Then there is
a graph G € G(n, p) with fewer than n/2 short cycles and o(G) < in/k.
From each of those cycles delete a vertex, and let H be the graph ob-
tained. Then |H| > n/2 and H has no short cycles, so g(H) > k. By
definition of G,
|H| n/2
H) > > k.
)= 5 7 a(0)
O
Corollary 11.2.3. There are graphs with arbitrarily large girth and
arbitrarily large values of the invariants x, € and 6.
Proof. Apply Lemma 5.2.3 and Theorem 1.4.3. d (1.4.3)

(5.2.3)
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11.3 Properties of almost all graphs

Recall that a graph property is a class of graphs that is closed under
isomorphism, one that contains with every graph G also the graphs iso-
morphic to G. If p = p(n) is a fixed function (possibly constant), and P is
a graph property, we may ask how the probability P[G € P | behaves for
G € G(n,p) as n— oo. If this probability tends to 1, we say that G € P
for almost all (or almost every) G € G(n,p), or that G € P almost surely;
if it tends to 0, we say that almost no G € G(n,p) has the property P.
(For example, in Lemma 11.2.1 we proved that, for a certain p, almost
no G € G(n,p) has a set of more than in/k independent vertices.)

To illustrate the new concept let us show that, for constant p, every
fixed abstract* graph H is an induced subgraph of almost all graphs:

Proposition 11.3.1. For every constant p € (0,1) and every graph H,
almost every G € G(n,p) contains an induced copy of H.

Proof. Let H be given, and k := |H|. If n > kand U C {0,...,n—1} is
a fixed set of k vertices of G, then G[U] is isomorphic to H with a certain
probability » > 0. This probability r depends on p, but not on n (why
not?). Now G contains a collection of |n/k]| disjoint such sets U. The
probability that none of the corresponding graphs G[U] is isomorphic to
H is (1 —r)l*/* since these events are independent by the disjointness
of the edges sets [U]2. Thus

P[H ¢ G induced] < (1—r)"* — 0,

n—oo

which implies the assertion. ]

The following lemma is a simple device enabling us to deduce that
quite a number of natural graph properties (including that of Proposi-
tion 11.3.1) are shared by almost all graphs. Given ¢,j € N, let P; ;
denote the property that the graph considered contains, for any disjoint
vertex sets U, W with |U| < i and |[W| < j, a vertex v ¢ UUW that is
adjacent to all the vertices in U but to none in W.

Lemma 11.3.2. For every constant p € (0,1) and ¢,j € N, almost every
graph G € G(n,p) has the property P; ;.

4 The word ‘abstract’ is used to indicate that only the isomorphism type of H is
known or relevant, not its actual vertex and edge sets. In our context, it indicates
that the word ‘subgraph’ is used in the usual sense of ‘isomorphic to a subgraph’.
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Proof. For fixed U, W and v € G — (U UW), the probability that v is
adjacent to all the vertices in U but to none in W is

plVg" = pigd.
Hence, the probability that no suitable v exists for these U and W, is
(1 _pIUlqlW\)nflU\f\Wl < (1=pigh)ynii

(for n > i+ j), since the corresponding events are independent for
different v. As there are no more than n'tJ pairs of such sets U, W
in V(G) (encode sets U of fewer than i points as non-injective maps
{0,...,i—1}—={0,...,n—1}, etc.), the probability that some such pair
has no suitable v is at most

nt (1 —p'g/ )",
which tends to zero as n— oo since 1 —pig/ < 1. g

Corollary 11.3.3. For every constant p € (0,1) and k € N, almost every
graph in G(n, p) is k-connected.

Proof. By Lemma 11.3.2, it is enough to show that every graph in P ;1
is k-connected. But this is easy: any graph in P; ;1 has order at least
k+2, and if W is a set of fewer than k vertices, then by definition of
P2 k—1 any other two vertices ,y have a common neighbour v ¢ W in
particular, W does not separate x from y. O

In the proof of Corollary 11.3.3, we showed substantially more than
was asked for: rather than finding, for any two vertices z,y ¢ W, some
x—y path avoiding W, we showed that z and y have a common neighbour
outside W; thus, all the paths needed to establish the desired connec-
tivity could in fact be chosen of length 2. What seemed like a clever
trick in this particular proof is in fact indicative of a more fundamental
phenomenon for constant edge probabilities: by an easy result in logic,
any statement about graphs expressed by quantifying over vertices only
(rather than over sets or sequences of vertices)® is either almost surely
true or almost surely false. All such statements, or their negations,
are in fact immediate consequences of an assertion that the graph has
property P; ;, for some suitable i, j.

As a last example of an ‘almost all’ result we now show that almost
every graph has a surprisingly high chromatic number:

5 In the terminology of logic: any first order sentence in the language of graph
theory
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Proposition 11.3.4. For every constant p € (0,1) and every ¢ > 0,
almost every graph G € G(n,p) has chromatic number

log(1/q) n
X(@) > 24+¢ logn’

Proof. For any fixed n > k > 2, Lemma 11.1.2 implies

Pla>k] < (Z) qt2)
< n’fq(lzc)
_ qk:ll‘jé’;+%k(k71)
T
For logn
£ 1

the exponent of this expression tends to infinity with n, so the expression
itself tends to zero. Hence, almost every G € G(n, p) is such that in any
vertex colouring of G no k vertices can have the same colour, so every
colouring uses more than

n _log(l/q) n

k 24+¢ logn

colours. O

By a result of Bollobds (1988), Proposition 11.3.4 is sharp in the
following sense: if we replace € by —e, then the lower bound given for y
turns into an upper bound.

We finish this section with a little gem, the one and only theorem
about infinite random graphs. Let G(Xg, p) be defined exactly like G(n, p)
for n = Ry, as the (product) space of random graphs on N whose edges
are chosen independently with probability p.

As we saw in Lemma 11.3.2, the properties P; ; hold almost surely
for finite random graphs with constant edge probability. It will therefore
hardly come as a surprise that an infinite random graph almost surely
(which now has the usual meaning of ‘with probability 1’) has all these
properties at once. However, in Chapter 8.3 we saw that, up to isomor-
phism, there is exactly one countable graph, the Rado graph R, that
has property P; ; for all 4, j € N simultaneously; this joint property was
denoted as (*) there. Combining these facts, we get the following rather
bizarre result:
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Theorem 11.3.5. (Erdés & Rényi 1963)
With probability 1, a random graph G € G(Xg,p) with 0 < p < 1 is
isomorphic to the Rado graph R.

Proof. Given fixed disjoint finite sets U, W C N, the probability that a
vertex v ¢ UUW is not joined to U UW as expressed in property () of
Chapter 8.3 (i.e., is not joined to all of U or is joined to some vertex in W)
is some number r < 1 depending only on U and W. The probability
that none of k given vertices v is joined to U UW as in (%) is 7*, which
tends to 0 as k — oco. Hence the probability that all the (infinitely many)
vertices outside U UW fail to witness (x) for these sets U and W is 0.

Now there are only countably many choices for U and W as above.
Since the union of countably many sets of measure 0 again has measure 0,
the probability that (x) fails for any sets U and W is still 0. Therefore
G satisfies (%) with probability 1. By Theorem 8.3.1 this means that,
almost surely, G = R. O

How can we make sense of the paradox that the result of infinitely
many independent choices can be so predictable? The answer, of course,
lies in the fact that the uniqueness of R holds only up to isomorphism.
Now, constructing an automorphism for an infinite graph with prop-
erty (*) is a much easier task than finding one for a finite random graph,
so in this sense the uniqueness is no longer that surprising. Viewed in
this way, Theorem 11.3.5 expresses not a lack of variety in infinite ran-
dom graphs but rather the abundance of symmetry that glosses over this
variety when the graphs G € G(Rg, p) are viewed only up to isomorphism.

11.4 Threshold functions and second moments

The results we saw in Section 11.3 have an interesting common feature:
the values of p played no role as long as they were constant, that is, inde-
pendent of n. For example, if almost every graph in G(n, p) with p = 0.99
had the property considered, then the same was true for p = 0.01. How
could this happen?

Such insensitivity of our random model to changes of p was cer-
tainly not intended. For most properties, however, the critical order of
magnitude of p around which the property will ‘just’ occur or not occur
simply lies below any constant value of p: it is a function of n tending
to zero as n — co. In the proof of Erdos’s theorem, for example, this
critical probability for the two properties we were trying to relate was

p(n) = 1/n.

(8.3.1)
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Let us call a positive real function ¢ = ¢(n) a threshold function for a
graph property P if the following holds for all p = p(n) and G € G(n, p):

lim P[G € P| =

n—oo

0 ifp/t—0asn—o0
1 if p/t— o0 as n— oco.

If P has a threshold function ¢, then clearly any positive multiple ct of ¢
is also a threshold function for P; thus, threshold functions in the above
sense are only ever unique up to a multiplicative constant.’

Bollobds & Thomason (1987) have shown that, trivial exceptions
aside, all increasing graph properties have threshold functions, proper-
ties that are closed under the addition of edges. Properties of the form
{G | G 2 H}, with H fixed, are a common example; we shall compute
their threshold functions in this section.

For the purpose of computing its threshold function, it is convenient
to cast the graph property P considered in the form

P={G|X(G)>1},

where X > 0 is a suitable random variable on G(n,p). For example, we
could take the indicator random variable of P on G(n,p). But other
choices of X are allowed too; if P is connectedness, for example, we
might have X (G) count the number of spanning trees of G.

How could we prove that some given ¢ is a threshold function
of P? Any such proof will consist of two parts: a proof that almost
no G € G(n,p) has P when p is small compared with ¢, and one showing
that almost every G has P when p is large.

Since X > 0, we may use Markov’s inequality for the first part of
the proof and find an upper bound for E(X) instead of P[X > 1]: if
E(X) is much smaller than 1 then X(G) can be at least 1 only for few
G € G(n,p), and for almost no G if E(X) — 0 as n — co. Besides, the
expectation is much easier to calculate than probabilities: without wor-
rying about such things as independence or incompatibility of events, we
may compute the expectation of a sum of random variables — for exam-
ple, of indicator random variables — simply by adding up their individual
expected values.

For the second part of the proof, things are more complicated. In
order to show that P[X > 1] is large, it is not enough to bound E(X)
from below: since X is not bounded above, E(X) may be large simply
because X is very large on just a few graphs G — so X may still be zero

6 Our notion of threshold reflects only the crudest interesting level of screening;:
for some properties, such as connectedness, one can define sharper thresholds where
the constant factor is crucial.
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for most G € G(n,p).” In order to prove that P[X > 1] — 1, we thus
have to show that this cannot happen, i.e., that X does not deviate a
lot from its mean too often.

The following tool from probability theory achieves just that. As is
customary, we write

and define ¢ > 0 by setting

This quantity o2 is called the wariance or second moment of X; by
definition, it is a measure of how much X deviates from its mean. Since
E is linear, the defining term for o2 expands to

0? = B(X? —2uX +p?) = E(X?) — p?.

Note that p and o2 always refer to a random variable on some fixed
probability space. In our setting, where we consider the spaces G(n,p),
both quantities are functions of n.

The following lemma says exactly what we need: that X cannot
deviate a lot from its mean too often.

Lemma 11.4.1. (Chebyshev’s Inequality)
For all real A > 0,

P[IX—pl>A] < o?/X\2
Proof. By Lemma 11.1.5 and definition of o2,

PIX —pul > A] =P [(X—p)* > N] <0?/N°
O

For a proof that X (G) > 1 for almost all G € G(n, p), Chebyshev’s
inequality can be used as follows:

Lemma 11.4.2. If u > 0 for all large enough n, and o?/u? — 0 as
n— 00, then X(G) > 0 for almost all G € G(n,p).

7 For some p between n~! and (logn)n~1!, for example, almost every G € G(n, p)
has an isolated vertex (and hence no spanning tree), but its expected number of
spanning trees tends to infinity with n. See the Exercise 11 for details.

(11.1.5)
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Proof. Any graph G with X(G) = 0 satisfies | X (G) — u| = p. Hence
Lemma 11.4.1 implies with A := u that

P[X=0] <P[X-pl>pn] <o/p* — 0.
n—oo
Since X > 0, this means that X > 0 almost surely, i.e. that X(G) > 0
for almost all G € G(n,p). O

As the main result of this section, we now prove a theorem that will
give us a threshold function for all graph properties of the form Py, the
property of containing a copy of a fixed graph H as a subgraph.

Let H be given, put k := |H| and ¢ := ||H||, and assume that
¢ > 1. Write X(G) for the number of subgraphs of a graph G that are
isomorphic to H.

Given n € N, let ‘H denote the set of all copies of H on subsets of
{0,...,n— 1}, the vertex set of the graphs in G(n,p):

H:={H|H =H, V(H)CA{0,...,n—1}}.
Given H' € H and G € G(n,p), we shall write H C G to express that

H’ itself — not just an isomorphic copy of H’ — is a subgraph of G. As
in the proof of Lemma 11.1.4, double counting gives

E(X)= Y P[H CC]. (1)
H'eH

And for every fixed H' € H we have
P[H' CG] = pf, (2)
because |H|| = ¢.

Let h denote the number of isomorphic copies of H on a fixed k-set;
clearly, h < k!. As there are (Z) possible vertex sets for the graphs in H,

we thus have
H| = (Z)h < (Z)k:' < nk. (3)

Given a probability p = p(n) and a candidate ¢ = t(n) for a threshold
function, we write v := p/t. Our first lemma treats the case of v— 0:

Lemma 11.4.3. If t = n~Y/¢) and p is such that v — 0 as n — oo,
then almost no G € G(n,p) lies in Py.
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Proof. Our aim is to find an upper bound for E(X), and to show that
this tends to zero as n — oo. By our choice of ¢ and definition of v we
have

p =t =",

SO

E(X) = [H|p" < n"(ynMH)" =4~
(1,2) (3)

Thus if v— 0 as n— oo, then

P[GePy] = P[X>1] < E(X) < 7" — 0

n—oo

by Markov’s inequality (11.1.5). O

Unlike the function ¢ in Lemma 11.4.3, our threshold function for
P will not be expressed in terms of e(H), but of

e (H):=max{e(H') | H C H}.
Our second lemma treats the case of v — oo:

Lemma 11.4.4. Ift = n_l/E/(H), and p is such that v — co as n — oo,
then almost every G € G(n,p) lies in Py.

Proof. By our new choice of ¢t and definition of v we now have

p=nn"Ve, (4)

where ¢’ := &'(H).
Before we start on the main proof, let us note an inequality for later
use. For all n > k,

(- 42
S

_ ;(l_’“;l)k. (5)

When n gets large and k is bounded, as in our case, the upshot is that
n* exceeds (:) by no more than a constant factor, one independent of n.

Our goal is to apply Lemma 11.4.2, and hence to bound o2/u? =
(E(X?) — p?)/p? from above. To help us estimate E(X?), we begin by

rewriting X2 in a strange way, as

33

n—k+1
n

| -

\Y
==

XA@)=|{HeH: HCGY| = |[{(H',H") e H>: H' C G and H" C G}|.

= Ot
T
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We can now calculate E(X?) by double counting, just as in (1):

E(X?)= Y  P[H'UH'CG]. (6)
(H’,H”)E’Hz

Let us then calculate these probabilities P[H' U H” C G]. Given
H',H" ¢ H, we have

]P)[H/UH// g G] — p2£7”H,ﬂH”H .
As |[H'NH"|| < i¢’ for i :== |H' N H"| by definition of &’, this yields
P [H/UHN CG] < p%_is/. (7)

We have now estimated the individual summands in (6); what does
this imply for the sum as a whole? Since (7) depends on the parameter
i = |H' N H"|, we partition the range H? of the sum in (6) into the
subsets

HE = {(H H" e H?  |[H'NnH"| =i}, i=0,...,k
and calculate for each H?% the corresponding sum
Ai=7) P[H'UH" CG]
by itself. (Here, as below, we use ) . to denote sums over all pairs
(H',H") € H%.)

If ¢ = 0 then H' and H" are disjoint, so the events H' C G and
H" C G are independent. Hence,

A

ZO]P’[H’UH”QG]

ZOIP’[H’ CG|-P[H" C G|

< Y P[H CG]-P[H'CG]

(H',H'")eH2

- (x rurea) (¥ rimrca)
H'eH H'"eH

= 2 (8)

—~
—

Let us now estimate A; for 7 > 1. Note that ZZ can be written as
DoH e 2uHrem: |HnH =i - For fixed H', the second sum ranges over

()G
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summands: the number of graphs H” € H with |H” N H'| = i. Hence,
for all 4 > 1 and suitable constants ¢y, co independent of n,

A = Y P[H'UH"CG]

k: n—k' 20 —ie!
< €
5 2, (G5
() mren

o k n—=k 20 —1/6/ —ie’
)

< M| pler Pt hpty T nl
_ Mclnkhpf,y—isl
(1,2)

< pe <n) hpty~ie
(5) k
o 2 —ge’
azsf 7

’
g

< plepy”

if v > 1. By definition of the A;, this implies with c3 := kco that

k
EX2) /2 = (Ag/u2+> Ai/u?) < 14ezy
X/ = ( o/ ; /u) N 37

and hence

0.2 E(X2) _ /”'2 e

72 = 72 g Cc37Y — 07

Iz 7 Y00
since €’ > € > 0 by our assumption that £ = ||H| > 0. By Lemma 11.4.2,
therefore, X > 0 almost surely, i.e. almost every G € G(n,p) has a sub-

graph isomorphic to H and hence lies in Pp. O

Theorem 11.4.5. (Erdés & Rényi 1960; Bollobds 1981)
Let H be a graph with at least one edge. Then t = n~'/(H) js a
threshold function for Pg.

Proof. We have to show that almost no G € G(n,p) lies in Py if v —0
as n— 00, and that almost all G € G(n,p) lie in Py if v — 0o as n— 0.
This latter assertion was proved in Lemma 11.4.4.

To prove that almost no G € G(n,p) lies in Py if v— 0, we apply
Lemma 11.4.3 to a subgraph H’ C H for which the maximum in the
definition of &’(H) is attained, i.e. which is such that e(H') = &'(H).
The lemma implies that almost no G € G(n,p) contains a copy of H'.
Since any graph containing H also contains H', this implies that almost
no G € G(n,p) contains a copy of H, as desired. O
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The bound in Theorem 11.4.5 is particularly easy to compute for
balanced graphs H, those for which &'(H) = e(H). Cycles and trees are
examples of balanced graphs. For cycles, we have the threshold familiar

from the proof of Erdés’s theorem:

Corollary 11.4.6. Ifk > 3, then t(n) = n~! is a threshold function for
the property of containing a k-cycle. O

Note that ¢ does not depend on k. (See also Exercise 18.)

For trees, there is a similar phenomenon. Here, the threshold func-
tion does depend on the order of the tree, but not on its shape:

Corollary 11.4.7. If T is a tree of order k > 2, then t(n) = n~*/(:=1)
is a threshold function for the property of containing a copy of T
O

The systematic study of threshold functions has led to an overall
picture of how the typical properties of a graph G € G(n,p) unfold as
the growth rate of p = p(n) increases. This picture, dubbed the evolu-
tion of random graphs, is quite fascinating: as in the evolution of species,
changes happen ‘in jumps’, marked by the times the growth rate of p
crosses that of a threshold function.

For a very rough sketch, let us begin with edge probabilities p whose
order of magnitude lies below n~2; for such p, a random graph G € G(n, p)
almost surely has no edges at all. But as p grows, it acquires more and
more structure. As p approaches n~!, its components become larger and
larger trees (Corollary 11.4.7), until at p = n~! the first cycles are born
(Exercise 18). Soon, some of these will have several crossing chords,
making the graph non-planar. At the same time, one component out-
grows the others, until it devours them around p = (logn)n~!, making
the graph connected. Hardly later, at a mere p = (1+¢)(logn)n=!, our
random graph already almost surely has a Hamilton cycle. ..

Exercises

1.7 What is the probability that a random graph in G(n,p) has exactly m
edges, for 0 < m < (g) fixed?

2. What is the expected number of edges in G € G(n,p)?
3. What is the expected number of K"-subgraphs in G € G(n,p)?

4. Characterize the graphs that occur as a subgraph in every graph of
sufficiently large average degree.
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10.

11.%

12.F

13.

14.7

15.7

16.7

17.

18.

In the usual terminology of measure spaces (and in particular, of prob-
ability spaces), the phrase ‘almost all’ is used to refer to a set of points
whose complement has measure zero. Rather than considering a limit
of probabilities in G(n,p) as n — oo, would it not be more natural to
define a probability space on the set of all finite graphs (one copy of
each) and to investigate properties of ‘almost all’ graphs in this space,
in the sense above?

Show that if almost all G € G(n, p) have a graph property P; and almost
all G € G(n,p) have a graph property P2, then almost all G € G(n,p)
have both properties, i.e. have the property P; N Pa.

Show that, for constant p € (0,1), almost every graph in G(n,p) has
diameter 2.

Show that, for constant p € (0,1), almost no graph in G(n,p) has a
separating complete subgraph.

Derive Proposition 11.3.1 from Lemma 11.3.2.

Show that for every graph H there exists a function p = p(n) such that
lim, 00 p(n) = 0 but almost every G € G(n,p) contains an induced
copy of H.

(i) Show that, for every 0 < € < 1 and p = (1 — €)(Inn)n""', almost
every G € G(n,p) has an isolated vertex.

(ii) Find a probability p = p(n) such that almost every G € G(n,p) is
disconnected but the expected number of spanning trees of G tends to
infinity as n — oo.

(Hint for (ii): A theorem of Cayley states that K™ has exactly n™ 2
spanning trees.)

Given 7 € N, find a ¢ > 0 such that, for p = en™!, almost every
G € G(n,p) has a K" minor. Can ¢ be chosen independently of r?

Find an increasing graph property without a threshold function, and a
property that is not increasing but has a threshold function.

Let H be a graph of order k, and let h denote the number of graphs
isomorphic to H on some fixed set of k elements. Show that h < k!.
For which graphs H does equality hold?

For every k > 1, find a threshold function for { G | A(G) > k}.

For every d € N, determine the threshold function for the property of
containing the d-dimensional cube (see Exercise 2, Chapter 1), and for
the property of containing the complete graph K¢.

Does the property of containing any tree of order k (for k > 2 fixed)
have a threshold function? If so, which? If not, why not?

Show that t(n) = n™' is also a threshold function for the property of
containing any cycle.
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19. Consider the terms Ag and A; in the proof of Lemma 11.4.4, which
are both functions of n. Recall that P[H'UH" C G] = p** both for
H' NH'" =0 and for |[HNH"| = 1.
(i) Show that Ao # 0 (while A; —0) as n— co.

(ii) Explain the difference without doing any formal calculations.

20.7 Given a graph H, let P be the property of containing an induced copy
of H. Show that P has no threshold function unless H is complete.

Notes

There are a number of monographs and texts on the subject of random graphs.
The first comprehensive monograph was B. Bollobds, Random Graphs, Aca-
demic Press 1985. Another advanced monograph is S.Janson, T.Luczak &
A. Rucinski, Random Graphs, Wiley 2000; this concentrates on areas devel-
oped since Random Graphs was published. E.M. Palmer, Graphical Evolution,
Wiley 1985, covers material similar to parts of Random Graphs but is writ-
ten in a more elementary way. Compact introductions going beyond what
is covered in this chapter are given by B.Bollobds, Modern Graph Theory,
Springer GTM 184, 1998, and by M. Karoniski, Handbook of Combinatorics
(R.L. Graham, M. Grotschel & L. Lovdsz, eds.), North-Holland 1995.

A stimulating advanced introduction to the use of random techniques in
discrete mathematics more generally is given by N. Alon & J.H. Spencer, The
Probabilistic Method, Wiley 1992. One of the attractions of this book lies in
the way it shows probabilistic methods to be relevant in proofs of entirely de-
terministic theorems, where nobody would suspect it. Other examples for this
phenomenon are Alon’s proof of Theorem 5.4.1, or the proof of Theorem 1.3.4;
see the notes for Chapters 5 and 1, respectively.

The probabilistic method had its first origins in the 1940s, one of its
earliest results being Erdés’s probabilistic lower bound for Ramsey numbers
(Theorem 11.1.3). Lemma 11.3.2 about the properties P; ; is taken from Bol-
lobés’s Springer text cited above. A very readable rendering of the proof that,
for constant p, every first order sentence about graphs is either almost surely
true or almost surely false, is given by P. Winkler, Random structures and
zero-one laws, in (N.W. Sauer et al., eds.) Finite and Infinite Combinatorics
in Sets and Logic (NATO ASI Series C 411), Kluwer 1993.

Theorem 11.3.5 is due to P. Erd6s and A. Rényi, Asymmetric graphs, Acta
Math. Acad. Sci. Hungar. 14 (1963), 295-315. For further references about
the infinite random graph R see the notes in Chapter 8.

The seminal paper on graph evolution is P.Erd6és & A.Rényi, On the
evolution of random graphs, Publ. Math. Inst. Hungar. Acad. Sci. 5 (1960),
17-61. This paper also includes Theorem 11.4.5 for balanced graphs. The
generalization to unbalanced subgraphs was first proved by Bollobas in 1981;
see Karonski’s Handbook chapter. The fact that all ‘non-trivial’ increasing
graph properties have a threshold function was proved by B.Bollobas and
A.G. Thomason, Threshold functions, Combinatorica 7 (1987), 35-38.

There is another way of defining a random graph G, which is just as
natural and common as the model we considered. Rather than choosing the
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edges of G independently, we choose the entire graph G uniformly at random
from among all the graphs on {0,...,n — 1} that have exactly M = M(n)
edges: then each of these graphs occurs with the same probability of (1\12)717
where N := (g) Just as we studied the likely properties of the graphs in
G(n, p) for different functions p = p(n), we may investigate how the properties
of G in the other model depend on the function M (n). If M is close to pN, the
expected number of edges of a graph in G(n,p), then the two models behave
very similarly. It is then largely a matter of convenience which of them to
consider; see Bollobas for details.

In order to study threshold phenomena in more detail, one often consid-
ers the following random graph process: starting with a K™ as stage zero, one
chooses additional edges one by one (uniformly at random) until the graph
is complete. This is a simple example of a Markov chain, whose Mth stage
corresponds to the ‘uniform’ random graph model described above. A survey
about threshold phenomena in this setting is given by T. Luczak, The phase
transition in a random graph, in (D.Miklés, V.T.Sés & T. Szényi, eds.) Paul
Erdés is 80, Vol. 2, Proc. Colloq. Math. Soc. Jdnos Bolyai (1996).






