
1 The Basics

This chapter gives a gentle yet concise introduction to most of the ter-
minology used later in the book. Fortunately, much of standard graph
theoretic terminology is so intuitive that it is easy to remember; the few
terms better understood in their proper setting will be introduced later,
when their time has come.

Section 1.1 o↵ers a brief but self-contained summary of the most
basic definitions in graph theory, those centred round the notion of a
graph. Most readers will have met these definitions before, or will have
them explained to them as they begin to read this book. For this reason,
Section 1.1 does not dwell on these definitions more than clarity requires:
its main purpose is to collect the most basic terms in one place, for easy
reference later. For deviations for multigraphs see Section 1.10.

From Section 1.2 onwards, all new definitions will be brought to
life almost immediately by a number of simple yet fundamental propo-
sitions. Often, these will relate the newly defined terms to one another:
the question of how the value of one invariant influences that of another
underlies much of graph theory, and it will be good to become familiar
with this line of thinking early.

By N we denote the set of natural numbers, including zero. The set
Z/nZ of integers modulo n is denoted by Zn; its elements are written Zn

as i := i+ nZ. When we regard Z2 = {0, 1} as a field, we also denote
it as F2 = {0, 1}. For a real number x we denote by bxc the greatest
integer 6 x, and by dxe the least integer > x. Logarithms written as bxc, dxe

‘log’ are taken at base 2; the natural logarithm will be denoted by ‘ln’. log, ln

The expressions x := y and y =: x mean that x is being defined as y.
A set A = {A1, . . . , Ak} of disjoint subsets of a set A is a partition partition

of A if the union
S
A of all the sets Ai 2 A is A. Our default assumption

will be that all the Ai are non-empty. Another partition {A0

1
, . . . , A0

`} of
A refines the partition A if each A0

i is contained in some Aj . By [A]k we [A]k

denote the set of all k-element subsets of A. Sets with k elements will
be called k-sets; subsets with k elements are k-subsets. k-set
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1.1 Graphs

A graph is a pairG= (V,E) of sets such that E ✓ [V ]2; thus, the elementsgraph

of E are 2-element subsets of V . To avoid notational ambiguities, we
shall always assume tacitly that V \E = ;. The elements of V are the
vertices (or nodes, or points) of the graph G, the elements of E are itsvertex

edges (or lines). The usual way to picture a graph is by drawing a dot foredge

each vertex and joining two of these dots by a line if the corresponding
two vertices form an edge. Just how these dots and lines are drawn is
considered irrelevant: all that matters is the information of which pairs
of vertices form an edge and which do not.
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Fig. 1.1.1. The graph on V = {1, . . . , 7} with edge set
E = {{1, 2}, {1, 5}, {2, 5}, {3, 4}, {5, 7}}

A graph with vertex set V is said to be a graph on V . The vertexon

set of a graph G is referred to as V (G), its edge set as E(G). TheseV (G), E(G)

conventions are independent of any actual names of these two sets: the
vertex set W of a graph H = (W,F ) is still referred to as V (H), not as
W (H). We shall not always distinguish strictly between a graph and its
vertex or edge set. For example, we may speak of a vertex v 2 G (rather
than v 2 V (G)), an edge e 2 G, and so on.

The number of vertices of a graph G is its order , written as |G|; itsorder

number of edges is denoted by kGk. Graphs are finite, infinite, countable|G|, kGk

and so on according to their order. Except in Chapter 8, our graphs will
be finite unless otherwise stated.

For the empty graph (;, ;) we simply write ;. A graph of order 0 or 1;

is called trivial . Sometimes, e.g. to start an induction, trivial graphs cantrivial

graph

be useful; at other times they form silly counterexamples and become a
nuisance. To avoid cluttering the text with non-triviality conditions, we
shall mostly treat the trivial graphs, and particularly the empty graph ;,
with generous disregard.

A vertex v is incident with an edge e if v 2 e; then e is an edge at v.incident

The two vertices incident with an edge are its endvertices or ends, andends

an edge joins its ends. An edge {x, y} is usually written as xy (or yx).
If x 2 X and y 2 Y , then xy is an X–Y edge. The set of all X–Y edges
in a set E is denoted by E(X,Y ); instead of E({x}, Y ) and E(X, {y})E(X,Y )

we simply write E(x, Y ) and E(X, y). The set of all the edges in E at a
vertex v is denoted by E(v).E(v)
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Two vertices x, y ofG are adjacent , or neighbours, if {x, y} is an edge adjacent

of G. Two edges e 6= f are adjacent if they have an end in common. If all neighbour

the vertices of G are pairwise adjacent, then G is complete. A complete complete

graph on n vertices is a Kn; a K3 is called a triangle. Kn

Pairwise non-adjacent vertices or edges are called independent .
More formally, a set of vertices or of edges is independent if no two of its inde-

pendent

elements are adjacent. Independent sets of vertices are also called stable.
Let G = (V,E) and G0 = (V 0, E0) be two graphs. A map ':V !V 0

is a homomorphism from G to G0 if it preserves the adjacency of vertices, homo-

morphism

that is, if {'(x),'(y)} 2 E0 whenever {x, y} 2 E. Then, in particular,
for every vertex x0 in the image of ' its inverse image '�1(x0) is an
independent set of vertices in G. If ' is bijective and its inverse '�1 is
also a homomorphism (so that xy 2 E , '(x)'(y) 2 E0 for all x, y 2 V ),
we call ' an isomorphism, say that G and G0 are isomorphic, and write isomorphic

G ⇠= G0. An isomorphism from G to itself is an automorphism of G. ⇠=

We do not normally distinguish between isomorphic graphs. Thus,
we usually write G = G0 rather than G ⇠= G0, speak of the complete =

graph on 17 vertices, and so on. If we wish to emphasize that we are
only interested in the isomorphism type of a given graph, we informally
refer to it as an abstract graph.

A class of graphs that is closed under isomorphism is called a graph

property . For example, ‘containing a triangle’ is a graph property: if property

G contains three pairwise adjacent vertices then so does every graph
isomorphic to G. A map taking graphs as arguments is called a graph

invariant if it assigns equal values to isomorphic graphs. The number invariant

of vertices and the number of edges of a graph are two simple graph
invariants; the greatest number of pairwise adjacent vertices is another.

We set G[G0 := (V [ V 0, E [E0) and G\G0 := (V \V 0, E \E0). G [G0

If G\G0 = ;, then G and G0 are disjoint . If V 0 ✓ V and E0 ✓ E, then G \G0

GG [ � G \
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Fig. 1.1.2. Union, di↵erence and intersection; the vertices 2,3,4
induce (or span) a triangle in G [ G0 but not in G
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G0 is a subgraph of G (and G a supergraph of G0), written as G0 ✓ G.subgraph

Less formally, we say that G contains G0. If G0 ✓ G and G0 6= G, thenG0
✓ G

G0 is a proper subgraph of G.

G0 G00G

Fig. 1.1.3. A graph G with subgraphs G0 and G00:
G0 is an induced subgraph of G, but G00 is not

If G0 ✓ G and G0 contains all the edges xy 2 E with x, y 2 V 0, then
G0 is an induced subgraph of G; we say that V 0

induces or spans G0 in G,induced

subgraph

and write G0 =: G[V 0]. Thus if U ✓ V is any set of vertices, then G[U ]
denotes the graph on U whose edges are precisely the edges of G withG[U ]

both ends in U . If H is a subgraph of G, not necessarily induced, we
abbreviate G[V (H)] to G[H]. Finally, G0 ✓ G is a spanning subgraphspanning

of G if V 0 spans all of G, i.e. if V 0 = V .
If U is any set of vertices (usually of G), we write G�U for�

G[V r U ]. In other words, G � U is obtained from G by deleting all
the vertices in U \V and their incident edges. If U = {v} is a singleton,
we write G� v rather than G� {v}. Instead of G� V (G0) we simply
write G�G0. For a subset F of [V ]2 we write G�F := (V, ErF ) and+

G+F := (V, E [F ); as above, G� {e} and G+ {e} are abbreviated to
G� e and G+ e. We call G edge-maximal with a given graph propertyedge-

maximal

if G itself has the property but no graph (V, F ) with F ) E does.
More generally, when we call a graphminimal ormaximal with someminimal

property but have not specified any particular ordering, we are referringmaximal

to the subgraph relation. When we speak of minimal or maximal sets of
vertices or edges, the reference is simply to set inclusion.

If G and G0 are disjoint, we denote by G ⇤G0 the graph obtainedG ⇤G0

from G[G0 by joining all the vertices of G to all the vertices of G0. For
example, K2 ⇤K3 = K5. The complement G of G is the graph on V

comple-

ment G
with edge set [V ]2 rE. The line graph L(G) of G is the graph on E in
which x, y 2 E are adjacent as vertices if and only if they are adjacentline graph

L(G)
as edges in G.

G G

Fig. 1.1.4. A graph isomorphic to its complement



1.2. The degree of a vertex 5

1.2 The degree of a vertex

Let G = (V,E) be a (non-empty) graph. The set of neighbours of a
vertex v in G is denoted by NG(v), or briefly by N(v).1 More generally N(v)

for U ✓ V , the neighbours in V rU of vertices in U are called neighbours

of U ; their set is denoted by N(U).
The degree (or valency) dG(v) = d(v) of a vertex v is the number degree d(v)

|E(v)| of edges at v; by our definition of a graph,2 this is equal to the
number of neighbours of v. A vertex of degree 0 is isolated . The number isolated

�(G) := min { d(v) | v 2 V } is the minimum degree of G, the number �(G)

�(G) := max { d(v) | v 2 V } its maximum degree. If all the vertices �(G)

of G have the same degree k, then G is k-regular , or simply regular . A regular

3-regular graph is called cubic. cubic

The number

d(G) :=
1

|V |
X

v2V

d(v)
d(G)

is the average degree of G. Clearly,
average

degree

�(G) 6 d(G) 6 �(G) .

The average degree quantifies globally what is measured locally by the
vertex degrees: the number of edges of G per vertex. Sometimes it will
be convenient to express this ratio directly, as "(G) := |E|/|V |. "(G)

The quantities d and " are, of course, intimately related. Indeed,
if we sum up all the vertex degrees in G, we count every edge exactly
twice: once from each of its ends. Thus

|E| = 1

2

X

v2V

d(v) = 1

2
d(G) · |V | ,

and therefore

"(G) = 1

2
d(G) .

Proposition 1.2.1. The number of vertices of odd degree in a graph is [10.3.1]

always even.

Proof. As |E| = 1

2

P
v2V d(v) is an integer,

P
v2V d(v) is even. ⇤

1 Here, as elsewhere, we drop the index referring to the underlying graph if the
reference is clear.

2 but not for multigraphs; see Section 1.10
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If a graph has large minimum degree, i.e. everywhere, locally,
many edges per vertex, it also has many edges per vertex globally:
"(G) = 1

2
d(G) > 1

2
�(G). Conversely, of course, its average degree may

be large even when its minimum degree is small. However, the vertices
of large degree cannot be scattered completely among vertices of small
degree: as the next proposition shows, every graph G has a subgraph
whose average degree is no less than the average degree of G, and whose
minimum degree is more than half its average degree:

Proposition 1.2.2. Every graph G with at least one edge has a sub-
[1.4.3]
[7.2.2]

graph H with �(H) > "(H) > "(G).

Proof. To construct H from G, let us try to delete vertices of small
degree one by one, until only vertices of large degree remain. Up to
which degree d(v) can we a↵ord to delete a vertex v, without lowering "?
Clearly, up to d(v) = " : then the number of vertices decreases by 1
and the number of edges by at most ", so the overall ratio " of edges to
vertices will not decrease.

Formally, we construct a sequence G = G0 ◆ G1 ◆ . . . of induced
subgraphs of G as follows. If Gi has a vertex vi of degree d(vi) 6 "(Gi),
we let Gi+1 := Gi � vi; if not, we terminate our sequence and set
H := Gi. By the choices of vi we have "(Gi+1) > "(Gi) for all i, and
hence "(H) > "(G).

What else can we say about the graph H? Since "(K1) = 0 < "(G),
none of the graphs in our sequence is trivial, so in particular H 6= ;. The
fact that H has no vertex suitable for deletion thus implies �(H) > "(H),
as claimed. ⇤

1.3 Paths and cycles

A path is a non-empty graph P = (V,E) of the formpath

V = {x0, x1, . . . , xk} E = {x0x1, x1x2, . . . , xk�1xk} ,

where the xi are all distinct. The vertices x0 and xk are linked by P and
are called its endvertices or ends; the vertices x1, . . . , xk�1 are the inner
vertices of P . The number of edges of a path is its length, and the pathlength

of length k is denoted by P k. Note that k is allowed to be zero; thus,Pk

P 0 = K1.
We often refer to a path by the natural sequence of its vertices,3

3 More precisely, by one of the two natural sequences: x0 . . . xk and xk . . . x0

denote the same path. Still, it often helps to fix one of these two orderings of V (P )
notationally: we may then speak of things like the ‘first’ vertex on P with a certain
property, etc.
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G P

Fig. 1.3.1. A path P = P 6 in G

writing, say, P = x0x1 . . . xk and calling P a path from x0 to xk (as well
as between x0 and xk).

For 0 6 i 6 j 6 k we write xPy, P̊

Pxi := x0 . . . xi

xiP := xi . . . xk

xiPxj := xi . . . xj

and

P̊ := x1 . . . xk�1

Px̊i := x0 . . . xi�1

x̊iP := xi+1 . . . xk

x̊iPx̊j := xi+1 . . . xj�1

for the appropriate subpaths of P . We use similar intuitive notation for
the concatenation of paths; for example, if the union Px[ xQy [ yR of
three paths is again a path, we may simply denote it by PxQyR. PxQyR

xPyQzx

y

z
x

P

y

Q

z

Fig. 1.3.2. Paths P , Q and xPyQz

Given sets A,B of vertices, we call P = x0 . . . xk an A–B path if A–B path

V (P )\A = {x0} and V (P )\B = {xk}. As before, we write a–B path
rather than {a}–B path, etc. Two or more paths are independent if inde-

pendent

none of them contains an inner vertex of another. Two a–b paths, for
instance, are independent if and only if a and b are their only common
vertices.

A non-trivial path P is an A-path for a set A of vertices if P has its A-path

ends but no inner vertex in A. It is an H- path for a graph H if it is a H- path

V (H) - path and, if it has length 1, its edge does not lie in H.
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If P = x0 . . . xk�1 is a path and k > 3, then the graph C :=
P + xk�1x0 is called a cycle. As with paths, we often denote a cyclecycle

by its (cyclic) sequence of vertices; the above cycle C might be written
as x0 . . . xk�1x0. The length of a cycle is its number of edges (or vertices);length

the cycle of length k is called a k-cycle and denoted by Ck.Ck

The minimum length of a cycle (contained) in a graph G is the girthgirth g(G)

g(G) of G; the maximum length of a cycle in G is its circumference. (Ifcircum-

ference G does not contain a cycle, we set the former to 1, the latter to zero.)
An edge which joins two vertices of a cycle but is not itself an edge ofchord

the cycle is a chord of that cycle. Thus, an induced cycle in G, a cycle in
G forming an induced subgraph, is one that has no chords (Fig. 1.3.3).induced

cycle

y

x

Fig. 1.3.3. A cycle C8 with chord xy, and induced cycles C6, C4

If a graph has large minimum degree, it contains long paths and
cycles (see also Exercise 9):

Proposition 1.3.1. Every graph G contains a path of length �(G) and[1.4.3]
[7.2.2]

a cycle of length at least �(G)+ 1 (provided that �(G) > 2).

Proof. Let x0 . . . xk be a longest path in G. Then all the neighbours of
xk lie on this path (Fig. 1.3.4). Hence k > d(xk) > �(G). If i < k is
minimal with xixk 2 E(G), then xi . . . xkxi is a cycle of length at least
�(G)+ 1. ⇤

x0 xi xk

Fig. 1.3.4. A longest path x0 . . . xk, and the neighbours of xk

Minimum degree and girth, on the other hand, are not related (un-
less we fix the number of vertices): as we shall see in Chapter 11, there
are graphs combining arbitrarily large minimum degree with arbitrarily
large girth.

The distance dG(x, y) in G of two vertices x, y is the length of adistance

d(x, y)
shortest x–y path in G; if no such path exists, we set d(x, y) := 1. The
greatest distance between any two vertices in G is the diameter of G,
denoted by diam(G). Diameter and girth are, of course, related:diameter

diam(G)
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Proposition 1.3.2. Every graph G containing a cycle satisfies g(G) 6
2 diam(G)+ 1.

Proof. Let C be a shortest cycle in G. If g(G) > 2 diam(G) + 2, then
C has two vertices whose distance in C is at least diam(G) + 1. In G,
these vertices have a lesser distance; any shortest path P between them
is therefore not a subgraph of C. Thus, P contains a C-path xPy.
Together with the shorter of the two x–y paths in C, this path xPy
forms a shorter cycle than C, a contradiction. ⇤

A vertex is central in G if its greatest distance from any other ver- central

tex is as small as possible. This distance is the radius of G, denoted
by rad(G). Thus, formally, rad(G) = minx2V (G) maxy2V (G) dG(x, y).

radius

rad(G)
As one easily checks (exercise), we have

rad(G) 6 diam(G) 6 2 rad(G) .

Diameter and radius are not related to minimum, average or max-
imum degree if we say nothing about the order of the graph. However,
graphs of large diameter and minimum degree must be large (larger than
forced by each of the two parameters alone; see Exercise 10), and graphs
of small diameter and maximum degree must be small:

Proposition 1.3.3. A graphG of radius at most k and maximum degree
[9.4.1]
[9.4.2]

at most d > 3 has fewer than
d

d�2
(d� 1)k vertices.

Proof. Let z be a central vertex in G, and letDi denote the set of vertices
of G at distance i from z. Then V (G) =

Sk
i=0

Di. Clearly |D0| = 1 and
|D1| 6 d. For i > 1 we have |Di+1| 6 (d� 1)|Di|, because every vertex
in Di+1 is a neighbour of a vertex in Di (why?), and each vertex in Di

has at most d� 1 neighbours in Di+1 (since it has another neighbour
in Di�1). Thus |Di+1| 6 d(d� 1)i for all i < k by induction, giving

|G| 6 1+ d
k�1X

i=0

(d� 1)i = 1+
d

d� 2

�
(d� 1)k � 1

�
<

d

d� 2
(d� 1)k.

⇤

Similarly, we can bound the order of G from below by assuming that
both its minimum degree and girth are large. For d 2 R and g 2 N let

n0(d, g) :=

8
>>>>><

>>>>>:

1+ d
r�1X

i=0

(d� 1)i if g =: 2r+1 is odd;

2
r�1X

i=0

(d� 1)i if g =: 2r is even.
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It is not di�cult to prove that a graph of minimum degree � and girth g
has at least n0(�, g) vertices (Exercise 7). Interestingly, one can obtain
the same bound for its average degree:

Theorem 1.3.4. (Alon, Hoory & Linial 2002)
Let G be a graph. If d(G) > d > 2 and g(G) > g 2 N then |G| > n0(d, g).

One aspect of Theorem 1.3.4 is that it guarantees the existence of
a short cycle compared with |G|. Using just the easy minimum degree
version of Exercise 7, we get the following rather general bound:

Corollary 1.3.5. If �(G) > 3 then g(G) < 2 log |G|.[2.3.1]

Proof. If g := g(G) is even then

n0(3, g) = 2
2g/2 � 1

2� 1
= 2g/2 +(2g/2 � 2) > 2g/2,

while if g is odd then

n0(3, g) = 1+3
2(g�1)/2 � 1

2� 1
=

3p
2
2g/2 � 2 > 2g/2.

As |G| > n0(3, g), the result follows. ⇤

A walk (of length k) in a graph G is a non-empty alternating se-walk

quence v0e0v1e1 . . . ek�1vk of vertices and edges in G such that ei =
{vi, vi+1} for all i < k. If v0 = vk, the walk is closed . If the vertices
in a walk are all distinct, it defines an obvious path in G. In general,
every walk between two vertices contains4 a path between these vertices
(proof?).

1.4 Connectivity

A graph G is called connected if it is non-empty and any two of itsconnected

vertices are linked by a path in G. If U ✓ V (G) and G[U ] is connected,
we also call U itself connected (in G). Instead of ‘not connected’ we
usually say ‘disconnected’.

Proposition 1.4.1. The vertices of a connected graph G can always be[1.5.2]

enumerated, say as v1, . . . , vn, so that Gi := G[v1, . . . , vi] is connected

for every i.

4 We shall often use terms defined for graphs also for walks, as long as their
meaning is obvious.
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Proof. Pick any vertex as v1, and assume inductively that v1, . . . , vi have
been chosen for some i < |G|. Now pick a vertex v 2 G�Gi. As G is
connected, it contains a v–v1 path P . Choose as vi+1 the last vertex of
P in G�Gi; then vi+1 has a neighbour in Gi. The connectedness of
every Gi follows by induction on i. ⇤

Let G = (V,E) be a graph. A maximal connected subgraph of G is
a component of G. Clearly, the components are induced subgraphs, and component

their vertex sets partition V . Since connected graphs are non-empty, the
empty graph has no components.

Fig. 1.4.1. A graph with three components, and a minimal
spanning connected subgraph in each component

If A,B ✓ V and X ✓ V [E are such that every A–B path in G
contains a vertex or an edge from X, we say that X separates the sets separate

A and B in G. Note that this implies A \ B ✓ X. We say that X
separates two vertices a, b if it separates the sets {a}, {b} but a, b /2 X.
The set X separates G, and is a separator in or of G, ifX separates some separator

two vertices in G. Separating sets of edges have no generic name, but
some such sets do; see Section 1.9 for the definition of cuts and bonds .
A vertex which separates two other vertices of the same component is a cutvertex

cutvertex , and an edge separating its ends is a bridge. Thus, the bridges bridge

in a graph are precisely those edges that do not lie on any cycle.

wv

e

x y

Fig. 1.4.2. A graph with cutvertices v, x, y, w and bridge e = xy

The unordered pair {A,B} is a separation of G if A[B = V and G separation

has no edge between ArB and BrA. Clearly, the latter is equivalent
to saying that A\B separates A from B. If both ArB and BrA are
non-empty, the separation is proper . The number |A\B| is the order of
the separation {A,B}; the sets A,B are its sides.

G is called k-connected (for k 2 N) if |G| > k and G�X is connected k-connected

for every set X ✓ V with |X| < k. In other words, no two vertices of G
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are separated by fewer than k other vertices. Every (non-empty) graph
is 0-connected, and the 1-connected graphs are precisely the non-trivial
connected graphs. The greatest integer k such that G is k-connected
is the connectivity (G) of G. Thus, (G) = 0 if and only if G is

connectivity

(G)
disconnected or a K1, and (Kn) = n� 1 for all n > 1.

If |G| > 1 and G� F is connected for every set F ✓ E of fewer
than ` edges, then G is called `-edge-connected. The greatest integer ``-edge-

connected

such that G is `-edge-connected is the edge-connectivity �(G) of G. In
particular, we have �(G) = 0 if G is disconnected.

edge-

connectivity

�(G)

HG

Fig. 1.4.3. The octahedron G (left) with (G) = �(G) = 4,
and a graph H with (H) = 2 but �(H) = 4

Proposition 1.4.2. If G is non-trivial then (G) 6 �(G) 6 �(G).[3.2.1]

Proof. The second inequality follows from the fact that all the edges
incident with a fixed vertex separate G. To prove the first, let F be a
set of �(G) edges such that G�F is disconnected. Such a set exists by
definition of �; note that F is a minimal separating set of edges in G.
We show that (G) 6 |F |.

Suppose first that G has a vertex v that is not incident with an edge
in F . Let C be the component of G�F containing v. Then the vertices
of C that are incident with an edge in F separate v from G�C. Since
no edge in F has both ends in C (by the minimality of F ), there are at
most |F | such vertices, giving (G) 6 |F | as desired.

Suppose now that every vertex is incident with an edge in F . Let
v be any vertex, and let C be the component of G� F containing v.
Then the neighbours w of v with vw /2 F lie in C and are incident
with distinct edges in F (distinct by the minimality of F , as earlier),
giving dG(v) 6 |F |. As NG(v) separates v from any other vertices in G,
this yields (G) 6 |F | – unless there are no other vertices, i.e. unless
{v}[N(v) = V . But v was an arbitrary vertex. So we may assume that
G is complete, giving (G) = �(G) = |G|� 1. ⇤

By Proposition 1.4.2, high connectivity requires a large minimum
degree. Conversely, large minimum degree does not ensure high connec-
tivity, not even high edge-connectivity (examples?). It does, however,
imply the existence of a highly connected subgraph:
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Theorem 1.4.3. (Mader 1972) [7.2.3]
[11.2.3]

Let 0 6= k 2 N. Every graph G with d(G) > 4k has a k-connected
subgraph. In fact, every such G has a (k + 1)-connected subgraph H
such that d(H) > d(G)� 2k > 2k.

Proof. Put � := "(G) (> 2k), and consider the subgraphs G0 ✓ G such
(1.2.2)
(1.3.1)

�that

|G0| > 2k and kG0k > �
�
|G0|� k

�
. (⇤)

Such graphs G0 exist since G is one; let H be one of smallest order. H

No graph G0 as in (⇤) can have order exactly 2k, since this would
imply that kG0k > �k > 2k2 >

�
|G0

|

2

�
. The minimality of H therefore

implies that �(H) > � : otherwise we could delete a vertex of degree at
most � and obtain a graph G0 ( H still satisfying (⇤). In particular, we
have |H| > �. Dividing the inequality of kHk > � |H|� �k from (⇤) by
|H| therefore yields "(H) > �� k, as desired.

It remains to show that H is (k + 1)-connected. If not, then H
has a proper separation {U1, U2} of order at most k; put H[Ui] =: Hi. H1, H2

Since any vertex v 2 U1 r U2 has all its d(v) > �(H) > � neighbours
from H in H1, we have |H1| > � > 2k. Similarly, |H2| > 2k. As by the
minimality of H neither H1 nor H2 satisfies (⇤), we thus have

kHik 6 �
�
|Hi|� k

�

for i = 1, 2. But then

kHk 6 kH1k+ kH2k

6 �
�
|H1|+ |H2|� 2k

�

6 �
�
|H|� k

�
(as |H1 \H2| 6 k),

which contradicts (⇤) for H. ⇤

1.5 Trees and forests

An acyclic graph, one not containing any cycles, is called a forest . A con- forest

nected forest is called a tree. (Thus, a forest is a graph whose components tree

are trees.) The vertices of degree 1 in a tree are its leaves,5 the others leaf

are its inner vertices. Every non-trivial tree has a leaf – consider, for
example, the ends of a longest path. This little fact often comes in
handy, especially in induction proofs about trees: if we remove a leaf
from a tree, what remains is still a tree.

5 . . . except that the root of a tree (see below) is never called a leaf, even if it has
degree 1.
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Fig. 1.5.1. A tree

Theorem 1.5.1. The following assertions are equivalent for a graph T :
[1.6.1]
[1.9.5]
[4.2.9]

(i) T is a tree;

(ii) Any two vertices of T are linked by a unique path in T ;

(iii) T is minimally connected, i.e. T is connected but T � e is discon-

nected for every edge e 2 T ;

(iv) T is maximally acyclic, i.e. T contains no cycle but T + xy does,

for any two non-adjacent vertices x, y 2 T . ⇤

The proof of Theorem 1.5.1 is straightforward, and a good exercise
for anyone not yet familiar with all the notions it relates. Extending our
notation for paths from Section 1.3, we write xTy for the unique pathxTy

in a tree T between two vertices x, y (see (ii) above).
A common application of Theorem 1.5.1 is that every connected

graph contains a spanning tree: take a minimal connected spanning
subgraph and use (iii). Figure 1.4.1 shows a spanning tree in each of
the three components of the graph depicted. When T is a spanning tree
of G, the edges in E(G)rE(T ) are the chords of T in G.chord

Corollary 1.5.2. A connected graph with n vertices is a tree if and[1.9.5]
[2.4.4]
[4.2.9]

only if it has n� 1 edges.

Proof. For the forward implication, enumerate the vertices of a tree T
as in Proposition 1.4.1. As T is acyclic, every vertex is adjacent to only
one earlier vertex. Now |T | = n� 1 follows by induction on n.

Conversely, let G be any connected graph with n vertices and n� 1
edges. Let T be a spanning tree in G. Since T has n� 1 edges by the
first implication, it follows that T = G. ⇤

Corollary 1.5.3. If T is a tree and G is any graph with �(G) > |T |�1,[9.2.1]
[9.2.3]

then T is (isomorphic to) a subgraph of G.

Proof. Map the vertices of T to G inductively, following their enumera-
tion from Proposition 1.4.1 applied to T . ⇤
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Sometimes it is convenient to consider one vertex of a tree as special;
such a vertex is then called the root of this tree. A tree T with a fixed root

root r is a rooted tree. Writing x 6 y for x 2 rTy then defines a partial
ordering on V (T ), the tree-order associated with T and r. We shall tree-order

think of this ordering as expressing ‘height’: if x < y we say that x lies
below y in T , we call up/above

down/below

dye := {x | x 6 y } and bxc := { y | y > x } dte, btc

the down-closure of y and the up-closure of x, and so on. A setX ✓ V (T )
down-closure

up-closure

that equals its up-closure, i.e. which satisfies X = bXc :=
S

x2Xbxc, is
closed upwards, or an up-set in T . Similarly, there are down-closed sets,
or down-sets etc..

Note that the root of T is the least element in its tree-order, the
leaves are its maximal elements, the ends of any edge of T are compa-
rable, and the down-closure of every vertex is a chain, a set of pairwise chain

comparable elements. (Proofs?) The vertices at distance k from the root
have height k and form the kth level of T . height, level

A rooted tree T contained in a graph G is called normal in G if normal tree

the ends of every T -path in G are comparable in the tree-order of T .
If T spans G, this amounts to requiring that two vertices of T must be
comparable whenever they are adjacent in G; see Figure 1.5.2.

r

G

T

Fig. 1.5.2. A normal spanning tree with root r

A normal tree T in G can be a powerful tool for examining the
structure of G, because G reflects the separation properties of T :

Lemma 1.5.4. Let T be a normal tree in G.
[8.2.3]
[8.6.8]

(i) Any two vertices x, y of T that are incomparable in its tree-order

are separated in G by the set dxe \ dye.
(ii) If V (T ) = V (G) =: V and S ✓ V is down-closed, then the compo-

nents ofG�S are spanned by the sets bxc with xminimal in VrS.
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Proof. (i) As x and y are incomparable, neither of them lies in dxe\dye.
So it su�ces to show that every x–y path P in G meets dxe \ dye. Let
t1, . . . , tn be a minimal sequence of vertices in P \ T such that t1 = x
and tn = y and ti and ti+1 are comparable in the tree-order of T for
all i. (Such a sequence exists: the set of all vertices in P \ T , in their
natural order as they occur on P , has this property because T is normal
and every segment tiPti+1 is either an edge of T or a T - path.) In our
minimal sequence we cannot have ti�1 < ti > ti+1 for any i, since ti�1

and ti+1 would then be comparable, and deleting ti would yield a smaller
such sequence. Thus, our sequence has the form

x = t1 > . . . > tk < . . . < tn = y

for some k 2 {1, . . . , n} (even with k 6 3, by the minimality of n). As
tk 2 dxe \ dye \V (P ), our proof is complete.

(ii) Every set bxc as in (ii) is connected in T , and hence in G. It lies
in V rS, because x /2 S and S is down-closed. As every vertex in V rS
lies above some minimal such vertex x, these sets bxc have union V rS.

For distinct x and x0, the connected sets bxc and bx0c are disjoint,
and not joined by an edge of G, because dxe \ dx0e ✓ S separates x
from x0 in G, by (i). So the sets bxc span maximal connected subgraphs,
components, in G�S, and these are all its components. ⇤

Normal spanning trees are also called depth-first search trees , be-
cause of the way they arise in computer searches on graphs (Exercise 29).
This fact is often used to prove their existence, which can also be shown
by a very short and clever induction (Exercise 28). The following con-
structive proof, however, illuminates better how normal trees capture
the structure of their host graphs.

Proposition 1.5.5. Every connected graph has a normal spanning tree.
[6.5.3]
[8.2.4]

Proof. Let G be a connected graph. Let T be any maximal normal tree
in G; we show that V (T ) = V (G).

Suppose not, and let C be a component of G�T . As T is normal,
N(C) is a chain in T . Let x be its greatest element, and let y 2 C be
adjacent to x. Let T 0 be the tree obtained from T by joining y to x; the
tree-order of T 0 then extends that of T . We shall derive a contradiction
by showing that T 0 is also normal in G.

Let P be a T 0-path in G. If the ends of P both lie in T , then they
are comparable in the tree-order of T (and hence in that of T 0), because
then P is also a T - path and T is normal in G by assumption. If not,
then y is one end of P , so P lies in C except for its other end z, which
lies in N(C). Then z 6 x, by the choice of x. For our proof that y and
z are comparable it thus su�ces to show that x < y, i.e. that x 2 rT 0y.
This, however, is clear since y is a leaf of T 0 with neighbour x. ⇤
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1.6 Bipartite graphs

Let r > 2 be an integer. A graph G = (V,E) is called r-partite if V r-partite

admits a partition into r classes such that every edge has its ends in dif-
ferent classes: vertices in the same partition class must not be adjacent.
Instead of ‘2-partite’ one usually says bipartite. bipartite

K2,2,2 = K3
2

Fig. 1.6.1. Two 3-partite graphs

An r-partite graph in which every two vertices from di↵erent par-
tition classes are adjacent is called complete; the complete r-partite complete

r-partite
graphs for all r together are the complete multipartite graphs. The
complete r-partite graph Kn1 ⇤ . . . ⇤ Knr is denoted by Kn1,...,nr

; if Kn1,...,nr

n1 = . . . = nr =: s, we abbreviate this to Kr
s . Thus, K

r
s is the complete Kr

s

r-partite graph in which every partition class contains exactly s vertices.6

(Figure 1.6.1 shows the example of the octahedronK3

2
; compare its draw-

ing with that in Figure 1.4.3.) Graphs of the form K1,n are called stars ; star

the vertex in the singleton partition class of this K1,n is the star’s centre. centre

==

Fig. 1.6.2. Three drawings of the bipartite graph K3,3 = K2
3

Clearly, a bipartite graph cannot contain an odd cycle, a cycle of odd odd cycle

length. In fact, the bipartite graphs are characterized by this property:

Proposition 1.6.1. A graph is bipartite if and only if it contains no

[1.9.4]
[5.3.1]
[6.4.2]

odd cycle.

6 Note that we obtain a Kr
s if we replace each vertex of a Kr by an independent

s-set; our notation of Kr
s is intended to hint at this connection.
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Proof. Let G = (V,E) be a graph without odd cycles; we show that G is(1.5.1)

bipartite. Clearly a graph is bipartite if all its components are bipartite
or trivial, so we may assume that G is connected. Let T be a spanning
tree in G, pick a root r 2 T , and denote the associated tree-order on V
by 6T . For each v 2 V , the unique path rTv has odd or even length.
This defines a bipartition of V ; we show that G is bipartite with this
partition.

e

Ce

r

x

y

Fig. 1.6.3. The cycle Ce in T + e

Let e = xy be an edge of G. If e 2 T , with x <T y say, then
rTy = rTxy and so x and y lie in di↵erent partition classes. If e /2 T
then Ce := xTy + e is a cycle (Fig. 1.6.3), and by the case treated
already the vertices along xTy alternate between the two classes. Since
Ce is even by assumption, x and y again lie in di↵erent classes. ⇤

1.7 Contraction and minors

In Section 1.1 we saw two fundamental containment relations between
graphs: the ‘subgraph’ relation, and the ‘induced subgraph’ relation. In
this section we meet two more: the ‘minor’ relation, and the ‘topological
minor’ relation. Let X be a fixed graph.

A subdivision of X is, informally, any graph obtained from X by
‘subdividing’ some or all of its edges by drawing new vertices on those
edges. In other words, we replace some edges of X with new pathssubdivision

TX of X
between their ends, so that none of these paths has an inner vertex in
V (X) or on another new path. When G is a subdivision of X, we also
say that G is a TX.7 The original vertices of X are the branch vertices

branch

vertices

of the TX; its new vertices are called subdividing vertices. Note that

7 The ‘T ’ stands for ‘topological’. Although, formally, TX denotes a whole class
of graphs, the class of all subdivisions of X, it is customary to use the expression as
indicated to refer to an arbitrary member of that class.
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subdividing vertices have degree 2, while branch vertices retain their
degree from X.

If a graph Y contains a TX as a subgraph, then X is a topological

minor of Y (Fig. 1.7.1). topological

minor

X G
Y

Fig. 1.7.1. The graph G is a TX, a subdivision of X.
As G ✓ Y , this makes X a topological minor of Y .

Similarly, replacing the vertices x of X with disjoint connected
graphs Gx, and the edges xy of X with non-empty sets of Gx–Gy edges,
yields a graph that we shall call an IX.8 More formally, a graph G is

an IX if its vertex set admits a partition {Vx | x 2 V (X) } into con- IX

nected subsets Vx such that distinct vertices x, y 2 X are adjacent in X
if and only if G contains a Vx–Vy edge. The sets Vx are the branch sets branch sets

of the IX. Conversely, we say that X arises from G by contracting the
subgraphs Gx and call it a contraction minor of G. contraction

If a graph Y contains an IX as a subgraph, then X is a minor of Y, minor, 4
the IX is a model of X in Y, and we write X 4 Y (Fig. 1.7.2). model

X

Y
Vx

Vz

x

z

G

Fig. 1.7.2. The graph G is a model of X in Y, which makes X
a minor of Y.

Thus, X is a minor of Y if and only if there is a map ' from a
subset of V (Y ) onto V (X) such that for every vertex x 2 X its inverse
image '�1(x) is connected in Y and for every edge xx0

2 X there is an

8 The ‘I’ stands for ‘inflated’. As before, while IX is formally a class of graphs,
those admitting a vertex partition {Vx | x 2 V (X) } as described below, we use the
expression as indicated to refer to an arbitrary member of that class.
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edge in Y between the branch sets '�1(x) and '�1(x0) of its ends. If
the domain of ' is all of V (Y ), and xx0

2 X whenever x 6= x0 and Y has
an edge between '�1(x) and '�1(x0) (so that Y is an IX), we call ' a
contraction of Y onto X.contraction

Since branch sets can be singletons, every subgraph of a graph is
also its minor. In infinite graphs, branch sets are allowed to be infinite
unless specified otherwise. For example, the graph shown in Figure 8.1.1
is an IX with X an infinite star.

Proposition 1.7.1. The minor relation 4 and the topological-minor[12.6.1]

relation are partial orderings on the class of finite graphs, i.e. they are

reflexive, antisymmetric and transitive. ⇤

If G is an IX, then P = {Vx | x 2 X } is a partition of V (G), and we
write X =: G/P for this contraction minor of G. If U = Vx is the onlyG/P

non-singleton branch set, we write X =: G/U , write vU for the vertexG/U

x 2 X to which U contracts, and think of the rest of X as an inducedvU

subgraph of G. The ‘smallest’ non-trivial case of this is that U contains
exactly two vertices forming an edge e, so that U = e. We then say that
X = G/e arises from G by contracting the edge e; see Figure 1.7.3.

contracting

an edge

x

y

e
ve

G/eG

Fig. 1.7.3. Contracting the edge e = xy

Since the minor relation is transitive, every sequence of single vertex
or edge deletions or contractions yields a minor. Conversely, every minor
of a given finite graph can be obtained in this way:

Corollary 1.7.2. Let X and Y be finite graphs. X is a minor of Y if

and only if there are graphs G0, . . . , Gn such that G0 = Y and Gn = X
and each Gi+1 arises from Gi by deleting an edge, contracting an edge,

or deleting a vertex.

Proof. Induction on |Y |+ kY k. ⇤

Finally, we have the following relationship between minors and to-
pological minors:
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Proposition 1.7.3. [4.4.2]
[7.3.1]

[12.7.3](i) Every TX is also an IX (Fig. 1.7.4); thus, every topological minor

of a graph is also its (ordinary) minor.

(ii) If �(X) 6 3, then every IX contains a TX; thus, every minor

with maximum degree at most 3 of a graph is also its topological

minor. ⇤

Fig. 1.7.4. A subdivision of K4 viewed as an IK4

Now that we have met all the standard relations between graphs,
we can also define what it means to embed one graph in another. Basi-
cally, an embedding of G in H is an injective map ':V (G)!V (H) that embedding

preserves the kind of structure we are interested in. Thus, ' embeds G
in H ‘as a subgraph’ if it preserves the adjacency of vertices, and ‘as an
induced subgraph’ if it preserves both adjacency and non-adjacency. If
' is defined on E(G) as well as on V (G) and maps the edges xy of G to
independent paths in H between '(x) and '(y), it embeds G in H ‘as
a topological minor’. Similarly, an embedding ' of G in H ‘as a minor’
would be a map from V (G) to disjoint connected vertex sets in H (rather
than to single vertices) so that H has an edge between the sets '(x) and
'(y) whenever xy is an edge of G. Further variants are possible; depend-
ing on the context, one may wish to define embeddings ‘as a spanning
subgraph’, ‘as an induced minor’ and so on, in the obvious way.

1.8 Euler tours

Any mathematician who happens to find himself in the East Prussian
city of Königsberg (and in the 18th century) will lose no time to fol-
low the great Leonhard Euler’s example and inquire about a round trip
through the old city that traverses each of the bridges shown in Figure
1.8.1 exactly once.

Thus inspired,9 let us call a closed walk in a graph an Euler tour if
it traverses every edge of the graph exactly once. A graph is Eulerian if Eulerian

it admits an Euler tour.

9 Anyone to whom such inspiration seems far-fetched, even after contemplating
Figure 1.8.2, may seek consolation in the multigraph of Figure 1.10.1.
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Fig. 1.8.1. The bridges of Königsberg (anno 1736)

Theorem 1.8.1. (Euler 1736)[2.1.5]
[10.3.1]

A connected graph is Eulerian if and only if every vertex has even degree.

Proof. The degree condition is clearly necessary: a vertex appearing k
times in an Euler tour (or k+1 times, if it is the starting and finishing
vertex and as such counted twice) must have degree 2k.

Conversely, we show by induction on kGk that every connected
graph G with all degrees even has an Euler tour. The induction starts
trivially with kGk = 0. Now let kGk > 1. Since all degrees are even,
we can find in G a non-trivial closed walk that contains no edge more
than once. (How exactly?) Let W be such a walk of maximal length,

Fig. 1.8.2. A graph formalizing the bridge problem
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and write F for the set of its edges. If F = E(G), then W is an Euler
tour. Suppose, therefore, that G0 := G�F has an edge.

For every vertex v 2 G, an even number of the edges of G at v lies
in F , so the degrees of G0 are again all even. Since G is connected, G0 has
an edge e incident with a vertex on W . By the induction hypothesis,
the component C of G0 containing e has an Euler tour. Concatenating
this with W (suitably re-indexed), we obtain a closed walk in G that
contradicts the maximal length of W . ⇤

1.9 Some linear algebra

Let G = (V,E) be a graph with n vertices and m edges, say V =

[8.7]

G = (V,E)

{v1, . . . , vn} and E = {e1, . . . , em}. The vertex space V(G) of G is the
vector space over the 2-element field F2 = {0, 1} of all functions V !F2.

vertex

space V(G)
Every element of V(G) corresponds naturally to a subset of V , the set of
those vertices to which it assigns a 1, and every subset of V is uniquely
represented in V(G) by its indicator function. We may thus think of
V(G) as the power set of V made into a vector space: the sum U +U 0 +

of two vertex sets U,U 0 ✓ V is their symmetric di↵erence (why?), and
U = �U for all U ✓ V . The zero in V(G), viewed in this way, is
the empty (vertex) set ;. Since {{v1}, . . . , {vn}} is a basis of V(G), its
standard basis , we have dimV(G) = n.

In the same way as above, the functions E!F2 form the edge space

E(G) of G: its elements correspond to the subsets of E, vector addition edge space

E(G)
amounts to symmetric di↵erence, ; ✓ E is the zero, and F = �F for all
F ✓ E. As before, {{e1}, . . . , {em}} is the standard basis of E(G), and standard

basis

dim E(G) = m. Given two elements F, F 0 of the edge space, viewed as
functions E!F2, we write

hF, F 0i :=
X

e2E

F (e)F 0(e) 2 F2 .
hF, F 0

i

This is zero if and only if F and F 0 have an even number of edges in
common; in particular, we can have hF, F i = 0 with F 6= ;. Given a
subspace F of E(G), we write

F? :=
�
D 2 E(G) | hF,Di = 0 for all F 2 F

 
. F

?

This is again a subspace of E(G) (the space of all vectors solving a certain
set of linear equations – which?), and one can show that

dimF +dimF? = m.
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The cycle space C = C(G) is the subspace of E(G) spanned by allcycle space

C(G)
the cycles in G – more precisely, by their edge sets.10 The dimension of
C(G) is sometimes called the cyclomatic number of G.

The elements of C are easily recognized by the degrees of the sub-
graphs they form. Moreover, to generate the cycle space from cycles we
only need disjoint unions rather than arbitrary symmetric di↵erences:

Proposition 1.9.1. The following assertions are equivalent for edge sets
[4.5.1]
[8.7.3]

D ✓ E:

(i) D 2 C(G);

(ii) D is a (possibly empty) disjoint union of edge sets of cycles in G;

(iii) All vertex degrees of the graph (V,D) are even.

Proof. Since cycles have even degrees and taking symmetric di↵erences
preserves this, (i)!(iii) follows by induction on the number of cycles used
to generate D. The implication (iii)!(ii) follows by induction on |D|:
if D 6= ; then (V,D) contains a cycle C, whose edges we delete for the
induction step. The implication (ii)!(i) is immediate from the definition
of C(G). ⇤

A set F of edges is a cut in G if there exists a partition11 {V1, V2}
of V such that F = E(V1, V2). If G is connected, this partition is uniquecut, sides

given F (Exercise 45), and the edges in F are said to cross it. Its classescross

V1, V2 are the sides of the cut F . A minimal non-empty cut is a bond .bond

Cuts or bonds of the form E(v) are atomic.atomic

Proposition 1.9.2. Together with ;, the cuts in G form a subspace[4.6.3]

B = B(G) of E(G). This space is generated by atomic cuts.

Proof. Let B denote the subspace of E(G) generated by its atomic cuts.
Every cut of G, with vertex partition {V1, V2} say, equals

P
v2V1

E(v)
and hence lies in B. Conversely, every set

P
v2U E(v) 2 B is either

empty, e.g. if U 2 {;, V }, or it is the cut E(U, V rU). ⇤

The space B from Proposition 1.9.2 is the cut space, or bond space,
of G. It is not di�cult to find among the atomic cuts an explicit basis

cut space

B(G)
for B, and thus to determine its dimension (Exercise 48). Note that the
bonds are for B what cycles are for C: the minimal non-empty elements.

The ‘non-empty’ condition in the definition of a bond bites only if
G is disconnected. If G is connected, its bonds are just its minimal cuts,

10 For simplicity, we shall not always distinguish between the edge sets F 2 E(G)
and the subgraphs (V, F ) they induce in G. When we wish to be more precise, such
as in Chapter 8.6, we shall use the word ‘circuit ’ for the edge set of a cycle.
11 Recall that partition classes in this book are non-empty. The empty set of edges,

therefore, is a cut only if the graph is disconnected.
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and these are easy to recognize: a cut in a connected graph is minimal
if and only if both sides of the corresponding vertex partition induce
connected subgraphs (Exercise 41). If G is disconnected, its bonds are
the minimal cuts of its components.

In analogy to Proposition 1.9.1, bonds and disjoint unions su�ce to
generate the cut space:

Lemma 1.9.3. Every cut is a disjoint union of bonds.
[4.6.2]
[6.5.2]

Proof. We apply induction on the size of the cut F considered. For
F = ; the assertion is trivial (with the empty union). If F 6= ; is not
itself a bond, it properly contains some other non-empty cut F 0. By
Proposition 1.9.2, also F r F 0 = F + F 0 is a smaller non-empty cut.
By the induction hypothesis, both F 0 and F rF 0 are disjoint unions of
bonds, and hence so is F . ⇤

Exercise 47 indicates how to construct the bonds for Lemma 1.9.3
explicitly. In Chapter 3.1 we shall prove some more details about the
possible positions of the cycles and bonds of a graph within its overall
structure (Lemmas 3.1.2 and 3.1.3).

Theorem 1.9.4. The cycle space C and the cut space B of any graph [4.6]

satisfy

C = B?
and B = C?.

Proof. Consider a graph G = (V,E). Clearly, any cycle in G has an (1.6.1)
(1.10)

even number of edges in each cut. This implies C ✓ B? and B ✓ C?.
To prove B? ✓ C, recall from Proposition 1.9.1 that for every edge

set F /2 C there exists a vertex v incident with an odd number of edges
in F . Then hE(v), F i = 1, so E(v) 2 B implies F /2 B?. This completes
the proof of C = B?.

To prove C? ✓ B, let F 2 C? be given. Consider the multigraph12 H
obtained from G by contracting the edges in ErF . Any cycle in H has
all its edges in F . Since we can extend it to a cycle in G by edges
from ErF , the number of these edges must be even. Hence H is bipar-
tite, by Proposition 1.6.1. Its bipartition induces a bipartition (V1, V2)
of V such that E(V1, V2) = F , showing F 2 B as desired. ⇤

Consider a connected graph G = (V,E) with a spanning tree T ✓ G.
For every chord e 2 E rE(T ) there is a unique cycle Ce in T + e, the fundamental

cycle/cut

fundamental cycle of e with respect to T . Similarly, for every edge f 2 T
the forest T � f has exactly two components (Theorem 1.5.1 (iii)). The (1.5.1)

12 See Section 1.10: such contractions might create loops in F , but bipartite multi-
graphs have no loops. The proof of Proposition 1.6.1 works for multigraphs too.
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set Df ✓ E of edges of G between these components is a bond in G, the
fundamental cut of f with respect to T .

Notice that f 2 Ce if and only if e 2 Df , for all edges e /2 T and
f 2 T . This is an indication of some deeper duality, which the following
theorem explores further.

f

e

Ce

Df

TT

Fig. 1.9.1. The fundamental cycle Ce, and the fundamental cut Df

Theorem 1.9.5. Let G be a connected graph with n vertices and[4.5.1]

m edges, and let T ✓ G a spanning tree.

(i) The fundamental cuts and cycles of G with respect to T form

bases of B(G) and C(G), respectively.

(ii) Hence, dimB(G) = n� 1 and dim C(G) = m�n+1.

Proof. (i) Note that an edge f 2 T lies inDf but in no other fundamental(1.5.2)

cut, while an edge e /2 T lies in Ce but in no other fundamental cycle.
Hence the fundamental cuts and cycles form linearly independent sets
in B = B(G) and C = C(G), respectively.

Let us show that the fundamental cycles generate every cycle C. By
our initial observation, D := C +

P
e2CrT Ce is an element of C that

contains no edge outside T . But by Proposition 1.9.1, the only element
of C contained in T is ;. So D = ;, giving C =

P
e2CrT Ce.

Similarly, every cut D is a sum of fundamental cuts. Indeed, the
element D+

P
f2D\T Df of B contains no edge of T . As ; is the only

element of B missing T , this implies D =
P

f2D\T Df .
(ii) By (i), the fundamental cuts and cycles form bases of B and C.

As there are n�1 fundamental cuts (Corollary 1.5.2), there arem�n+1
fundamental cycles. ⇤

The incidence matrix B = (bij)n⇥m of a graph G = (V,E) withincidence

matrix

V = {v1, . . . , vn} and E = {e1, . . . , em} is defined over F2 by

bij :=
n
1 if vi 2 ej
0 otherwise.
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As usual, let B> denote the transpose of B. Then B and B> define
linear maps B: E(G)!V(G) and B>:V(G)! E(G) with respect to the
standard bases. As is easy to check, B maps an edge set F ✓ E to the
set of vertices incident with an odd number of edges in F , while B>maps
a set U ✓ V to set of edges with exactly one end in U . In particular:

Proposition 1.9.6.

(i) The kernel of B is C(G).

(ii) The image of B>
is B(G). ⇤

More on this in the exercises and notes at the end of this chapter.

The adjacency matrix A = (aij)n⇥n of G is defined by adjacency

matrix

aij :=
n
1 if vivj 2 E
0 otherwise.

Viewed as a linear map V ! V , the adjacency matrix maps a given set
U ✓ V to the set of vertices with an odd number of neighbours in U .

Let D denote the real diagonal matrix (dij)n⇥n with dii = d(vi)
and dij = 0 otherwise. Our last proposition establishes a connection
between A and B (now viewed as real matrices), which can be verified
simply from the definition of matrix multiplication:

Proposition 1.9.7. BB> = A+D. ⇤

It is also instructive to check that A+D, with entries taken mod 2, de-
fines the same map V!V as the composition of the maps of B and B>

(Exercise 57).

1.10 Other notions of graphs

For completeness, we now mention a few other notions of graphs which
feature less frequently or not at all in this book.

A hypergraph is a pair (V,E) of disjoint sets, where the elements hypergraph

of E are non-empty subsets (of any cardinality) of V . Thus, graphs are
special hypergraphs.

A directed graph (or digraph) is a pair (V,E) of disjoint sets (of directed

graph

vertices and edges) together with two maps init:E!V and ter:E!V
assigning to every edge e an initial vertex init(e) and a terminal vertex init(e)

ter(e). The edge e is said to be directed from init(e) to ter(e). Note that ter(e)

a directed graph may have several edges between the same two vertices
x, y. Such edges are called multiple edges ; if they have the same direction
(say from x to y), they are parallel . If init(e) = ter(e), the edge e is called
a loop. loop
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A directed graph D is an orientation of an (undirected) graph G iforientation

V (D) = V (G) and E(D) = E(G), and if {init(e), ter(e)} = {x, y} for
every edge e = xy. Intuitively, such an oriented graph arises from anoriented

graph

undirected graph simply by directing every edge from one of its ends to
the other. Put di↵erently, oriented graphs are directed graphs without
loops or multiple edges.

A multigraph is a pair (V,E) of disjoint sets (of vertices and edges)multigraph

together with a map E ! V [ [V ]2 assigning to every edge either one
or two vertices, its ends. Thus, multigraphs too can have loops and
multiple edges: we may think of a multigraph as a directed graph whose
edge directions have been ‘forgotten’. To express that x and y are the
ends of an edge e we still write e = xy, though this no longer determines
e uniquely.

A graph is thus essentially the same as a multigraph without loops
or multiple edges. Somewhat surprisingly, proving a graph theorem more
generally for multigraphs may, on occasion, simplify the proof. More-
over, there are areas in graph theory (such as plane duality; see Chapters
4.6 and 6.5) where multigraphs arise more naturally than graphs, and
where any restriction to the latter would seem artificial and be tech-
nically complicated. We shall therefore consider multigraphs in these
cases, but without much technical ado: terminology introduced earlier
for graphs will be used correspondingly.

A few di↵erences, however, should be pointed out. A multigraph
may have cycles of length 1 or 2: loops, and pairs of multiple edges
(or double edges). A loop at a vertex makes it its own neighbour, and
contributes 2 to its degree; in Figure 1.10.1, we thus have d(ve) = 6.
The ends of loops and parallel edges in a multigraph G are considered as
separating that edge from the rest of G. The vertex v of a loop e, there-
fore, is a cutvertex unless ({v}, {e}) is a component of G, and ({v}, {e})
is a ‘block’ in the sense of Chapter 3.1. Thus, a multigraph with a loop
is never 2-connected, and any 3-connected multigraph is in fact a graph.

G/eG
e

ve

Fig. 1.10.1. Contracting the edge e in the multigraph correspond-
ing to Fig. 1.8.1

The notion of edge contraction is simpler in multigraphs than in
graphs. If we contract an edge e = xy in a multigraph G = (V,E) to a
new vertex ve, there is no longer a need to delete any edges other than
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e itself: edges parallel to e become loops at ve, while edges xv and yv
become parallel edges between ve and v (Fig. 1.10.1). Thus, formally,
E(G/e) = Er{e}, and only the incidence map e0 7! {init(e0), ter(e0)} of
G has to be adjusted to the new vertex set in G/e. Contracting a loop
thus has the same e↵ect as deleting it.

The notion of a minor adapts accordingly. The contraction minor
G/P defined by a partition P of V (G) into connected sets has precisely
those edges of G that join distinct partition classes. If there are several
such edges between the same two classes, they become parallel edges
of G/P . However, we do not normally give G/P any loops resulting from
edges of G whose ends lie in the same partition class U . This would re-
quire us to say which of the edges of G[U ] are contracted (assuming they
induce a connected spanning subgraph of G[U ]), or at least how many
are, which seems futile if we do not care about loops in G/P anyway.

Fig. 1.10.2. Suppressing the white vertices

If v is a vertex of degree 2 in a multigraph G, then by suppressing v
suppressing

a vertex

we mean deleting v and adding an edge between its two neighbours. (If
its two incident edges are identical, i.e. form a loop at v, we add no
edge and obtain just G� v. If they go to the same vertex w 6= v, the
added edge will be a loop at w. See Figure 1.10.2.) Since the degrees
of all vertices other than v remain unchanged when v is suppressed,
suppressing several vertices of G always yields a well-defined multigraph
that is independent of the order in which those vertices are suppressed.

Finally, it should be pointed out that authors who usually work with
multigraphs tend to call them ‘graphs’; in their terminology, our graphs
would be called ‘simple graphs’.

Exercises

1.� What is the number of edges in a Kn?

2. Let d 2 N and V := {0, 1}
d; thus, V is the set of all 0–1 sequences of

length d. The graph on V in which two such sequences form an edge if
and only if they di↵er in exactly one position is called the d-dimensional

cube. Determine the average degree, number of edges, diameter, girth
and circumference of this graph.

(Hint for the circumference: induction on d.)



30 1. The Basics

3. Let G be a graph containing a cycle C, and assume that G contains
a path of length at least k between two vertices of C. Show that G
contains a cycle of length at least

p

k.

4.� Is the bound in Proposition 1.3.2 best possible?

5. Let v0 be a vertex in a graph G, and D0 := {v0}. For n = 1, 2, . . .
inductively define Dn := NG(D0 [ . . . [ Dn�1). Show that Dn = { v |

d(v0, v) = n } and Dn+1 ✓ N(Dn) ✓ Dn�1 [ Dn+1 for all n 2 N.

6. Show that rad(G) 6 diam(G) 6 2 rad(G) for every graph G.

7. Prove the weakening of Theorem 1.3.4 obtained by replacing average
with minimum degree. Deduce that |G| > n0(d/2, g) for every graph G
as given in the theorem.

8. Show that graphs of girth at least 5 and order n have a minimum degree
of o(n). In other words, show that there is a function f :N ! N such
that f(n)/n ! 0 as n ! 1 and �(G) 6 f(n) for all such graphs G.

9.+ Show that every connected graph G of order at least 3 contains a path
or cycle of length at least min {2�(G), |G|}.

10. Show that a connected graph of diameter k and minimum degree d has
at least about kd/3 vertices but need not have substantially more.

11.� Show that the components of a graph partition its vertex set. (In other
words, show that every vertex belongs to exactly one component.)

12.� Show that every 2-connected graph contains a cycle.

13. Determine (G) and �(G) for G = P m, Km, Km,n, Cn and the d-
dimensional cube (Exercise 2), for all m > 1 and d, n > 3.

14.� Is there a function f :N ! N such that, for all k 2 N, every graph of
minimum degree at least f(k) is k-connected?

15. Let ↵,� be two graph invariants with positive integer values. Formalize
the two statements below, and show that each implies the other:

(i) � is bounded above by a function of ↵;

(ii) ↵ can be forced up by making � large enough.

Show that the statement

(iii) ↵ is bounded below by a function of �

is not equivalent to (i) and (ii). Which small change will make it so?

16. Show that every graph that is k-edge-connected but loses this property
whenever we delete an edge has a vertex of degree k.

17.+ Show for every k 2 N that every graph of minimum degree 2k has a
(k + 1)-edge-connected subgraph. Is it enough to assume an average
degree of at least 2k?



Exercises 31

18. Consider the proof of Theorem 1.4.3. Would it not seem more natural
to assume in the second statement of (⇤) that "(G0) > ��k, as required
for H in the statement of the theorem?

(i) Look how this alteration would change the proof: which parts
would carry over, which could be adapted, and which would fail?

(ii) Explain how the use of an assumption of the form m > ckn� bk

rather than m > ckn helps to obtain a contradiction in the final
inequality of the proof.

19. Prove Theorem 1.5.1.

20. Revisit the proof that every connected graph has a spanning tree given
as an application of Theorem 1.5.1 (iii). What is wrong with the analog-
ous ‘proof’ that says, ‘take a maximal acyclic subgraph and apply (iv)’?

(Hint: Something must be wrong, as the ‘proof’ does not use the as-
sumption that the graph is connected. But where exactly is the error?)

21.� (i) Show that every tree T has at least �(T ) leaves.

(ii) Deduce that in a connected graph G we can delete �(G) vertices
so that the rest remains connected.

22. Let T be a tree with ` > 2 leaves and maximum degree at most 3.

(i)� Show that T has exactly `� 2 vertices of degree 3.

(ii) Show that T contains b`/2c disjoint paths between distinct
leaves.

23. Find two very short proofs, one by induction and another without, that
every tree has more leaves than vertices of degree at least 3.

24. Let F, F 0 be forests on the same set of vertices, with kFk < kF 0
k.

Show that F 0 has an edge e /2 F such that F + e is again a forest.

25. Show that the tree-order associated with a rooted tree T is indeed a
partial order on V (T ), and verify the claims made about this partial
order in the text.

26. Show that a graph is 2-edge-connected if and only if it has a strongly

connected orientation, one in which every vertex can be reached from
every other vertex by a directed path.

27. Modify the proof of Proposition 1.5.5 to show that we may specify any
vertex of G as the root of the normal spanning tree sought.

28. (i) Find a short proof for the existence of normal spanning trees in
connected graphs that applies induction by deleting a vertex.

(ii) Adapt your proof to show that every path in a connected graph
extends to a normal spanning tree.
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29.+ Let G be a connected graph, and let r 2 G be a vertex. Starting
from r, move along the edges of G, going whenever possible to a vertex
not visited so far. If there is no such vertex, go back along the edge by
which the current vertex was first reached (unless the current vertex
is r; then stop). Show that the edges traversed form a normal spanning
tree in G with root r.

(This procedure has earned those trees the name of depth-first search

trees.)

30. Let T be a set of subtrees of a tree T , and k 2 N.

(i) Show that if the trees in T have pairwise non-empty intersection
then their overall intersection

T
T is non-empty.

(ii) Show that either T contains k disjoint trees or there is a set of
at most k � 1 vertices of T meeting every tree in T .

31. Show that every automorphism of a tree fixes a vertex or an edge.

32.� Do the partition classes of a regular bipartite graph always have the
same size?

33.� Show that a graph is bipartite if and only if every induced cycle has
even length.

34. Is the vertex partition of a bipartite graph uniquely determined?

35. Prove or disprove that a graph is bipartite if and only if no two adjacent
vertices have the same distance from any other vertex.

36. Proposition 1.6.1 characterizes the graphs that contain no odd cycle.
Can you characterize those that contain no even cycle?

37. Find a function f :N!N such that, for all k 2 N, every graph of aver-
age degree at least f(k) has a bipartite subgraph of minimum degree
at least k.

38. Show that the minor relation 4 defines a partial ordering on any set
of pairwise non-isomorphic finite graphs. Is the same true for infinite
graphs?

39. If we had been careless, we might have defined a walk as an alternating
sequence of vertices and edges, v0e0v1e1 . . . ek�1vk say, such that every
edge ei is incident with both vi and vi+1. Show that Theorem 1.8.1
would fail with this definition, and find where the di↵erence between
the two definitions matters in the proof.

40. Prove or disprove that every connected graph contains a walk that
traverses each of its edges exactly once in each direction.

41. Show that a cut in a connected graph G is a bond if and only if both
parts of the corresponding bipartition of V (G) are connected in G. Is
every atomic cut a bond?

42. Let A be a set of vertices in a tree T . Show that T contains a set
of edge-disjoint paths with ends in A such that every vertex from A
except at most one is the end of exactly one such path.
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43. To how few edges can you reduce the complete graph Kn by deleting
one edge at a time from a 4-cycle found in the current graph?

44. Show that the cycle space of a graph is spanned by

(i) its induced cycles;

(ii) its geodesic cycles.

(A cycle C ✓ G is geodesic in G if, for every two vertices of C, their
distances in G equals their distance in C.)

45. Show that the set of sides of a cut in a connected graph is well defined.

46.� Show directly, without appealing to atomic cuts, that the cuts of a
graph together with the empty set form a subspace of its edge space.
How does the vertex partition of a sum of two given cuts arise from
their vertex partitions?

47. Let F be a cut in G, with vertex partition {V1, V2}. For i = 1, 2 let
Ci

1, . . . , C
i
k(i) denote the components of G[Vi]. Use the Ci

j to define
bonds whose disjoint union is F .

48. Show that the cut space of any graph has a basis of atomic cuts.

49. Prove that the cycles and the cuts in a graph together generate its
entire edge space, or find a counterexample.

50.� Show the following duality between the fundamental cycles Ce and the
fundamental cuts Df in a graph with respect to some fixed spanning
tree: e 2 Df , f 2 Ce.

51. Show that in a connected graph the minimal edge sets containing an
edge from every spanning tree are precisely its bonds.

52. Given a spanning tree T = (V, F ) of a connected graph G = (V, E), its
fundamental cuts Df and fundamental cycles Ce witness the following:

(i) B has a basis ( Df | f 2 F ) such that Df \F = {f} for all f 2 F ;

(ii) C has a basis ( Ce | e 2 E r F ) such that Ce \ (E r F ) = {e}
for all e 2 E rF .

Show that, conversely, every set F ✓ E satisfying (i) and (ii) is the edge
set of a spanning tree of G. Is the same true as soon as F satisfies one of
these two statements? Then show that this spanning tree has precisely
the Df as fundamental cuts, and the Ce as fundamental cycles.

53. Let F be a set of edges in a graph G.

(i) Show that F extends to an element of B(G) if and only if it
contains no odd cycle.

(ii)+ Show that F extends to an element of C(G) if and only if it
contains no odd cut.

54.+ In a graph G let a, b be two vertices that are separated by a cut F of
k edges but cannot be separated by fewer edges. Show that F is not a
sum of cuts of fewer than k edges.
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55.+ Prove that the edge set of any graph G can be written as a disjoint
union E(G) = C [ D with C 2 C(G) and D 2 B(G).

56. Show that a set of vertices lies in the image of the incidence matrix of
a connected graph if and only if it has even cardinality.

57. (i) Generalize Proposition 1.9.6 by describing the images under B
and B> of given sets F ✓ E and U ✓ V , as indicated in the text.

(ii) Reprove Proposition 1.9.7 for matrices with values in F2 by showing
that BB> and A + D define the same the maps V ! V.

58. Let A = (aij)n⇥n be the adjacency matrix of the graph G. Show that
the matrix Ak = (a0

ij)n⇥n displays, for all i, j 6 n, the number a0
ij of

walks of length k from vi to vj in G.

Notes
The terminology used in this book is mostly standard. Alternatives do exist,
and some of these are stated when a concept is first defined.

Our formal definition of a graph G = (V, E) with E ✓ [V ]2 is intended to
convey two messages: that the edges are undirected (since {u, v} = {v, u} for
sets), and that there are neither loops (since {v, v} /2 [V ]2 because |{v, v}| = 1)
nor multiple edges (since two sets are equal as soon as they have the same
elements). This formal definition – like any other – occasionally clashes with
other standard terminology.13 But avoiding all such possible clashes would
make the terminology so unwieldy that it would defeat the purpose of clarity.

There is one small point where our notation deviates slightly from stan-
dard usage. Complete graphs, paths, cycles etc. of given order are usually
denoted by Kn, Pk, C` and so on, but we use superscripts instead of sub-
scripts. This has the advantage of leaving the variables K, P , C etc. free for
ad-hoc use: we may now enumerate components as C1, C2, . . ., speak of paths
P1, . . . , Pk, and so on – without any danger of confusion.

Theorem14 1.3.4 was proved by N. Alon, S. Hoory and N. Linial, The
Moore bound for irregular graphs, Graphs Comb. 18 (2002), 53–57. The
proof uses an ingenious argument counting random walks along the edges of
the graph considered.

The main assertion of Theorem 1.4.3, that an average degree of at least 4k
forces a k-connected subgraph, is from W. Mader, Existenz n-fach zusammen-
hängender Teilgraphen in Graphen genügend großer Kantendichte, Abh. Math.
Sem. Univ. Hamburg 37 (1972) 86–97.

For the history of the Königsberg bridge problem, and Euler’s actual
part in its solution, see N.L. Biggs, E.K. Lloyd & R.J. Wilson, Graph Theory

1736–1936 , Oxford University Press 1976.

13 For example, when e = {u, v} is an edge of G, then G� e and G� {u, v} mean
two di↵erent things: in G� e we deleted the edge e but kept the vertices u and v,
whereas in G� {u, v} we deleted the vertices u, v and all their incident edges.

14 In the interest of readability, the end-of-chapter notes in this book give refer-
ences only for Theorems, and only in cases where these references cannot be found
in a monograph or survey cited for that chapter.
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Of the large subject of algebraic methods in graph theory, Section 1.9
does not convey an adequate impression. A good introduction is N.L. Biggs,
Algebraic Graph Theory (2nd edn.), Cambridge University Press 1993. A
more comprehensive account is given by C.D. Godsil & G.F. Royle, Algebraic
Graph Theory , Springer GTM 207, 2001. Surveys on the use of algebraic
methods can also be found in the Handbook of Combinatorics (R.L. Graham,
M. Grötschel & L. Lovász, eds.), North-Holland 1995. See also Chung’s book
cited below.

In algebraic graph theory one usually takes as the elements of the vertex
and edge space the functions mapping the vertices, respectively the oriented
edges, to the reals. Then there are 2m standard bases of E and 2m incidence
matrices, one for every choice of edge orientations. (No more, since we require
that such functions  satisfy  (e, u, v) = � (e, v, u) for every pair of inverse
orientations of the same edge e.) For every fixed choice of orientations, the
corresponding incidence matrix represents with respect to the corresponding
basis of E the boundary map @: E ! V that assigns to every (basis element
for the) oriented edge (e, u, v) the map V !R assigning 1 to v and �1 to u
and 0 to every other vertex (and which extends linearly to all of E). Simi-
larly, the transpose of the incidence matrix represents the coboundary map

�: Hom(V,R) ! Hom(E ,R) mapping ' to ' � @; thus, � is dual to @ in the
linear algebra sense. The product of the incidence matrix and its transpose is
now BB> = D �A, the Laplacian of G. Note that, unlike B, the Laplacian is
independent of our choice of basis for E , i.e., of our initial choice of orientations
that defined our basis. It plays a fundamental role in algebraic graph theory
and its connections to other areas of mathematics; see F.R.K. Chung, Spectral
Graph Theory , AMS 1997 for much more.




