
A Infinite sets

This appendix gives a minimum-fuss summary of the set-theoretic no-
tions and facts, such as Zorn’s lemma and transfinite induction, that are
used in Chapter 8.

Let A,B be sets. If there exists a bijective map between A and B,
we write |A| = |B| and say that A and B have the same cardinality .
This is clearly an equivalence relation between sets, and we may think of
the cardinality |A| of A as the equivalence class containing A. We write cardinality

|A| 6 |B| if there exists an injective map A!B. This is clearly well
defined, and it is a partial ordering: if there are injective maps A!B
and B!A, there is also a bijection A!B.1 For every set there exists
another that is bigger; for example, |A| < |B| when B is the power set
of A, the set of all its subsets.

The natural numbers are defined inductively as n := {0, . . . , n� 1}, N
starting with 0 := ;. The usual expression of |A| = n can then be read
more formally as an abbreviation for |A| = |n|.

A set A is finite if there is a natural number n such that |A| = n;
otherwise it is infinite. A is countable if |A| 6 |N|, and countably infinite

if |A| = |N|. A bijection N!A is an enumeration of A. If A is infinite
then |N| 6 |A|. Thus, |N| is the smallest infinite cardinality; it is denoted
by @0. There is also a smallest uncountable cardinality, denoted by @1.
If |A| = |R| then A is uncountable, and we say that A has continuum

many elements. For example, there are continuum many infinite 0–1 se-
quences. (Whether |R| is equal to @1 or greater depends on the axioms
of set theory assumed; in our context, this question does not arise.) We
remark that if A is infinite and its elements are countable sets, then the
union of all these sets is no bigger than A itself: |

S
A| 6 |A|.

1 This is the Cantor-Bernstein theorem; a simple graph-theoretic proof is given
in Proposition 8.4.8.
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An element x of a partially ordered set X is minimal in X if there
is no y 2 X with y < x, and maximal if there is no z 2 X with x < z.
A partially ordered set may have one or many elements that are maximal
or minimal, or none at all. An upper bound in X of a subset Y ✓ X is
any x 2 X such that y 6 x for all y 2 Y .

A chain is a partially ordered set in which every two elements are
comparable. If (C,6) is a chain, and if x, y 2 C satisfy x < y but no
element z of C is such that x < z < y, then x is called the predecessor

of y in C, and y the successor of x. A set of the form {x 2 C | x < z},successor

for a given z 2 C, is a proper initial segment of C.
A partially ordered set (X,6) is well-founded if every non-empty

subset of X has a minimal element, and a well-founded chain is said
to be well-ordered . For example, N, Z and R are all chains (with theirwell-

ordering

usual orderings), but only N is well-ordered. Note that every element x
of a well-ordered set X has a successor (unless x is maximal in X): the
unique minimal element of {y 2 X | x < y} ⇢ X. However, an element of
a well-ordered set need not have a predecessor, even if it is not minimal.
An element that has no predecessor is called a limit; for example, thelimit

number 1 is a limit in the well-ordered set

A = {1� 1

n+1
| n 2 N} [ {2� 1

n+1
| n 2 N}

of rationals.
One of the many statements equivalent to the axiom of choice (which

we assume throughout) is that for every set X there exists a relation by
which X is well-ordered:

Well-ordering theorem. Every set can be well-ordered.

Two well-ordered sets are said to have the same order type if there is
a bijection between them which preserves their orders. Thus N and the
set of even natural numbers have the same order type, but this di↵ers
from the order type of the set A defined above. Having the same order
type is clearly an equivalence relation, which justifies the term if we
think of those order types themselves as equivalence classes.

When one considers properties shared by all well-ordered sets of
the same order type, it is convenient to represent each order type by a
specially chosen set of that type, its ordinal . The ordinal representingordinals

the order type of N, for instance, is by custom denoted as !; our example!

above thus says that the set of even natural numbers has (the) order type
(of) !. Finite chains of the same cardinality always have the same order
type; we choose n as the ordinal representing the chains of order n.

There is an addition of ordinals, defined by taking as the sum ↵+�
the ordinal representing the order type of the concatenation of ↵ with �
(in this order); note that this is again a well-ordered set. For example,
↵+1 is the successor of ↵. Note that no inverse operation ‘�’ is defined.
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If an ordinal � has the same order type as a proper initial segment of
another ordinal ↵, we write � < ↵. For example, we have 0 6 n < ! for
every natural number n. It can be shown that< defines an ordering, even
a well-ordering, on every set of ordinals. On N, this ordering coincides
with the usual one, so our notation is unambiguous.

Since a set S of ordinals is itself well-ordered, it has an order type –
just like any other well-ordered set. If the ordinal ↵ is a strict upper
bound for S, then the order type of S is at most ↵ ; it is equal to ↵ if
S consists of all the ordinals up to (but excluding) ↵. In fact, just like
the natural numbers, infinite ordinals are usually defined in such a way
that ↵ and {� | � < ↵} are actually identical; then our ordering < for
ordinals coincides with the relation 2.

This makes it natural to write a well-ordered set S, of order type ↵
say, as a family S = {s� | � < ↵} with s� < s� for all � < � < ↵. This
is common practice when one proves statements about the elements of
S by transfinite induction, which works as follows. transfinite

induction

Suppose we want to show that every s 2 S satisfies some proposi-
tion P ; let us write P (s) to express that it does. Just as in ordinary in-
duction we prove, for every � < ↵, that if P holds for every s� with � < �
then P also holds for s� . In practice, we usually have to distinguish the
two cases of � being a limit ordinal or a successor. Checking P (s0) from
first principles, as in ordinary induction, is part of the first case, because
0 counts as a limit and the premise of P� for all � < 0 is void. The con-
clusion then is that P (s�) for every � < ↵, that is, every s 2 S satisfies P .

This is certainly simple – but is it correct? Well, any proper justifi-
cation of transfinite induction requires a formal treatment of set theory,
but so does ordinary induction. Informally, what we have shown is that
the set

{� < ↵ | P (s�) fails}

has no least element. Since it is well-ordered, it must therefore be empty,
so P (s�) holds for all � < ↵.

Similarly, we may define things inductively. Such a recursive defi-

nition specifies for each ordinal ↵ some object x↵, in a way that may
recursive

definition

refer to the objects x� with � < ↵ (which we think of as ‘having been
defined earlier’). Our definition of the natural numbers at the start of
this appendix is a simple example.

In practice, the definition of x↵ often makes sense only for ordinals
↵ less than some fixed ordinal ↵⇤, although the smallest such ↵⇤ may not
be known in advance. For example, if the x↵ are to be distinct vertices
picked recursively from a graph G according to some given rules, it is
clear that we shall not be able to find such x↵ for all ↵ < ↵⇤ when
|↵⇤| > |G|, because ↵ 7! x↵ would be an injective map from ↵⇤ to V (G)
showing that |↵⇤| 6 |G|. Since there exist ordinals larger than |G|, such
as any ordinal equivalent to a well-ordering of the power set of V (G),
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this means that our recursion cannot go on indefinitely, i.e. we shall not
be able to define x↵ for all ordinals ↵. We may not know in advance
when our recursion will get stuck, i.e., which is the smallest ordinal ↵
for which x↵ cannot be found in compliance with our rules. But this
does not matter: we simply define ↵⇤ as the first ordinal ↵ for which x↵

cannot be found, content ourselves with having defined x↵ for all ↵ < ↵⇤,
and say that our recursion terminates at step ↵⇤. (In fact, we usually
want a recursive definition to terminate. In our example, we might wish
to consider the set of all vertices x 2 G that got picked by our definition,
and this will be the set {x↵ | ↵ < ↵⇤}.)

Note that our recursive definition for x↵ may involve choices. In
our example, x↵ might be required to be a neighbour of some x� with
� < ↵, but there may be several such x� , each with several neighbours
that have not yet been picked. This does not cause our recursion to get
stuck at step ↵: we just pick one eligible vertex as x↵, and proceed. In
other words, we accept {x↵ | ↵ < ↵⇤} as a properly defined set even
though we may not ‘know’ its elements x↵ constructively.

Back to proving things, here is a formal statement of Zorn’s lemma:

Zorn’s Lemma. Let (X,6) be a partially ordered set such that every

chain in X has an upper bound in X. Then X contains at least one

maximal element.

Note that, in applications of Zorn’s lemma, the relation 6 need not
correspond to an intuitive notion of ‘smaller than’. Applied to sets or to
graphs, for example, it can stand for ‘◆’ just as much as for ‘✓’. Then
the ‘upper bound’ of a chain C is typically its overall intersection

T
C.

Finally, compactness. The infinity lemma discussed in Chapter 8
generalizes as follows.2 As before, we consider a collection {Xp | p 2 P }
of finite sets, but rather than indexing these by natural numbers we have
one such set Xp for every element p of some partially ordered set (P,6).
All we assume about P is that every two elements have a common upper
bound: for all p, q there exists an r such that p 6 r and q 6 r. Further-
more, we have maps fqp:Xq !Xp for all q > p, which are compatible in
that fqp � frq = frp whenever r > q > p.

Generalized Infinity Lemma. For every such family {Xp | p 2 P } of

finite sets there exists a family {xp | p 2 P } of representatives xp 2 Xp

such that fqp(xq) = xp whenever q > p.

The infinity lemma is clearly a special case of this, with P = N and the
fqp defined by iterating the lemma’s predecessor function f .

2 In category theory, our ‘generalized infinity lemma’ is known as the fact that
the inverse limit of any directed inverse system of finite sets is non-empty. Instead of
finite sets one can take any other compact spaces; see Chapter 8.8 for an application.
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The following more combinatorial encoding for compactness argu-
ments brings out particularly well the choices involved, and their inter-
dependence. Let X be any set, S a finite set, and F a set of finite subsets
of X. Assume that every Y 2 F comes with a fixed set A(Y ) of Y !S
functions, its admissible functions . Call Y ✓ F compatible if there exists
a function f :X!S all whose restrictions to the sets in Y are admissible,
i.e. which satisfies f |Y 2 A(Y ) for all Y 2 Y.

Compactness Principle. F is compatible if every finite Y ✓ F is

compatible.

The proofs of the generalized infinity lemma and of the compact-
ness principle are each just a few lines based on Tychono↵’s theorem
that every product of compact spaces is compact. We illustrate this for
the compactness principle.

Think of the set of all X ! S functions as a product of |X| copies
of S, so they form a compact space. For every finite Y ✓ X, the set of
all functions f :X ! S with f |Y 2 A(Y ) is closed (as well as open) in
this product space. The result now follows from the ‘finite intersection
property’ of compact spaces, that a family of closed sets has a non-empty
intersection as soon as all its finite subfamilies do.



B Surfaces

This appendix o↵ers a summary of background information about sur-
faces, as needed for an understanding of their role in the proof of the
graph minor theorem or the proof of the ‘general Kuratowski theorem’
for arbitrary surfaces given in Chapter 12.7. In order to be read at a
rigorous level it requires familiarity with some basic definitions of general
topology (such as of the product and the identification topology), but
no more.

A surface, for the purpose of this book, is a compact connected1 surface

Hausdor↵ topological space S in which every point has a neighbourhood
homeomorphic to the Euclidean plane R2. An arc, a circle, and a disc arc

in S are subsets that are homeomorphic in the subspace topology to the circle S1

real interval [0, 1], to the unit circle S1 = {x 2 R2 : kxk = 1}, and to disc

the unit disc {x 2 R2 : kxk 6 1} or {x 2 R2 : kxk < 1}, respectively.
The components of a subset X of S are the equivalence classes of component

points in X where two points are equivalent if they can be joined by an
arc in X. The surface S itself, being connected, has only one component.

The frontier of X is the set of all points y in S such that every frontier

neighbourhood of y meets both X and S r X. The frontier F of X
separates SrX from X: since X [F is closed, every arc from SrX to
X has a first point in X [F , which must lie in F . A component of the
frontier of X that is a circle in S is a boundary circle of X. A boundary boundary

circle

circle of a disc in S is said to bound that disc.
There is a fundamental theorem about surfaces, their classification.

This says that, up to homeomorphism, every surface can be obtained
from the sphere S2 = {x 2 R3 : kxk = 1} by ‘adding finitely many han- sphere S2

dles or finitely many crosscaps’, and that surfaces obtained by adding
di↵erent numbers of handles or crosscaps are distinct. We shall not need
the classification theorem, but to form a picture let us see what the

1 Throughout this appendix, ‘connected’ means ‘arc-connected’.
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above operations mean. To add a handle to a surface S, we remove twohandle

open discs whose closures in S are disjoint, and identify2 their boundary
circles with the circles S1 ⇥ {0} and S1 ⇥ {1} of a copy of S1 ⇥ [0, 1]
disjoint from S. To add a crosscap, we remove one open disc, and thencrosscap

identify opposite points on its boundary circle in pairs.
In order to see that these operations do indeed give new surfaces,

we have to check that every identification point ends up with a neigh-
bourhood homeomorphic to R2. To do this rigorously, let us first look
at circles more generally.

A cylinder is the product space S1⇥ [0, 1], or any space homeomor-cylinder

phic to it. Its middle circle is the circle S1 ⇥ { 1

2
}. A Möbius strip is

any space homeomorphic to the product space [0, 1]⇥ [0, 1] after identi-Möbius

strip

fication of (1, y) with (0, 1� y) for all y 2 [0, 1]. Its middle circle is the
set {(x, 1

2
) | 0 < x < 1}[ {p}, where p is the point resulting from the

identification of (1, 1

2
) with (0, 1

2
). It can be shown3 that every circle C

in a surface S is the middle circle of a suitable cylinder or Möbius stripstrip neigh-

bourhood

N in S, which can be chosen small enough to avoid any given compact
subset of S rC. If this strip neighbourhood is a cylinder, then N rC
has two components and we call C two-sided ; if it is a Möbius strip, thentwo-sided

N rC has only one component and we call C one-sided .one-sided

Using small neighbourhoods inside a strip neighbourhood of the
(two-sided) boundary circle of the disc or discs we removed from S in
order to attach a crosscap or handle, one can show easily that both
operations do produce new surfaces.

Since S is connected, S r C cannot have more components than
N rC. If SrC has two components, we call C a separating circle in S;

separating

circle

if it has only one, then C is non-separating . While one-sided circles are
obviously non-separating, two-sided circles can be either separating or
non-separating. For example, the middle circle of a cylinder added to
S as a ‘handle’ is a two-sided non-separating circle in the new surface
obtained. When S0 is obtained from S by adding a crosscap in place of
a disc D, then every arc in S that runs half-way round the boundary
circle of D becomes a one-sided circle in S0.

The classification theorem thus has the following corollary:

Lemma B.1. Every surface other than the sphere contains a non-

separating circle.

2 This is made precise by the identification topology , whose formal definition can
be found in any topology book. Since S1 has two possible orientations, two copies of
S1 can be identified in two essentially di↵erent ways. The corresponding two ways of
adding a handle yield di↵erent new surfaces. For the classification one only uses one
of these, the way that preserves the orientability of the surface (as in Figure B.1).

3 In principle, the strip neighbourhood N is constructed as in the proof of
Lemma 4.2.2, using the compactness of C. However since we are not in a piecewise
linear setting now, the construction is considerably more complicated.
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We shall see below that, in a sense, our two examples of non-separating
circles are all there are: cutting a surface along any non-separating cir-
cle (and patching up the holes) will always produce a surface with fewer
handles or crosscaps.

An embedding G ,! S of a graph G in S is a map � that maps the embedding

vertices of G to distinct points in S and its edges xy to �(x)–�(y) arcs �:G ,! S

in S, so that no inner point of such an arc is the image of a vertex or
lies on another arc. We then write �(G) for the union of all those points
and arcs in S. A face of G in S is a component of S r �(G), and the face

subgraph of G that � maps to the frontier of this face is its boundary . boundary

Note that while faces in the sphere are always discs (if G is connected),
in general they need not be.

One can prove that in every surface one can embed a suitable graph
so that every face becomes a disc. The following general version of
Euler’s theorem 4.2.9 therefore applies to all surfaces:

Theorem B.2. For every surface S there exists an integer �(S) such

that whenever a graph G with n vertices and m edges is embedded in S
so that there are ` faces and every face is a disc, we have

n�m+ ` = �(S) .

This invariant � of S is its Euler characteristic. For computational
simplicity we usually work instead with the derived invariant

"(S) := 2��(S) , "(S)

the Euler genus of S, because � is negative for most surfaces but " takes Euler genus

its values in N (see below).
Perhaps the most striking feature of Euler’s theorem is that it works

with almost any graph embedded in S. This makes it easy to see how
the Euler genus is a↵ected by the addition of a handle or crosscap.

Indeed, let D and D0 be two open discs in S that we wish to remove
in order to attach a handle there. Let G be any graph embedded in S so
that every face is a disc. If necessary, shift G on S so that D and D0 each
lie inside a face, f and f 0, say. Add cycles C and C 0 on the boundary
circles of D and D0, and join them by an edge to the old boundaries of
f and f 0, respectively. Then every face of the resulting graph is again a
disc, and D and D0 are among these. Now remove D and D0, and add a
handle with an additional C–C 0 edge running along it. This operation
makes the new handle into one new face, which is a disc. It thus reduces
the total number of faces by 1 (since we lost D and D0 but gained the
new face on the handle) and increases the number of edges by 1, but
leaves the number of vertices unchanged. As a result, " grows by 2.
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Similarly, replacing a disc D bounded by a cycle C ✓ G with a
crosscap decreases the number of faces by 1 (since we lose D), but leaves
n�m unchanged if we arrange the cycle C in such a way that vertices
get identified with vertices when we identify opposite points.

We have thus shown the following:

Lemma B.3.

(i) Adding a handle to a surface raises its Euler genus by 2.

(ii) Adding a crosscap to a surface raises its Euler genus by 1. ⇤

Since the sphere has Euler genus 0 (Theorem 4.2.9), the classifica-
tion theorem and Lemma B.3 tell us that " has all its values in N. We
may thus try to prove theorems about surfaces by induction on ". For
the induction step, we could simply undo the addition of a handle or
crosscap described earlier, cutting along the new non-separating circle
it produced (which runs around the new handle or ‘half-way’ around
the crosscap) and restoring the old surface by putting back the disc or
discs we removed. A problem with this is that we do not normally know
where on our surface this circle lies, say with respect to a given graph
embedded in it.

However, the genus-reducing cut-and-paste operation can be carried
out with any non-separating circle: we do not have to use one that we
know came from a new handle or crosscap. This is an example of a more
general technique known as surgery , and works as follows.

Let C be a non-separating circle in a surface S 6= S2. To cut S
along C, we form a new space S0 from S by replacing every point x 2 Ccutting

with two points x0, x00 and defining the topology on the modified set
as follows.4 Let N be any strip neighbourhood of C in S, and put
X 0 := {x0 | x 2 C} and X 00 := {x00 | x 2 C}. If N is a cylinder, then
N rC has two components N 0 and N 00, and we choose the neighbour-
hoods of the new points x0 and x00 in S0 so that X 0 and X 00 become
boundary circles of N 0 and N 00 in S0, respectively, and N 0 [ X 0 and
N 00 [X 00 become disjoint cylinders in S0. If N is a Möbius strip, we
choose these neighbourhoods so that X 0 and X 00 each form an arc in S0

and X 0[X 00 is a boundary circle of N rC in S0, with (N rC)[X 0[X 00

forming one cylinder in S0. Finally, we turn S0 into a surface by cappingcapping

its holes: for each of the (two or one) boundary circles X 0 and X 00 or
X 0 [X 00 of S rC in S0 we take a disc disjoint from S0 and identify its
boundary circle with X 0, X 00 or X 0 [X 00, respectively, so that the space
obtained is again a surface.

4 The description that follows may sound complicated, but it is not: working in
our concrete models of the cylinder and the Möbius strip it is easy to write down
explicit neighbourhood bases that define a topology with the properties stated. As all
we want is to obtain some surface of smaller genus, we do not care about uniqueness
(which will follow anyhow from Lemma B.4 and the classification).
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Computing how these operations a↵ect the Euler genus of S is again
easy, assuming we can embed a graph in S so that every face is a disc and
C is the image of a cycle. (This can always be done, but it is not easy
to prove.5) Indeed, by doubling C we left n�m unchanged, because a
cycle has the same number of vertices as edges. So all we changed was `,
which increased by 2 in the first case and by 1 in the second.

Lemma B.4. Let C be any non-separating circle in a surface S, and let

S0
be obtained from S by cutting along C and capping the hole or holes.

(i) If C is one-sided in S, then "(S0) = "(S)� 1.

(ii) If C is two-sided in S, then "(S0) = "(S)� 2. ⇤

Lemma B.4 gives us a large supply of circles to cut along in an
induction on the Euler genus. Still, it is sometimes more convenient to
cut along a separating circle, and many of these can be used too:

Lemma B.5. Let C be a separating circle in a surface S, and let S0
and

S00
be the two surfaces obtained from S by cutting along C and capping

the holes. Then

"(S) = "(S0)+ "(S00) .

In particular, if C does not bound a disc in S, both S0
and S00

have

smaller Euler genus than S.

Proof. As before, embed a graph G in S so that every face is a disc and
C is the image of a cycle in G, and let G0 ,! S0 and G00 ,! S00 be the
two graphs obtained in the surgery. Thus, G0 and G00 both contain a
copy of the cycle on C, which we assume to have k vertices and edges.
Then, with the obvious notation, we have

"(S0)+ "(S00) = (2�n0 +m0 � `0)+ (2�n00 +m00 � `00)

= 4� (n+ k)+ (m+ k)� (`+2)

= 2�n+m� `

= "(S) .

Now if S0 (say) is a sphere, then S0 \S was a disc in S bounded by C.
Hence, if C does not bound a disc in S then "(S0) and "(S00) are both
non-zero, giving the second statement of the lemma. ⇤

We now apply these techniques to prove a lemma for our direct
proof in Chapter 12 of the ‘Kuratowski theorem for arbitrary surfaces’,
Corollary 12.7.3.

5 Perhaps the simplest proof was given by C.Thomassen, The Jordan-Schoenflies
theorem and the classification of surfaces, Amer.Math.Monthly 99 (1992), 116–130.
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Lemma B.6. Let S be a surface, and let C be a finite set of disjoint[12.7.4]

circles in S. Assume that S r
S
C has a component D0 whose closure

in S meets every circle in C, and that no circle in C bounds a disc in S
that is disjoint from D0. Then "(S) > |C|.

Proof. We begin with the observation that the closure of D0 not only
meets but even contains every circle C 2 C. This is because C has
a strip neighbourhood N disjoint from all the other circles in C (since
their union is compact), and each of the (one or two) components of
N rC has all of C in its closure. Since D0 meets, and hence contains,
at least one component of N rC, its closure contains C.

Let us partition C as C = C1 [ C1

2
[ C2

2
, where the circles in C1 areC1, C

1
2 , C

2
2

one-sided, those in C1

2
are two-sided but non-separating, and those in C2

2

are separating. We shall, in turn, cut along all the circles in C1, some |C2

2
|

non-separating circles not in C, and at least half the circles in C1

2
. This

will give us a sequence S0, . . . , Sn of surfaces, where S0 = S, and Si+1S0, . . . , Sn

is obtained from Si by cutting along a circle Ci and capping the hole(s).Ci

Our task will be to ensure that Ci is non-separating in Si for every
i = 0, . . . , n� 1. Then Lemma B.4 will imply that "(Si+1) 6 "(Si)� 1
for all i and "(Si+1) 6 "(Si)� 2 whenever Ci 2 C1

2
, giving

"(S) > "(Sn)+ |C1|+ |C2

2
|+2 |C1

2
|/2 > |C|

as desired.

C0
9 C1

C2

D0

C3

C4

C5

C6

C7

C8

C9

Fig. B.1. Cutting the 1-sided circle C1 and the 2-sided circles
C2, C3 and C5, C7, C8 and C0

9 does not separate S

Cutting along the circles in C1 (and capping the holes) is straightfor-
ward: since these circles are one-sided, they are always non-separating.

Next, we consider the circles in C2

2
, such as C9 in Figure B.1. For

every C 2 C2

2
, denote by D(C) the component of S rC that does not

contain D0. Since every circle in C lies in the closure of D0 but no point
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of D(C) does, these D(C) are also components of S r
S

C. In particu-
lar, they are disjoint for di↵erent C. Thus, each D(C) will also be a
component of Si rC, where Si is the current surface after any surgery
performed on the circles in C1 and inside D(C 0) for some C 0 6= C. Given
a fixed circle C 2 C2

2
, let S0 be the surface obtained fromD(C) by capping

its hole. Since C does not bound a disc in S that is disjoint from D0,
we know that S0 is not a sphere and hence contains a non-separating
circle C 0 (Lemma B.1). We choose C 0 so that it avoids the cap we added
to form S0, i.e. so that C 0 ✓ SrC. Then C 0 is also non-separating in the
current surface Si (since every point of Si rC 0 can be joined by an arc
in SirC 0 to C, which is connected), and we may select C 0 as a circle Ci

to cut along.
It remains to select at least half of the circles in C1

2
as circles Ci to

cut along. We begin by selecting all those whose entire strip neighbour-
hoods (i.e., both their ‘sides’) lie in D0. (In Figure B.1, these are the
circles C2 and C3.) These circles C are non-separating also in the surface
Si current before they are cut, because D0 will lie inside a component
of Si rC. Every other C 2 C1

2
lies in the closure also of a component

D(C) 6= D0 of Sr
S

C. (In Figure B.1, these are the circles C4, . . . , C8.)
For every component D of S r

S
C we select all but one of the circles

C 2 C1

2
with D(C) = D as a cutting circle Ci. Clearly, each of these

Ci will be non-separating also in its current surface Si, and their total
number at least |C1

2
|/2. ⇤




