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8.6 Graphs with ends: the complete picture
In this section we shall develop a deeper understanding of the global
structure of infinite graphs, especially locally finite ones, that can be
attained only by studying their ends. This structure is intrinsically topo-
logical, because topology best captures our intuition about convergence.9

Our first goal will be to make precise our intuitive idea that the
ends of a graph are the ‘points at infinity’ to which its rays converge.
To do so, we shall define a topological space |G| associated with a graph
G = (V,E,⌦) and its ends.10 By considering topological versions of V, E, ⌦

paths, cycles and spanning trees in this space, we shall then be able to
extend to infinite graphs some parts of finite graph theory that would
not otherwise have infinite counterparts; see the notes for more examples.
Thus, the ends of an infinite graph turn out to be more than a curious
phenomenon: they form an integral part of the picture, without which
it cannot be properly understood.

To build the space |G| formally, we start with the set V [⌦. For
every edge e = uv we add a set e̊ = (u, v) of continuum many points, mak- (u, v)

ing these sets e̊ disjoint from each other and from V [⌦. We then choose
for each e some fixed bijection between e̊ and the real interval (0, 1), and
extend this bijection to one between [u, v] := {u}[ e̊[{v} and [0, 1]. This [u, v]

bijection defines a metric on [u, v]; we call [u, v] a topological edge with
inner points x 2 e̊. Given any F ✓ E we write F̊ :=

S
{ e̊ | e 2 F }. When F̊

we speak of a ‘graph’ H ✓ G, we shall often also mean its corresponding
point set V (H)[ E̊(H).

Having thus defined the point set of |G|, let us choose a basis of open
sets to define its topology. For every edge uv, declare as open all subsets
of (u, v) that correspond, by our fixed bijection between (u, v) and (0, 1),
to an open set in (0, 1). For every vertex u and ✏ > 0, declare as open
the ‘open star around u of radius ✏’, that is, the set of all points on edges
[u, v] at distance less than ✏ from u, measured individually for each edge
in its metric inherited from [0, 1]. Finally, for every end ! and every finite
set S ✓ V, there is a unique component C(S,!) of G�S that contains C(S, !)

rays from !. Let ⌦(S,!) := {!0 2 ⌦ | C(S,!0) = C(S,!) }. For every
✏ > 0, write E̊✏(S,!) for the set of all inner points of S–C(S,!) edges
at distance less than ✏ from their endpoint in C(S,!). Then declare as
open all sets of the form

Ĉ✏(S,!) := C(S,!)[⌦(S,!)[ E̊✏(S,!) . Ĉ✏(S, !)

This completes the definition of |G|, whose open sets are the unions of |G|
the sets we explicitly chose as open above.

9 Only point-set topology is needed for the text. See the exercises for more.
10 The notation of |G| comes from topology and clashes with our notation for the

order of G. But there is little danger of confusion, so we keep both.
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The closure of a set X ✓ |G| will be denoted by X. For example,closure X

V = V [⌦ (because every neighbourhood of an end contains a vertex),
and the closure of a ray is obtained by adding its end. More generally,
the closure of the set of teeth of a comb contains a unique end, the end
of its spine. Conversely, if U ✓ V and R 2 ! 2 ⌦\U , there is a comb
with spine R and teeth in U (Exercise 77). In particular, the closure of
the subgraph C(S,!) considered above is the set C(S,!)[⌦(S,!).

The subspaces X of |G| we shall be interested in are usually the
closure of a subgraph H of G, i.e., of the form X = U [D̊ for H = (U,D).standard

subspace
We write V (X) for U and E(X) for D, and call such subspaces standard .
We also refer to such X as H, or even as D if H has no isolated vertices,V (X), E(X)

and then say that X is spanned by D. Note that the ends in X are
always ends of G, not of H; in particular, they need not have a ray in H.

By definition, |G| is always Hausdor↵; indeed one can show that it is
normal. When G is connected and locally finite, then |G| is compact:11

Proposition 8.6.1. If G is connected and locally finite, then |G| is a
compact Hausdor↵ space.

Proof. Let O be an open cover of |G|; we show that O has a finite(8.1.2)

subcover. Pick a vertex v0 2 G, write Dn for the (finite) set of vertices
at distance n from v0, and put Sn := D0[ . . .[Dn�1. For every v 2 Dn,
let C(v) denote the component of G�Sn containing v, and let Ĉ(v) be
its closure together with all inner points of C(v)–Sn edges. Then G[Sn]Ĉ(v)

and these Ĉ(v) together partition |G|.
We wish to prove that, for some n, each of the sets Ĉ(v) with v 2 Dn

is contained in some O(v) 2 O. For then we can take a finite subcover of
O for G[Sn] (which is compact, being a finite union of edges and vertices),
and add to it these finitely many sets O(v) to obtain the desired finite
subcover for |G|.

Suppose there is no such n. Then for each n the set Vn of vertices
v 2 Dn such that no set from O contains Ĉ(v) is non-empty. Moreover,
for every neighbour u 2 Dn�1 of v 2 Vn we have C(v) ✓ C(u) because
Sn�1 ✓ Sn , and hence u 2 Vn�1; let f(v) be such a vertex u. By the
infinity lemma (8.1.2) there is a ray R = v0v1 . . . with vn 2 Vn for all n.
Let ! be its end, and let O 2 O contain !. Since O is open, it contains a
basic open neighbourhood of !: there exist a finite set S ✓ V and ✏ > 0
such that Ĉ✏(S,!) ✓ O. Now choose n large enough that Sn contains S
and all its neighbours. Then C(vn) lies inside a component of G�S. As
C(vn) contains the ray vnR 2 !, this component must be C(S,!). Thus

Ĉ(vn) ✓ Ĉ✏(S,!) ✓ O 2 O ,

contradicting the fact that vn 2 Vn. ⇤

11 Topologists call |G| the Freudenthal compactification of G.
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If G has a vertex of infinite degree then |G| cannot be compact.
(Why not?) But ⌦ ✓ |G| can be compact; see Exercise 85 for when it is.

What else can we say about the space |G| in general? For example,
is it metrizable? Using a normal spanning tree T of G, it is indeed not
di�cult to define a metric on |G| that induces its topology. But not
every connected graph has a normal spanning tree, and it is not easy
to determine in graph-theoretical terms which graphs do. Surprisingly,
though, it is possible to deduce the existence of a normal spanning tree
from that of a defining metric on |G|. Thus whenever |G| is metrizable,
a metric can be made visible in a natural and structural way.

Theorem 8.6.2. For a connected graph G, the following assertions are
equivalent:

(i) The space |G| is metrizable.

(ii) G has a normal spanning tree.

(iii) All minors of G have countable colouring number.

The proof of the equivalence of (i) and (ii) in Theorem 8.6.2 is indicated
in Exercises 41 and 86. More on (iii) can be found in the notes.

Our next aim is to review, or newly define, some topological no-
tions of paths and connectedness, of cycles, and of spanning trees. By
substituting these topological notions with respect to |G| for the corre-
sponding graph-theoretical notions with respect to G one can extend to
locally finite infinite graphs a number of theorems about paths, cycles
and spanning trees in finite graphs whose ordinary infinite versions are
false. We shall do this, as a case in point, for the tree packing theorem
of Nash-Williams and Tutte, Theorem 2.4.1; see the notes for more.

Let X be an arbitrary Hausdor↵ space. (Later, this will be a sub- X

space of |G|.) X is (topologically) connected if it is not a union of two connected

disjoint non-empty open subsets.12 Note that continuous images of con-
nected spaces are connected. For example, since the real interval [0, 1]
is connected,13 so are its continuous images in X.

A homeomorphic image of [0, 1] in X is an arc in X; it links the arc

images of 0 and 1, which are its endpoints. Every finite path in G defines
an arc in |G| in an obvious way. Similarly, every ray defines an arc linking
its starting vertex to its end, and a double ray in G forms an arc with
the two ends of its tails if these ends are distinct.

The (topological) degree of an end ! of G in a standard subspace X end degrees
in subspaces

of |G| is the supremum, in fact maximum, of all integers k such that X
contains k arcs that end in ! and are otherwise disjoint.

12 These subsets would be complements of each other, and hence also be closed.
Note that ‘open’ and ‘closed’ means open and closed in X: when X is a subspace of
|G| with the subspace topology, the two sets need not be open or closed in |G|.

13 This takes a few lines to prove—can you prove it?
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For the remainder of this section let, unless otherwise mentioned,G = (V, E, ⌦)

G = (V,E,⌦) be a fixed connected locally finite graph.
Unlike ordinary paths, arcs in |G| can jump across a cut without

containing an edge from it—but only if the cut is infinite:

Lemma 8.6.3. (Jumping Arc Lemma)[8.7.1]

Let F ✓ E be a cut of G with sides V1, V2.

(i) If F is finite, then V1\V2 = ;, and there is no arc in |G|r F̊ with
one endpoint in V1 and the other in V2.

(ii) If F is infinite, then V1 \V2 6= ;, and there will be such an arc if
both V1 and V2 are connected in G.

Proof. (i) Suppose that F is finite. Let S be the set of vertices incident(8.2.2)

with edges in F . Then S is finite and separates V1 from V2, so for every
! 2 ⌦ the connected graph C(S,!) misses either V1 or V2. But then so
does every basic open set of the form Ĉ✏(S,!). Therefore no end ! lies
in the closure of both V1 and V2.

As |G|r F̊ = G[V1][G[V2] and this union is disjoint, no connected
subset of |G|r F̊ can meet both V1 and V2. Since arcs are continuous
images of [0, 1] and hence connected, there is no V1–V2 arc in |G|r F̊ .

(ii) Suppose now that F is infinite. Since G is locally finite, the set U
of endvertices of F in V1 is also infinite. By the star-comb lemma (8.2.2),
there is a comb in G with teeth in U ; let ! be the end of its spine. Then
every basic open neighbourhood Ĉ✏(S,!) of ! meets U ✓ V1 infinitely
and hence also meets V2, giving ! 2 V1 \V2.

To obtain a V1–V2 arc in |G| r F̊ , all we need now is an arc in
G[V1] and another in G[V2], both ending in !. Such arcs exist if the
graphs G[Vi] are connected: we can then pick a sequence of vertices in
Vi converging to !, and apply the star-comb lemma in G[Vi] to obtain
a comb whose spine is a ray in G[Vi] converging to !. Concatenating
these two rays yields the desired jumping arc. ⇤

To some extent, arcs in |G| assume the role that paths play in finite
graphs. So arcs are important—but how do we find them? It is not
always possible to construct arcs as explicitly as in the proof of Lem-
ma 8.6.3 (ii). Figure 8.6.1, for example, shows an arc that goes through
continuum many ends; such arcs cannot be constructed greedily by fol-
lowing a ray into its end and emerging from that end on another ray, etc.

There are two basic methods to obtain an arc between two given
points, say two vertices x and y. One is to use compactness to obtain,
as a limit of finite x–y paths, a topologial x–y path, a continuous map
⇡: [0, 1]! |G| sending 0 to x and 1 to y. A lemma from general topology
then tells us that this path can be made injective:

Lemma 8.6.4. The image of a topological x–y path in a Hausdor↵ space[8.7.3]

contains an x–y arc.
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To illustrate this method, we will use it in the proof of Theorem 8.7.3.
Another method is to prove that the subspace in which we wish to

find our x–y arc is topologically connected, and use this to deduce that
it contains the desired arc. Our next three lemmas provide the tools
needed to implement this approach in practice; we shall then illustrate
its use in the proof of Theorem 8.6.9.

Being linked by an arc is an equivalence relation on the points of
our Hausdor↵ space X: every x–y arc A has a first point p on any y–z
arc A0 (because A0 is closed), and the obvious segments Ap and pA0

together form an x–z arc in X. The corresponding equivalence classes arc-
component

are the arc-components of X. If X has only one arc-component, then X
is arc-connected . arc-

connected
Since [0, 1] is connected, arc-connectedness implies connectedness.

The converse implication is false in general, even for spaces X ✓ |G|
with G locally finite. But it holds in all the cases that matter:

Lemma 8.6.5. Connected standard subspaces of |G| are arc-connected. [8.7]

Our proof of Theorem 8.7.3 will show how one can prove Lemma 8.6.5.
Two further proofs are indicated in Exercises 88 and 129.

Lemma 8.6.6. Arc-components of standard subspaces of |G| are closed. [8.7]

Proof. Let A be an arc-component of a standard subspace of |G|. Since
A is connected, so is its closure A. If A r A 6= ; then its points are
limits of vertices in A (why?), so A is again standard. Hence A is arc-
connected, either because A = A or by Lemma 8.6.5. But then A = A,
by definition of A. Hence A is closed, as claimed. ⇤

Connected standard subspaces of |G| containing two given points
are much easier to construct than an arc between two points. This has
to do with the fact that they can be described in purely graph-theoretical
terms, with reference only to finite subgraphs of G rather than to |G|.
The description can be viewed as a topological analogue of the fact that
a subgraph H of G is connected if and only if it contains an edge from
every cut of G that separates two of its vertices:

Lemma 8.6.7. A standard subspace of |G| is connected if and only if it [8.7.1]

contains an edge from every finite cut of G of which it meets both sides.

Proof. Let X ✓ |G| be a standard subspace. For the forward implication,
suppose that G has a finite cut F = E(V1, V2) such that X meets both
V1 and V2 but has no edge in F . Then

X ✓ |G|r F̊ = G[V1][G[V2] ,

and this union is disjoint by Lemma 8.6.3 (i). The induced partition of
X into non-empty closed subsets of X shows that X is not connected.
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The backward implication holds vacuously if X meets more than
one component of G; we may therefore assume that G is connected. If
X is not connected, we can partition it into disjoint non-empty open
subsets O1 and O2. As X is standard, Ui := Oi \V (X) 6= ; for both i.
Let P be a maximal set of edge-disjoint U1–U2 paths in G, and put

F :=
[

{E(P ) | P 2 P } .

Then E(X)\F = ;, and no component of G�F meets both U1 and U2.
Extending {U1, U2} to a partition of V in such a way that each compo-
nent of G�F has all its vertices in one class, we obtain a cut F 0 ✓ F
of G of which X meets both sides. As E(X)\F = ;, it thus su�ces to
show that F is finite.

If F is infinite, then so is P. As G is locally finite, the vertices of
each P 2 P are incident with only finitely many edges of G. We can
thus inductively find an infinite subset of P consisting of paths that are
not only edge-disjoint but disjoint. As G is connected, the endvertices in
U1 of these paths have a limit point ! in |G| (Proposition 8.6.1), which
is also a limit point of their endvertices in U2. Since both O1 and O2

are closed in |G|, we thus have ! 2 O1 \O2, contradicting the choice of
the Oi. ⇤

A circle in a topological space is a homeomorphic image of the unitcircle

circle S1 ✓ R2. For example, if G is the 2-way infinite ladder shown
in Figure 8.1.3, and we delete all its rungs (the vertical edges), what
remains is a disjoint union of two double rays; its closure in |G|, obtained
by adding the two ends of G, is a circle. Similarly, the double ray ‘round
the outside’ of the 1-way ladder forms a circle together with the unique
end of that ladder.

It is not hard to show that no arc in |G| can consist entirely of ends.
This implies that every circle in |G| is a standard subspace; the set of
edges spanning it will be called its circuit .circuit

A more adventurous example of a circle is shown in Figure 8.6.1.
Suppose G is the graph obtained from the binary tree T2 by joining for
every finite 0–1 sequence ` the vertices `01 and `10 by a new edge e`.
Together with all the (uncountably many) ends of G, the double rays
D` 3 e` shown in the figure form an arc A in |G|, whose union with the
bottom double ray D is a circle in |G| (Exercise 94). Note that no two
of the double rays in A are consecutive: between any two there lies a
third (cf. Exercise 95).

A topological spanning tree of G is a connected standard subspace T
of |G| that contains every vertex but contains no circle. Since standard
subspaces are closed, T also contains every end, and by Lemma 8.6.5 it

topological
spanning
tree is even arc-connected. With respect to the deletion or addition of edges,

it is both minimally connected and maximally ‘acirclic’ (Exercise 99).
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Fig. 8.6.1. The Wild Circle

One might expect that the closure T of an ordinary spanning tree
T of G is always a topological spanning tree of |G|, but this is not the
case: T may well contain a circle (Figure 8.6.2). Conversely, a subgraph
whose closure is a topological spanning tree may well be disconnected:
the ‘vertical’ rays in the N ⇥ N grid, for example, form a topological
spanning tree together with the unique end.

T2T1

Fig. 8.6.2. T1 is a topological spanning tree, but T2 contains
three circles

Topological spanning trees can be constructed much as spanning
trees of finite graphs: Lemma 8.6.11 will find one by iteratively deleting
edges from |G|, but they can also be built up ‘from below’ (Exercise 102).
Their mere existence even comes as a corollary of Theorem 8.2.4: (8.2.4)

Lemma 8.6.8. The closure in |G| of any normal spanning tree of G is [8.7]

a topological spanning tree of G.

Proof. Let T be a normal spanning tree of G. By Lemma 8.2.3, every (1.5.5)
(8.2.3)

end ! of G contains a normal ray R of T . Then R[{!} is an arc linking
! to the root of T , so T is arc-connected.

It remains to check that T contains no circle. Suppose it does, and
let A be the u–v arc obtained from that circle by deleting the inner
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points of an edge f = uv it contains. Clearly, f 2 T . Assume that u < vf

in the tree-order of T , let Tu and Tv denote the components of T � f
containing u and v, and notice that V (Tv) is the up-closure bvc of v in T .

Now let S := due. By Lemma 1.5.5 (ii), bvc is the vertex set of a com-
ponent C of G�S. Thus, V (C) = V (Tv) and V (G�C) = V (Tu), so the
set E(C,S) of edges between these sets meets E(T ) precisely in f . Thus,
C and G�C partition |G|r E̊(C,S) ◆ A into two open sets both meet-
ing A. This contradicts the fact that A is topologically connected. ⇤

Note that the proof of Lemma 8.6.8 did not use our assumption that
G is locally finite: whenever a graph G has a normal spanning tree T , the
closure of T in |G| is an arc-connected subspace that contains no circle.

As a first application of our new concepts, let us now extend the
tree packing theorem (2.4.1) of Nash-Williams and Tutte to locally finite
graphs. Its naive extension, with ordinary spanning trees, fails. Indeed,
for every k 2 N one can construct a 2k-edge-connected locally finite
graph that is left disconnected by the deletion of the edges in any one
finite circuit (Exercise 19). Such a graph will have at least k(` � 1)
edges across any vertex partition into ` sets, but it cannot have more
than two edge-disjoint spanning trees: adding an edge of one of these
to another creates a (finite) fundamental circuit there, whose deletion
would disconnect any third spanning tree.

As soon as we replace ordinary spanning trees with topological ones,
however, Theorem 2.4.1 does extend:

Theorem 8.6.9. The following statements are equivalent for all k 2 N
and connected locally finite multigraphs G = (V,E):G = (V, E)

(i) G has k edge-disjoint topological spanning trees.

(ii) For every finite partition of V, into ` sets say, G has at least
k (`� 1) cross-edges.

We begin our proof of Theorem 8.6.9 with a compactness extension
of the finite theorem. This yields a weaker, ‘finitary’, statement at the
limit (cf. Lemma 8.6.7):

Lemma 8.6.10. If for every finite partition of V, into ` sets say, G has
at least k (`� 1) cross-edges, then G has k edge-disjoint spanning sub-
multigraphs whose closures in |G| are topologically connected.

Proof. Pick an enumeration v0, v1, . . . of V. For every n 2 N let Gn be(2.4.1)
(8.1.2)

the finite multigraph obtained from G by contracting every component of
G�{v0, . . . , vn} to a vertex, deleting any loops but no parallel edges that
arise in the contraction. Then G[v0, . . . , vn] is an induced submultigraph
of Gn. Let Vn denote the set of all k-tuples (H1

n , . . . ,Hk
n) of edge-disjoint

connected spanning submultigraphs of Gn.
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Since every partition P of V (Gn) induces a partition of V, since G
has enough cross-edges for that partition, and since all these cross-edges
are also cross-edges of P , Theorem 2.4.1 implies that Vn 6= ;. As every
(H1

n , . . . ,Hk
n) 2 Vn induces an element (H1

n�1, . . . ,H
k
n�1) of Vn�1, the

infinity lemma (8.1.2), yields a sequence (H1
n , . . . ,Hk

n)n2N of k-tuples,
one from each Vn, with a limit (H1, . . . ,Hk) defined by the nested unions

Hi :=
[

n2N
Hi

n[v0, . . . , vn] .

These Hi are edge-disjoint for distinct i (because the Hi
n are), but

they need not be connected. To show that they have connected closures,
it su�ces by Lemma 8.6.7 to show that each of them has an edge in every
finite cut F of G. Given F , choose n large enough that all the edges of
F lie in G[v0, . . . , vn]. Then F is also a cut of Gn. Now consider the
k-tuple (H1

n , . . . ,Hk
n) which the infinity lemma picked from Vn. Each of

these Hi
n is a connected spanning submultigraph of Gn , so it contains an

edge from F . But Hi
n agrees with Hi on {v0, . . . , vn}, so Hi too contains

this edge from F . ⇤

Lemma 8.6.11. Every connected standard subspace of |G| that con-
tains V also contains a topological spanning tree of G.

Proof. Let X be a connected standard subspace of |G| containing V.
Then G too must be connected, so it is countable. Let e0, e1, . . . be an
enumeration of E(X), and consider these edges in turn. Starting with
X0 := X, define Xn+1 := Xn r e̊n if this keeps Xn+1 connected; if not,
put Xn+1 := Xn. Finally, let T :=

T
n2N Xn.

Since T is closed and contains V, it is still a standard subspace. And
T has an edge in every finite cut of G, because X does and its last edge
in that cut will never be deleted. So T is connected, by Lemma 8.6.7.
But T contains no circle: that would contain an edge, which should
have got deleted since deleting an edge from a circle cannot destroy
connectedness. ⇤

Proof of Theorem 8.6.9. The implication (ii)!(i) follows from our
two lemmas. For (i)!(ii), let G have edge-disjoint topological spanning
trees T1, . . . , Tk, and consider a partition P of V into ` sets. If there are
infinitely many cross-edges, there is nothing to show; so we assume there
are only finitely many. For each i 2 {1, . . . , k}, let T 0

i be the multigraph
of order ` which the edges of Ti induce on P .

To establish that G has at least k(`� 1) cross-edges, we show that
the multigraphs T 0

i are connected. If not, then some T 0
i has a vertex

partition crossed by no edge of Ti. This partition induces a cut of G
that contains no edge of Ti. By our assumption that G has only finitely
many cross-edges, this cut is finite. By Lemma 8.6.7, this contradicts
the connectedness of Ti. ⇤
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8.7 The topological cycle space

As a more comprehensive application of our new theory, let us now look

(1.9)

at how the cycle space theory of finite graphs extends to locally finite
graphs G = (V,E) with infinite circuits and topological spanning trees.G = (V, E)

Every two points of a topological spanning tree T are joined by a
unique arc in T : existence follows from Lemma 8.6.5, while uniqueness
is proved as for finite graphs. Adding a new edge e to T therefore creates
a unique circle in T [ e; its edges form the fundamental circuit Ce of efundamental

circuit Ce
with respect to T . Note that Ce can be infinite.

Similarly, for every edge f 2 E(T ) the space T r f̊ has exactly two
arc-components; the set of edges between these is the fundamental cut Df

fundamental
cut Df

of T . Since the two arc-components of T r f̊ are closed (Lemma 8.6.6)
but disjoint, Lemma 8.6.3 (ii) implies that Df is finite.

As in finite graphs, we have e 2 Df if and only if f 2 Ce, for all
f 2 E(T ) and e 2 E r E(T ). Topological spanning trees that are the
closure of a normal spanning tree, as in Lemma 8.6.8, are particularly(8.6.8)

useful in this context: their fundamental circuits and cuts are both finite.
For locally finite graphs there will be two cycle spaces: the usual

‘finitary’ one from Chapter 1.9, and a new ‘topological’ one based on
topological circuits. The former will be a subspace of the latter, much
as the space of all finite cuts is a subspace of the space of all cuts. These
four spaces are cross-related by matroid duality in a surprising way; see
the notes and Exercise 118.

Call a family (Di)i2I of subsets of E thin if no edge lies in Di forthin sum

infinitely many i. Let the thin sum
P

i2I Di of this family be the set of
all edges that lie in Di for an odd number of indices i. The topological
cycle space C(G) of G is the subspace of its edge space E(G) consisting

topological
cycle space

C(G) of all thin sums of circuits.
We say that a given set Z of circuits generates C(G) if every element

of C(G) is a thin sum of elements of Z. For example, the topologicalgenerates

cycle space of the ladder in Figure 8.1.3 can be generated by all its
squares (the 4-element circuits), or by the infinite circuit consisting of
all horizontal edges and all squares but one. Similarly, the ‘wild circuit’
of Figure 8.6.1 is the thin sum of all the finite face boundaries of that
graph, which thus generate it.

Let us use Cfin(G) to denote the finitary cycle space of G as defined
in Chapter 1.9 : the (finite) sums of its finite circuits. Clearly Cfin(G) ✓

finitary
cycle space

Cfin(G) C(G). We shall see later that Cfin(G) contains all the finite elements
of C(G), but this is not obvious from the definitions; see Exercise 115.
When G is finite, however, clearly Cfin(G) = C(G).

As shown in Chapter 1.9, a finite set of edges of G lies in Cfin(G) if
and only if it meets every cut of G evenly, and the fundamental circuits of
any ordinary spanning tree generate Cfin(G) by finite sums: just copy the
proofs given there. For C(G) we have the following topological analogue:
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Theorem 8.7.1. The following statements are equivalent for every
set D of edges of a locally finite connected graph G:

(i) D 2 C(G);
(ii) D meets every finite cut F of G in an even number of edges;

(iii) D is a thin sum of fundamental circuits of any topological span-
ning tree of G.

Proof. The implication (iii)!(i) holds by definition of C(G) and the
(8.2.4)
(8.6.3)
(8.6.7)fact that G has a topological spanning tree (Lemma 8.6.11).

Let us prove (i)!(ii). By assumption, D is a thin sum of circuits.
Only finitely many of these can meet F , so it su�ces to show that every
circuit meets F evenly. This follows from Lemma 8.6.3 (i): given a circle
C in |G|, the segments of C between its edges in F (if any) are arcs whose
vertices all lie on the same side of the cut F . These sides alternate as
we follow C round. Therefore, there is an even number of such arcs, and
hence also of edges that C has in F .

It remains to prove (ii)!(iii). Write Ce for the fundamental circuit
of an edge e /2 E(T ), and Df for the fundamental cut of an edge f 2 E(T ).
Recall that, by Lemma 8.6.3 (ii), these Df are finite cuts. We show that

D =
X

e2DrE(T )

Ce . (⇤)

This sum is well defined: since f 2 Ce , e 2 Df and fundamental
cuts are finite, the Ce in this sum form a thin family. To prove (⇤) we
show that D0 := D +

P
e2DrE(T ) Ce = ;.

Note first that D0 ✓ E(T ): any chord of T that lies in D also lies in
exactly one of the Ce in the sum. Hence any f 2 D0 is the unique edge
of T , and hence of D0, in the finite cut Df , giving |D0 \Df | = 1. This
is a contradiction, since D meets Df evenly by (ii), and every Ce does
by Lemma 8.6.3. ⇤

Corollary 8.7.2. C(G) is generated by finite circuits.

Proof. Apply Theorem 8.7.1 with the closure of a normal spanning tree, (8.2.4)

which is a topological spanning tree by Lemma 8.6.8. ⇤

Our second aim in this section is to prove the analogue of Proposi-
tion 1.9.1 (ii) for the topological cycle space: that its elements D are not
only thin sums but even disjoint unions of circuits. For finite graphs, it
was easy to find these circuits greedily: we would ‘follow the edges of D
round’ until a circuit was found, delete it, and repeat.

This will still be our overall strategy when G is infinite. But it is
no longer straightforward now to isolate a single circuit from D. For
example, without using our knowledge that the edge set D of the wild
circle in the graph G of Figure 8.6.1 is a circuit, we can see at once that
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it must lie in C(G): it is the thin sum of all the finite circuits bounding
a face. Our proof must therefore be able to ‘decompose’ D into disjoint
circuits. Since D itself is the only circuit contained in D, the proof thus
has to reconstruct the complicated wild circle just from the information
that D2 C(G). And it has to do so generically, without appealing to the
special structure of this particular graph.

Theorem 8.7.3. For every locally finite graph G, every element of C(G)
is a disjoint union of circuits.

Proof. We may assume that G is connected, and hence countable. Let
(1.9.1)
(8.1.2)
(8.6.4) D 2 C(G) be given, and enumerate its edges. We inductively construct a

sequence of disjoint circuits C ✓ D each containing the smallest edge in
our enumeration of D that is not yet contained in the circuits constructed
before. Then all these circuits will form the desired partition of D.

Suppose we have already constructed finitely many disjoint circuits
all contained in D. Deleting these edges from D leaves a set D0 of edgesD0, e

that is again in C(G); let e be its smallest edge in our enumeration of D.
We shall find a topological path ⇡ between the endvertices of e in the
standard subspace that D0 r {e} spans in |G|. By Lemma 8.6.4, the
image of ⇡ will contain an arc A between these vertices, and A[ e will
be the circle defining our next circuit.

Enumerate the vertices of G as v0, v1, . . ., with e = v0v1. Let Sn :=e = v0v1

{v0, . . . , vn}. For each n > 1, let Gn be the finite multigraph obtained
from G by contracting every component of G�Sn to a vertex, deleting
any loops but keeping parallel edges that arise in the contraction. NoteGn

that both V (Gn) and E(Gn) are finite, and that G[Sn] ✓ Gn. Let v0n
denote the vertex of Gn�1�Sn�1 whose branch set Vn contains vn.v0n , Vn

We may think of E(Gn) as a subset of E(G). Then the cuts of Gn are
also cuts of G. By Theorem 8.7.1, D0 meets these evenly; in particular,
every vertex of Gn is incident with an even number of edges in D0.
Hence D0\E(Gn) 2 C(Gn), by Proposition 1.9.1, so Gn contains a cycle
through e that has all its edges in D0. Let Pn be the unique v0–v1 walk
in this cycle that does not contain e and does not repeat any vertices.

Let Vn be the set of all v0–v1 walks in Gn� e in which none of the
vertices v0, . . . , vn, and hence no edge, occurs more than once. Then
Pn 2 Vn 6= ;, and Vn is finite. Every walk W 2 Vn with n > 2 induces a
walk W 0 2 Vn�1 consisting of the edges that W has in Gn�1, traversed
in the same order and direction.14 Thus, W 0 arises from W by replacing
any subwalk of vertices and edges not in Gn�1 with v0n. The vertices of
any such subwalk of W will be vn or vertices of Gn � Sn whose branch
set is contained in Vn. By the infinity lemma, there exists a choice of

14 These are well defined: every edge e 2 W that is an edge of Gn�1 has at least
one endvertex in Sn�1, which either precedes it in W or follows it. In W 0, this vertex
will likewise precede or follow e, respectively.
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walks Wn 2 Vn such that W 0
n = Wn�1 for all n > 2.

Our next aim is to turn these walks Wn into topological paths
⇡n: [0, 1]! |Gn| that traverse them from v0 to v1 and reflect their com-
patibility. We shall define these ⇡n for n = 1, 2, . . . in turn, as follows.

For n = 1, note that W1 has exactly two edges: at least two, because
e has no parallel edge, and at most two, because every edge of G1 is
adjacent to either v0 or v1. Let ⇡1 map [0, 1

3 ] onto the first edge, [13 , 2
3 ]

to the unique inner vertex of W1, and [23 , 1] onto the second edge.
For n > 2, assume inductively that ⇡n�1 traverses the edges of Wn�1

in their given order and direction, and that ⇡n�1 ‘pauses’ at each vertex
v 2 Gn�1�Sn�1 on Wn�1 for a non-singleton closed interval I ✓ [0, 1],
mapping I constantly to that vertex. (Thus, if Wn�1 visits v five times,
then ⇡�1

n�1(v) is a disjoint union of five such intervals.) We start our
definition of ⇡n by letting ⇡n(�) := ⇡n�1(�) for all � with ⇡n�1(�) 2 |Gn|.

Every other � 2 [0, 1] satisfies ⇡n�1(�) = v0n. These � form a dis-
joint union of closed intervals, one for every occurrence of v0n on Wn�1.
Recall that Wn arises from Wn�1 by replacing each occurrence of v0n by a
subwalk of Wn whose vertices are either vn or vertices of Gn�Sn whose
branch set is contained in Vn. For every occurrence of v0n on Wn�1, let
⇡n on the corresponding interval I with ⇡n�1(I) = {v0n} traverse this
subwalk of Wn, once more pausing for a non-singleton interval at any
vertex that this subwalk has in Gn�Sn.

These maps ⇡n tend to a limit ⇡: [0, 1]! |G|, defined as follows. Let
� 2 [0, 1] be given. If ⇡n(�) 2 |G| for some n, then ⇡m(�) = ⇡n(�) for
all m > n, and we let ⇡(�) := ⇡n(�). Otherwise ⇡n(�) 2 V (Gn)rSn for
all n; let Un be the branch set of this vertex un := ⇡n(�) of Gn in G.
By our inductive construction of the maps ⇡n, we have U1 ◆ U2 ◆ . . . .
Since Un spans a component Cn = Cn(�) of G�Sn, we can find a ray
in G that has a tail in each Cn; let ⇡(�) be the end ! of this ray. Note
that !, and hence ⇡(�), is well defined: every end !0 6= ! is separated
from ! by some Sn, and then fails to have a ray in Cn.

For a proof that ⇡ is our desired topological v0–v1 path in |G|, we
need to check continuity at every �. If ⇡(�) = ⇡n(�) for some n, then
⇡ agrees with ⇡n also in a small neighbourhood of �, so this follows
from the continuity of ⇡n. Otherwise ⇡(�) is an end, ! say. Then !
has a neighbourhood basis in |G| consisting of open sets Ĉ✏(Sn,!). Here
C(Sn,!) is the component Cn(�) defined earlier, since ! has a ray in it.

Now � is an inner point of an interval I ✓ [0, 1] which ⇡n maps to
the vertex un = ⇡n(�). By construction, ⇡(I) ✓ Cn(�) ✓ Ĉ✏(Sn,!),
completing our continuity proof for ⇡. ⇤

Corollary 8.7.4. C(G) is closed under infinite thin sums.

Proof. Consider a thin sum
P

i2I Di of elements of C(G). By Theorem
8.7.3, each Di is a disjoint union of circuits. Together, these form a thin
family, whose sum lies in C(G) and equals

P
i2I Di. ⇤
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8.8 Infinite graphs as limits of finite ones

In the last section we saw how the space |G|, for a locally finite graph G,
seems to appear as a ‘limit’ of the finite minors Gn of G obtained by
contracting the components left on deleting its first n vertices. We now
make this relationship between |G| and the Gn more formal. Clarifying
this can help a lot with transferring theorems for finite graphs to infinite
ones—which, after all, is the idea behind considering |G| in the first place.

Let (P,6) be a directed partially ordered set, one such that for alldirected

p, q there exists an r such that p 6 r and q 6 r. A subset Q ✓ P is
cofinal in P if for every p 2 P there exists some q 2 Q with p 6 q.cofinal

For every p 2 P let Xp be a compact Hausdor↵ topological space;
later, these will represent finite graphs. Assume that we have continuous
maps fqp:Xq!Xp for all q > p, which are compatible in that, wheneverinverse

system
r > q > p, we have fqp � frq = frp. The family X = (Xp | p 2 P ),
together with these bonding maps fqp, is called an inverse system.bonding

maps
The set X of all x = (xp | p 2 P ) with xp 2 Xp and fqp(xq) = xp

for all p < q in P is the inverse limit X = lim �X of X . We give it the
inverse limit

subspace topology from the product space
Q

p2P Xp which, like the Xp,
is Hausdor↵ and compact by Tychono↵’s theorem.

The space X = lim �X is the intersection, over all q 2 P , of the sets
X<q of all (xp | p 2 P ) 2

Q
p Xp that satisfy fqp(xq) = xp for all p < q.

Using the fact that the Xp are Hausdor↵ and the maps fqp are continuous,
one can show that these subsets X<q of

Q
p Xp are closed. Thus, X =T

q2P X<q is closed in the compact space
Q

p Xp, and therefore compact.
As P is directed, the sets X<q have the finite intersection property,

as long as the Xp are non-empty. Then X =
T

q X<q is also non-empty:

Lemma 8.8.1. X = lim � (Xp | p 2 P ) is a compact Hausdor↵ space.
It is non-empty if Xp 6= ; for all p 2 P . ⇤

Given a graph G = (V,E,⌦), consider as P = P (G) the set of allG, V, E, ⌦

finite partitions of V with only finitely many cross-edges. Letting p 6 qP (G), P

whenever q refines p makes P into a directed partially ordered set. For
each p, let G/p be the finite multigraph on p whose edges are the cross-G/p

edges of p.15 The vertices of G/p that are non-singleton partition classes
are its dummy vertices. The other vertices of G/p, those of the form {v},dummy

vertices
we consider to be vertices of G and refer to them as v.

On the compact spaces Xp := |G/p| we have compatible quotient
maps fqp:Xq!Xp for q > p which send the vertices of G/q to the verticesXp, fqp

of G/p that contain them as subsets; which are the identity on the edges
of G/q that are also edges of G/p; and which send any other edge of G/q

15 If the partition classes U 2 p are connected in G, then G/p is the minor of G
obtained by contracting them. But we do not require them to be connected.
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to the dummy vertex of G/p that contains both its endvertices in G/q.
Let

kGk := lim � (Xp | p 2 P ), kGk

with these fqp as bonding maps.

Theorem 8.8.2. If G is locally finite and connected, then kGk is homeo-
morphic to |G|.

Proof. As kGk is compact and |G| is Hausdor↵, it su�ces to construct a
continuous bijection �: kGk! |G|. Let x = (xp | p 2 P ) 2 kGk be given.

If there exists p 2 P such that xp is not a dummy vertex of G/p,
then xp 2 |G|r⌦ and we let �(x) := xp. To see that this is well defined,
consider two such points xp and xp0 and pick q > p, p0. Then xq is not a
dummy vertex either, and xp = xq = xp0 by the definition of fqp and fqp0 .

Suppose now that xp is a dummy vertex for every p. For every n 2 N
let Sn be the set of the first n vertices of G in some fixed enumeration, and
let pn 2 P consist of the vertices in Sn as singleton partition classes and
the vertex sets of the components of G�Sn as the remaining partition
classes. This sequence p0, p1, . . . is cofinal in P , since every p 2 P is
refined by every pn with n large enough that all the cross-edges of p
have their endvertices in Sn.

As fqp(xq) = xp whenever p = pm < pn = q, the connected vertex
sets Un = xpn form a descending sequence U0 ◆ U1 ◆ . . . . It is straight-
forward to construct a ray R in G that has a tail in G[Un] for every n.
Let ! be the end of R.

For every p 2 P the set U = xp contains every Un with p < pn as a
subset. As the pn are cofinal in P , every G[xp] thus contains a tail of R.
Conversely, for every end !0 6= ! there is an n such that G[Un] contains
no ray from !0. Thus, ! is the unique end of G that has a ray in G[xp]
for every p 2 P . Let �(x) := !. This completes the definition of �.

To see that � is injective, consider distinct points x, x0 2 kGk, dif-
fering in their components xp 6= x0p say. If p can be chosen so that
one of these is not a dummy vertex of G/p, then clearly �(x) 6= �(x0).
Otherwise U = xp and U 0 = x0p are disjoint vertex sets in G separated by
finitely many edges, and �(x) is an end with a ray in G[U ] while �(x0)
is an end with a ray in G[U 0]. Thus again, �(x) 6= �(x0).

To see that � is surjective, let x 2 |G| be given. If x is not an end,
choose p(x) 2 P so as to contain the vertex x, or the endvertices of the
edge containing x, as singleton partition classes. For every q > p(x) in P
let xq := x, and for every p0 < q for some such q let xp0 := fqp0(x). Then
(xp | p 2 P ) is a well-defined point in kGk which � maps to x.

If x is an end, it has a ray in G[xp] for exactly one dummy vertex xp

of G/p for every p 2 P . These satisfy fqp(xq) = xp whenever p < q, so
(xp | p 2 P ) is a point in kGk which � maps to x.



260 8. Infinite Graphs

Let us show that � is continuous at every point x = (xp | p 2 P )
of kGk. If �(x) is not an end, there exists some p(x) 2 P such that �(x) =
xp(x), which is a point in Xp(x) but not a dummy vertex. Then every
basic open neighbourhood O of �(x) in |G| is also a basic neighbourhood
of this same point xp(x) in Xp(x). Then the set

Q
p2P Op with Op(x) = O

and Op = Xp for all p 6= p(x) is a basic open neighbourhood of x
in

Q
p Xp. Its intersection with kGk is an open neighbourhood of x

in kGk which � maps to O.
If �(x) is an end, ! say, consider any basic open neighbourhood

O = Ĉ✏(S,!) of ! in |G|. Let p(!) 2 P be the partition of V into the
vertex sets of the components of G� S and the singletons in S. Then
V (C) is a dummy vertex of G/p(!); call it xp(!). Let Op(!) ✓ Xp(!)

consist of xp(!) and the inner points in O of any C–S edges; these are
also points of Xp(!). As earlier, x has a basic open neighbourhood

Q
p Op

in
Q

p Xp with Op = Xp for all p 6= p(!), whose intersection with kGk
maps to O under �. ⇤

Note that our proof did not use that |G| is compact: we reobtain
Proposition 8.6.1 as a corollary.

In the proof of Theorem 8.8.2 we found it convenient to work with
a cofinal sequence in P instead of the entire set P . This is justified more
generally by the following easy lemma:

Lemma 8.8.3. Let (Xp | p 2 P ) be an inverse system of compact spaces,
let Q ✓ P be cofinal in P , and consider (Xp | p 2 Q ) with the same
bonding maps. Mapping every point (xp | p 2 P ) to its restriction
(xp | p 2 Q ) then defines a homeomorphism from lim � (Xp | p 2 P ) to
lim � (Xp | p 2 Q ). ⇤

By Theorem 8.8.2 and this lemma, our familiar |G| for locally finite
G is the inverse limit of the finite contraction minors Gn of G defined as
in Section 8.6. Indeed, for the cofinal sequence p0, p1, . . . in P defined in
the proof of the theorem, we have Gn = G/pn, and by the lemma |G| is
the inverse limit of the corresponding compact spaces Xpn .

Just like |G| itself, every standard subspace X 0 of X = |G| can be
obtained as an inverse limit of finite multigraphs. Indeed, the projections
fp:X!Xp defined by (xp | p 2 P ) 7! xp are continuous, so their images
X 0

p ✓Xp of X 0 are compact since X 0 is, and the fqp send X 0
q to X 0

p. Thus,
(X 0

p | p 2 P ) is an inverse system with bonding maps f 0qp := fqp � X 0
q,

and X 0 = lim � (X 0
p | p 2 P ).

More typically, we would like to find a standard subspace X 0 with
certain desired properties—for example, a topological spanning tree. We
can then try to construct some X 0

p whose inverse limit is X 0. It may not
be straightforward, however, to find such compatible X 0

p for all p 2 P .
Here, Lemma 8.8.3 can help: it is only necessary to find them for all
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p in some cofinal Q ✓ P . For example, we can construct spanning
trees inductively in all the Gn by expanding a dummy vertex in the
tree Tn ✓ Gn to a star in Tn+1 ✓ Gn+1. Then our given bonding maps
Xpn!Xpm will map the subspace X 0

pn
induced by Tn to that induced

by Tm, and these X 0
pn

will have a topological spanning tree in X = |G|
as their inverse limit. This construction is possible only because the
partition classes of the pn are connected in G; we could not perform it
on all of P (G).

Arcs and circles in |G|, or in a standard subspace, can be obtained
easily by applying the following lifting lemma with Y = [0, 1] or Y = S1.
Let (Xp | p 2 P ) be any inverse system of compact spaces, with bonding
maps fqp say, and let X be its inverse limit. Let Y be a topological space
with continuous compatible maps gp:Y !Xp: maps that commute with compatible

maps
the fqp in that gp = fqp � gq whenever p < q. Let us call the family
( gp | p 2 P ) eventually injective if for all distinct y, y0 2 Y there exists
some p 2 P with gp(y) 6= gp(y0).

Lemma 8.8.4. There is a unique continuous map g:Y !X that com- lifting
lemma

mutes with the projections fp:X!Xp in that gp = fp � g for all p 2 P .
If the gp are eventually injective, then g is injective. ⇤

For example, suppose we wish to find an arc in X between some
points x and y. We can find a topological x–y path g: [0, 1]!X by
finding topological fp(x)–fp(y) paths gp: [0, 1]!Xp that commute with
the fqp. If we can make these gp eventually injective, then g will be
injective, and its image will be the desired arc.

Similarly, if we can find compatible circles gp:S1 ! Xp that are
eventually injective, whose images contain all the vertices of G/p, and
which commute with the fqp, then g will define a Hamilton circle of G, Hamilton

circle
a circle in |G| that traverses every vertex.

Exercises
1.� Show that a connected graph is countable if all its vertices have count-

able degrees.

2.� Given countably many sequences �i = si
1, s

i
2, . . . (i 2 N) of natural

numbers, find one sequence � = s1, s2, . . . that beats every �i eventually,
i.e. such that for every i there exists an n(i) such that sn > si

n for all
n > n(i).

3.� Can a countable set have uncountably many subsets whose intersections
have finitely bounded size?

4.� Let T be an infinite rooted tree. Show that every ray in T has an
increasing tail, that is, a tail whose sequence of vertices increases in the
tree-order associated with T and its root.


