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Introduction

Godel’s paper (1931) on formally undecidable propositions of first order Peano
Arithmetic showed that any recursive axiomatic system which contains the axioms
of Peano Arithmetic still admits propositions which are not decidable, 1.e., which
are neither provable nor refutable on the basis of the given axiomatic system. For
the reader who is not used to work in Peano Arithmetic we mention that (for
statements about natural numbers) Peano Arithmetic is equivalent to the result of
replacing the axiom of infinity by its negation in the usual axioms of Zermelo-
Fraenkel set theory (see, e.g., Jech [10] for these axioms). Gddel’s original
example of such a proposition was not that illuminating, as 1t merely formalized
the well-known antinomy of the lyer. That raised the problem to find intuitively
meaningful propositions which are valid in the ‘real world’ but which are not
provable in Peano arithmetic (of course, such statements should be expressible 1n
terms of first-order logic). |

In this paper we present a general framework to define fast growing functions
based on Ramsey theorems. This framework is suggested by the work of Ketonen
and Solovay [13] and Kanamori and McAloon [12]. One advantage of our
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approach 1s that we are dealing just with colorings of pairs. Such colorings may be
interpreted as edge colorings of graphs. To appreciate the fast growingness of our
functions we need certain sample functions to compare with. These sample
functions are defined by ordinal recursion and are in fact generating functions for
hierarchies of recursive functions.

In Section 1 we investigate a certain function KM:w — w, which has been
introduced by Kanamori and McAloon [12]. Using a model theoretic argument
they show that this function KM(m) fails to be primitive recursive. We use a
purely combinatorial argument to achieve the same result, thereby obtaining
explicit lower bounds. The ideas behind this argument are extended in Section 2,
where an auxiliary example of a fast growing function is presented. A general
framework which is extracted from the prototypical functions of Section 1 and 2 is
provided in Section 3. Section 4, then, contains the main result as well as some
applications. One might be tempted to object that the fast growingness of our
Ramsey functions 1s merely due to the implicit use of ordinals in its definition.
But this 1s not quite justified. Other basic approaches to fast growing functions,
viz., via well-quasi-ordered sets (cf. Simpson [25]) also implicitly rely on the
notion of ordinals.

1. A nonprimitive recursive Ramsey function

[n this section we consider a rapidly growing Ramsey function which proves not
to be primitive recursive. However, as it turns out, its growth rate is only slightly
above all primitive recursively growing functions. The ideas behind our approach,
based upon the work of McAloon and Kanamori [12], are generalized in the
sequel 1n order to come up with faster and faster growing functions giving rise to
noncollapsing hierarchies (cf., Rose [22]).

If we estimate functions and want to visualize their growth rates we are used to
compare with certain well-understood functions which are supposed to be
prototypical. So we speak, e.g., of polynomial or exponential growth rate. The
kind of functions we are dealing with here are growing much faster. To appreciate
this we provide a sample of fast growing functions.

We start with the so called Grzegorczyk hierarchy of primitive recursive
functions.

For mappings F.w—w we denote by F":w— w the n-fold iterate of
F, F**Y(x) = F(F"(x)) where F’(x) = x. Consider the family (F,),.,, of functions
F, : w— o which is defined by

F(r)=n+1,  Fin)=Fi(n).

Note that the functions F, speed up with a phantastic acceleration, e.g.,

.2n
}n WS

F(n)=2-n, F(n)=2"-n, FEn)=2
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F; 1s an exponential function, F5 1s called the stack-of-twos function, F; is an
iteration of the stack-of-twos function, and so forth. Spencer suggests to call F,
the wow-function, as its growth rate is already beyond imagination.

However, all these functions are still primitive recursive. Moreover, for every
primitive recurstve function f : @ — w there exist & and n, such that f(n) =< F,(n)
for all n = n,, 1.e., the function F; eventually dominates f. Thus we may define a
function F,:@— w which 1s recursive but not primitive recursive by F, (n) =
F,(n). This is an Ackermann function (though Ackermann’s original definition is
somewhat different, compare Peter {20]).

Lemma 1.1. For every positive integer m there exists a smallest positive integer
n=KM(m) such that for every regressive mapping d:|5]— [n], meaning that
d(x, y)<x, for all 0<x <y <'n, there exists an m-element set M € [;] such that
dix,y)=d(x,z) forall x <y <zin M.

Proof. By the Erdos-Rado canonization theorem [4], compare also Graham,
Rothschild and Spencer [9], for every mapping d:[%]— w there exists an infinite
set Fell] such that d|[%] is a canonical coloring. If d is regressive, i.e.,
d(A)y<min A for A e[9] it follows that d(A)=d(B) for all A, Be[3] with
min A = min B. Here we use the infinity of F. Alternatively, this may also be
established by iterated applications of the pigeon hole principle. Notice that for
fixed x < w the two element subsets {x, y}, x <y, are partitioned into just x
classes. Hence the result follows by a compactness argument.

Kanamori and McAloon [12] give a model-theoretic proof to show that the
function KM(m) 1s not primitive recursive. We use a purely combinatorial
argument.

Notation. Ram(/, m, k) is the least integer n such that n— (m)), this is the
ordinary Ramsey function, in other words, for every coloring d:[7]— [k] there

exists an m-element set M €[] such that d(X)=d(Y) for all X, Y e [V].
Lemma 1.2. KM(Ram(2, m + 3, k)) = F,(m).

Proof. Let m*=Ram(2,m +3,%k) and define a regressive mapping
d:[FM™)]— [KM(m*)] by d(x,y)=0 if F(x)<y and d(x, y)=1! otherwise,
where the numbers 0 = k™ <k and 1= <x are defined by

Fi(x)<sy<F&(x).

Note that this is a proper definition as Fi.(x) < F,.,,(x) = F%-(x) by definition of
the functions F,.

Let M* e ["M77] be such that d(x, y)=d(x, z) for all x <y <z in M*. We
define a k-coloring d*:[" ]—[k] by d*(x, y)=0 if F,(x)<y and d(x, y)=k*
otherwise, where k* is as above. Let M €[, ;] be such that d*|[¥] is a constant
coloring and let x <y <<z be the three largest elements of M. Then m <x and



344 H.1. Promel et al.

thus it suffices to show that F,(x) =y. Assume to the contrary that F.(x)>y.
Then also F(x)>z, as d(x, y)=d(x, z) #0. Hence also F(y)>z, as F(x)<

F.(y) (one readily sees that the functions F, are increasing). Say, d(x, y) =
d(x,z)=1land d*(x, y)=d*(x, z) =d*(y, z) = k*. Then

Fie(x) sy <z <F*'(x).

Apply F;- to this inequality. Then z <F;X'(x)=< F..(y). But this contradicts
Fe(y)=z.

Corollary 1.3. The function KM(m) is not primitive recursive.

Proof. It is well known that Ram(2,m +3, k)<sk % (cf. Graham,
Rothschild and Spencer [9]), in particular, it is primitive recursive. But
KM(Ram(2, m + 3, m)) = F, (m) = F,(m) by the lemma. As primitive recursive
functions are closed under composition the assertion follows.

Let us note that the growth rate of the function KM{m) is approximately that
of F,, viz., 1t may be shown that (cf., Promel and Voigt [21]):

Theorem 1.4. KM(m) <F, _,(3) < F,(m).

2. A prototypical fast growing Ramsey function

We extend the 1deas of the previous section and define a Ramsey function
which is growing much faster than all primitive recursive functions. For doing so
we need additional sample functions to compare with. To enlarge the family
(Fi)i<o Into the transfinite we first require an effective system of notations for
ordinals less than €.

We assume that the reader is acquainted with the arithmetic of ordinals,
compare, e.g., Bachmann [1].

In the following greek letters denote (countable) ordinals.

Lemma 2.1. Every ordinal « >0 can be represented uniquely as
a=0"-n+o-n+---+ 0% n,
where o> a,> > a, =0 are ordinals and n,, ..., n, are positive integers.

Additionally, for o < €, it follows that «, < .

Recall that

- €1
. A times
mf

Eg= W = lim,,_, .

ts the first fixed point of the ordinal function a— w®
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The representation of « hinted at in Lemma 2.1 is the Cantor normal form of
a. A coding of ordinals a << €, with positive integers can be defined straightfor-
wardly relying on the Cantor normal form. The details are somewhat technical.
We refer, e.g., to Schiitte [24].

Next we define fundamental sequences which are exploited in the
definition of the sample functions F,, o« <e€,. We need these fundamental
sequences to handle limit ordinals properly.

To every lmit ordinal o <e€, we associate a strictly monotone sequence
a[n], n < w, which approaches « from below. For convenience we introduce a|[n]
tor successor ordinals as well as for 0.

Let O[n] =0 and let (a + 1)[n] = a for all n < w. In general, if o < €, is given in
its Cantor normal form a = a’ + w % - n,, where «, is the minimal exponent, let

o' +w-(n,—1)+ 0 ]
if ay 1s a limit ordinal,

'+ 0% -(n,—D+w%!.n

a[n] = . . :
if a, 15 a successor ordinal,
o' +n, —1
if &, = 0.

_I'ﬂ

For example, w{n]=n, w“[n] = 0", @ n]=w* and 0 [n}= w*
With the aid of these fundamental sequences we define functions F,, o < €, by
extending the definitions from Section 1:

Fn)=n+1, F, .(n)=F,(n), F.(n)=F, . (n)
for limit ordinals .
Finally we define a function F, by

9T
- }n times

F.(n)=F (n), wherey,=w®

This is the so called Wainer hierarchy of provably recursive functions (actually,
it is a slight modification of Wainer’s original approach which is due to Ketonen
and Solovay [13]).

The significance of the Wainer hierarchy in connection with unprovability
results 1s emphasized by a result of Wainer which relates the F,’s to the class of
ordinal recursive functions. Futhermore, from Kreisel [17] it is known that the
provably total recursive functions (provably total with respect to Peano arith-
metic) can be characterized in terms of ordinal recursion up to €,. What we
actually need is the following result, compare also Bucholz and Wainer [2].

Theorem 2.2. Let f:w— w be a provably total recursive function (with respect to
Peano arithmetic). Then f is eventually dominated by some F, for an «a < €,.
Moreover, I, eventually dominates every provably total recursive function but it is
itself not provably total recursive.
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The sample functions F, are used to estimate the growth rate of rapidly
growing functions. In particular, if such a function eventually dominates every
provably total recursive function then the formula expressing its totality cannot be
proved in Peano arithmetic.

Suppose we want to compute Fz(n). The computation proceeds along the
recursive definition of the F,’s. The set of names of previous functions we need to
know is given by

N(B, )= (Blnl[n] - - - [n] |i < w}.

i times

For example,

Nlw,ny={nn-1,...,0},
No® n)={o", 0" ' -n, 0" ' - (n-1)+w" 2. n,
" -+t (n—-1)+0" 3 n, ...}

E{éﬂwk-nk\nke[n+l]}.

Properties of the fundamental sequences, as defined above, which are relevant in
our proof, are summarized in the following observation.

Observation 2.3. (1) F,(k)<F,(!) for all o« < €, and positive integers k <,
(2) F.(k)=FK(k) for all x e N(B, k),
(3) N(a, k) = N(«a, 1) for all positive integers k <.

Proof. The assertions (1), (2) and (3) resp. are proved by straightforward
inductions on «. We show how to prove (3). If @ =8 + 1 is a limit number then

NB+1 k)={BIUN(B, k)= {B}UN(B, }=N(B+1,1),

as N(f, k) = N(p, I) by induction. Next let a be a limit ordinal, say, o = 8+ w?
with 8> w"and y>0. If y=056 + 1 is a successor then

N{a, K)={B+w® - k}UN(B + w?®- k, Kyc{B+w’- I} UNB+w’ 1)
as N(B+w° -k, k)cNB+w® kD) NB+w’-|, {) by induction and since
B+w® - keNB+w?®-1,]) fork<l
If ¥ 1s a limit number then
N(a, k)= {8+ oM UNPB + "™ k)c N(a, 1)
as N(y, k) < N(vy, I) by induction.

Recall that we assume that a primitive recursive coding of ordinals o < €, into
w 1s available and thus we may talk about mappings into €,, knowing that these
are actually mappings into w.
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Equipped with these tools we define a fast growing Ramsey function KS
(Ketonen-Solovay) and then prove that it is actually growing as fast as F .

Lemma 2.4. Let k and m be positive integers. Then there exists a least positive
integer n = KS, (k, m) such that for every mapping d:|5]— €, X w with d(x, y) €
N(¥., x) X [x] there exists an m-element set M € [ ;| such that forallx <y <zin M
(1) d(x, y) = d(x, 2),
(2) a<a’, where d(x,y)=(a,l) and d(y, z) =(a', I').

Proof. Again, we use a compactness argument. So one first shows that for every
mapping d:[%]— €, X w such that d(x, y) e N(y,, x) X [x] for all x <y there
exists an infinite set F € [&] such that (1) and (2) hold for all x <y <z in F.

As 1n the proof of Lemma 1.1 assertion (1) readily follows from the
Erdds-Rado canonization theorem, since the sets N(y,, x) are finite. Assertion (2),
then follows by noting that there does not exist any infinite descending chain of
ordinals.

Lemma 2.5. KS_ (k, m +3)=F, (m).

Proof. Let the mapping d:[{5]— €, X @ be defined by d(x, y)=(0, 0) if F, (x) =<

y and d(x, y) = («, !) otherwise, where «a € N(y,, x) and [ € [1, x — 1] satisfy
Fo(x)<y <FJ'(x).

One readily sees that « and [/ are defined properly. Let M € [,,,“ 5] satisfy (1) and
(2) of Lemma 2.4 and let x <y <z be the three largest elements of M. We show
that d(x, y) = (0, 0) or d(y, z) = (0, 0) from which KS_ (m + 3) = F,, (m) follows.
Assume to the contrary that d(x, y) =d(x, z) =(a, l) and d(y, z) = (B, ") with
[,I'">1and a =< . Then

Fl(x)sy<z<FI(x).
We apply F, to this inequality. By assertion (1) of Observation 2.3 it follows that

z < FX x)s FE.(y). (%)
By definition of d(y, z) we know that

Fp(y)<z. (% *)
But

F.(y)<F(y)=<Fp(y) (% % )

by Observation 2.3 and as I’=1. Now (*), (**) and (* * *) produce the
obvious contradiction that z < z.
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Corollary 2.6. KS, (m, m +3) = F, (m).

This lower bound gives essentially the right order of magnitude, as the
following result of Thumser [27] shows.

Theorem 2.7. KS, (m, m)<F,: (g(m)), where g is an appropriate primitive
recursive function and

,f_t}z .
: m’s

3. A general framework for developing fast growing Ramsey functions

In this Section we set up a general framework which is sufficient to exploit the
ideas introduced so far. What we require are notational systems for initial
segments of ordinals, in particular, appropriate selections of fundamenta]
sequences.

3.1. Some remarks about the second number class, fundamental sequences and
hierarchies

Throughout this chapter we are working within some fixed initial segment A of
the second number class of ordinals, i.e., all ordinals strictly less than a given
countable ordinal. To develop constructively noncollapsing hierarchy classes
F“(a € A) of functions some requirements concerning the ordinals in A must be
met. We tacitly suppose all ordinals in A to be smaller than the least
nonconstructive ordinal w,; in the sense of Church and Kleene [3]; otherwise
there would even arise problems in ordinal notation. Although there is no
problem in defining the initial functions on which our hierarchy i1s based at
successor ordinals (diagonalization will do!) there still remains the question of
choosing appropriate fundamental sequences at limit stages. Kleene in his seminal
paper [16] succeeded in defining function classes based on his system @ of ordinal
notations; nevertheless he did not touch on the problem mentioned before.
Despite the facts that recursively well-ordered relations on @ already possess
primitive recursive well-orderings of the same order type (Kleene [15]) and that
for all known ordinal notations (cf. Schiitte [24]) there seems to be a natural
choice of fundamental sequences, a general method for obtaining such se-
quences has not been found yet (and it is most unlikely to be found).

3.2. The Bachmann property

3.2.1. Fundamental sequences for A < A

A sequence (A(n)), ., of ordinals in A is called a fundamental sequence for A if
(1) AMr)<A, (2) A(n)<A(n+1), and (3) Iim,, . ,A(n) =A. We extend the
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definition of fundamental sequences to successor ordinals by (a + 1){n) = « for
n < w. For convenience we write 8(0)" for S(0)(0) - - - (0), the n-fold interate of
the fundamental sequence evaluated at zero.

3.2.2. Bachmann property

An assignment of fundamental sequences to all A <A, A a limit ordinal, has the
Bachmann property if for all limit ordinals A, u << A, and all positive integers
n < w the inequality A(n) <u = A(n + 1) implies that A(n) < u(0).

3.2.3. Relation <4
For a<fB <A welet a<,f1f a=p(0)" for some positive n < w.

3.2.4.

The relation <, is built up if for all limit ordinals A€ A, and all positive
integers n < w it follows that A(n) <, A(n +1).

Comment. The Bachmann property has been studied in Bachmann [1]. It
requires the first term of the fundamental sequence for A to be as large as possible
and enables us to prove certain monotonicity properties of the hierarchy-
generating functions thus assuring its noncollapsibility. The concept of built up
relations <, is due to Schmidt [23]. She also discovered its equivalence to the
Bachmann property.

Proposition 3.2.1 (Schmidt [23]). An assignment of fundamental sequences to A
has the Bachmann property if and only if <, is built up.

Proof. By transfinite induction (see Rose [22]).

Although there is no way to assign fundamental sequences to the whole second
number class satisfying the Bachmann property, Schmidt [24] succeeded in
constructing such fundamental sequences for each proper initial segment of the
second number class.

Theorem 3.2.2 (Schmidt {23]). For every proper initial segment A of the second
number class there exists an assignment of fundamental sequences with the
Bachmann property.

It is well known that the Bachmann property implies certain monotonicity
properties.

Proposition 3.2.3. Let an initial segment A of the second number class and an
assignment of fundamental sequences to A satisfying the Bachmann property be
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given. Let (H,)yca be a sequence of functions H, :w— w with the following
properties:
(1) Hy is strictly monotone,

(1) H, ., is strictly monotone whenever H,, is strictly monotone,

() H,(0)=<H, . ,(0) and H,(x + )< H,, ,(x + 1),

(1v) Hy(x) = H,((x) if A is a limit ordinal.
Then if follows for all «, B € A that:

(a) H, is strictly monotone,

(b) if B<4a then Hy(0) < H,(0) and Hg(x + 1)< H,(x +1),

(¢) if B <« then Hy is eventually dominated by H,.

Proof. By induction on « this is fairly obvious, where we use Proposition 3.2.1
for part (b).

3.3. A strictly increasing hierarchy

Let A be an initial segment of the second number class together with an
assignment of fundamental sequences having the Bachmann property. According
to Theorem 3.2.2 this is always achievable.

We define the family (H,), ., of mappings H, : w — w as follows:

Hix)=x+1,  Hoi(x)=Hy'(x),  Hl(x) = Hy((x)

for a hmit ordinal «.

Proposition 3.3.1. The functions H, satisfy the conditions of Proposition 3.2.3 as
well as H,(x) > x.

Proof. (i) and (iv) are obvious, as is the first half of (iii) because by induction on
a it follows that H,(0) = 1. To prove (ii) and the second part of (iii) we note that
by transfinite induction on « it follows that H,(x)>x. For « a limit ordinal or
a@ =0 this is obvious, so assume @ =4 + 1. By induction on z € w\{0} we have
Hi(x) > x because H;(x) > x and

Hi(x) = Hy(Hi(x)) > Hi(x) >,

by our main induction. Thus especially for z=x+1, H, (x)=H,,(x)=
H3;*'(x) > x. Now we prove (ii) as follows:

H, o(x + 1) =H(x + 1) = H,(HX*'(x + 1))
>H ' (x +1)> HE (x) = Hy (%),

where the last inequality follows from the assumption.
Finally, (iii) part two is proved by noting that

Ho(x +1)=H " (x + 1) = HY Y (H, (x + 1)) > H (x + 1),

by our previous observation.
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Remark. The hierarchy corresponding to the family (H,),., is obtained by
letting %"= %' be the set of elementary functions and by letting H*=
E{Hj | B < a}, the elementary closure of functions preceding H,. Properties
(i)—(iv) guarantee that this hierarchy is strictly increasing in the sense that #%1s a
proper subset of #* for all 2= a < f < A, cf., Rose [22, p. 45].

Recall that the families (F,),«q 1€SpP., (Fy)<¢, Introduced in Section 1 and 2
slightly differ from the family of the H,’s as defined above. However, it turns out
that H,(n)= F,(n + 1) — 1. So we define the F-functions in a general setting, viz.

H}(H)=H + 1: Fa*+l(n)=Fg'(n): Fa’(n)zF&[n](H)!
o a limit ordinal, «a[n]:=a(n—1) and n=1. We define F,(0)=1 for
convenience.

Lemma 3.3.2. Forall n <w and o < A we have H,(n)=F,(n + 1) — 1.

Proof. By transfinite induction on a we have the following:
{1’=0: Fﬂ(n+l)=n+2=(n+1)+1=Hn(n)+l
a=A+1: we have E(n + 1) = H,(n)+ 1 and using induction on z:

Fi*'(n+ 1) = R(Fi(n + 1)) = B(Hj(n) + 1)
=H,Hi(n)+1=Hi"'(n) + 1,
especially
Fn+1)=F, . (n+)=F;"'"(n+1)=H;"'(n) + 1
=H, ., (n)+1=H,(n)+ 1.
« a hhmit ordinal:
F,(n+1)=Fp.yn+1)=Fmmn+1)
= H,n(n)+1=H,(n)+1.

Remark. Generally a[n] fails to have the Bachmann property. However, from
the lemma it follows that, in any case, the hierarchies belonging to the families
(H,),<a and (F,),<4 resp., are the same. For convenience we state our results in
terms of the F,’s. This is possible as the family (F, ), 4 satisfies properties (1), (2)
and (3) of Observation 2.3.

Lemma 3.3.3. F, (k)< F,(I) for all « < A and all positive integers k < l.

Proof. By Propositions 3.3.1 and 3.2.2 H, is strictly monotone and F,(x)=
H,(x—1)+1 for x =1 by Lemma 3.3.2, so F, has the property required in the
lemma.
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As in the previous section let us define for « < A and k =1,

N(a, k):= {alk]' |i=1}.

Lemma 3.3.4. Clearly, N(w, k) is a finite set, moreover, F, (k)< Fz(k) for all
xeN(B, k), B<Aand k=1.

Proof. Observe, that F,(k)=H,(k—1)+1>k—1+1=k because of Lemma
3.3.2 and Proposition 3.3.1. As a = B[k]’, { > 0 we use induction on i.

Fﬁ[k](k)
Fg[k](k)

according to whether 8 is a limit ordinal or not ( =0 being trivial). For the
inductive step the same argument works.

i=1: ﬁ;(k)={ = F, (k)

Lemma 3.3.5. N(a, k) N(a, ) forall v e A, 1 sk =1,

Proof. It suffices to prove that N(a, k) N(a, kK +1). We use transfinite
induction on a: « =0 is trivial. Suppose o = + 1.

N(a, k)=N({p+1, k)=N(p, k)U{B} = N(B, k+1)U{b}
=N(B+1,k+1)=N(a, k+1).

Finally, let a be a limit ordinal. The inductive assumption gives
N(alk], k) = N(alk], k£ + 1).

So it suffices to show that a[k] e N(a, kK +1). Since a[k] < alk + 1] choose i =1
maximal with respect to alk] < afk + 1] < o[k + 1]. afk + 1]’ being a successor
ordinal implies either a[k + 1]*' = a[k] and we are through or otherwise
contradicts the maximality of i. So suppose a[k + 1} =: A is a limit number. We
show, that this case cannot occur. Otherwise, using the Bachmann property we
would get

a[k] < A(0) = A[1] = afk + 1][1]) < a[k + 1],

which again would contradict the maximality of i.

Let us summarize the preceding lemmas in the following theorem.

Theorem 3.3.6. Let an arbitrary initial segment A of the second number class
together with an assignment of fundamental sequences satisfying the Bachmann
property be given. Define ajn +1]:=a(n), for n=0 and define the family
(Fn*)n'-‘:ﬁ by

Fi‘]'(n)=n + 1! Fa+](n)=F1(H)J Fﬂ’(n)chr[n](n)?
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where F,(0)=1. Then (F,),< defines a strictly increasing hierarchy, extending
Grzegorczyk’s hierarchy, and satisfies:

(1) F,(ik)sF.()) foralll=sk<sl<wand a < A.

(2) F,(k)=sFy(k) forall k <w and o < < A.

(3) N(a, k)cN(a, ) forall ls k=< wand o < A.

4. Main theorem and applications

4. 1. Main theorem

In order to state our theorem let us fix some segment A=A + 1 of the second
number class together with an assignment of fundamental sequences (A, := A[n]).
Appealing to a coding system (recall our tacit assumption that A should be a
constructive ordinal), thus all following mappings actually map into w.

Lemma 4.1.1. Let k and m be positive integers. Then there exists a smallest
positive integer n =KS;(k, m) such that for every mapping d:[5]— A X o with
d(x,y) € N(Ay, x) X [x] there exists an m-element set M €[] such that for all
x<y<zinMitfollows that:

(1) d(x, y)=d(x, z),

(2) o=sa ford(x,y)=(a, 1), d(y, 2)=(a’, ).

Proof. Exactly as in Section 2.

Theorem 4.1.2. KS;(k, m +3)=F,_(m), KS,(m, m + 3) = E(m).

Proof. The essential conditions used in the proof of Lemma 2.5 are established in
Theorem 3.3.6. We omit to repeat the arguments.

4.2. Applications

4.2.1. KS§,,

Let A=w and define A(n)=A[n+1]=n+ 1. The function KS_, fails to be
primitive recursive. Comparing the definitions one readily observes that
KS, (1, m)=KM(m). From Corollary 1.3 it follows that already KS,(1, m) is
not primitive recursive, whereas Theorem 4.1.2 just asserts that KS, (1, m)=
2-m. Thus one may wonder about the real growth rate of the function
KS,(k, m). It turns out that the lower bound of Theorem 4.1.2 is not too bad, as
one may show that KS,,(k, m) < F_.«(k - m) (Thumser [27]).

4.2.2. KS,,

Let A = €, and associate fundamental sequences with A as in Section 2 using the
Cantor normal form; however, we let

(' +o*™-n)n)=a'+ 0™ (n,— 1)+ 0™ '(n+1)
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If @ 1s a successor ordinal. A straightforward calculation shows that the above
defined assignment has the Bachmann property, cf. also Rose [22, p. 78]. The
sample functions (£,),<. as defined in Section 3 rely on the shifted assignment
a[n + 1] = a(n). This square bracket assignment proves to be the assignment
used in Section 2, as w®*'[n]=wf - (n - 1) =0’ n

Although the predicate ‘KS, (k, m)=n’ is primitive recursive (the number of
color-checks can be bounded by an elementary function in k, m, n) and therefore
1s expressible in Peano arithmetic, there is no way of proving
Vk, m 3nKS, (k, m)=n in PA because of the rapid growth of KS,. As we
mentioned in Section 2 no problems arise in coding ordinals less than €, to get a
system of notations satisfying the conditions of the last section: we simply use
Cantor’s normal form. Recalling €, = €4[k] =y, we see in this particular case
that

KS..(k, m +3) = F, (m).

We also know from Parsons [19], that the class of functions provably recursive in
PA,_,, where induction is restricted to formulas having at most (k — 1)-nested
quantifiers, 1s identical to the class #*. So it is impossible to prove Lemma 4.1.1
within this restricted theory where k is supposed to be fixed.

4.2.3. KSr.

To extend our results further into the transfinite, let us choose a notational
system sufficient to provide expressions for all ordinals less than the first strongly
critical ordinal I. This ordinal was introduced by Feferman [6] and is analyzed in
great detail m Schiitte [24]. I; is also known to be the proof theoretical ordinal
of Feferman’s system of predicative analysis [S] as well as of Friedman’s system
ATR,. It 1s shown in Friedman {8] that both systems are able to prove the same
IT; sentences and a great deal of classical mathematics can be developed in either
ot them. The notational system to be employed is based upon some basic facts,
which we want the reader to recall. Let @, :0Ord— Ord (Ord denotes the set of
countable ordinals in any of the usual set theories) be given by

Dy(a)=w"”
Pg(a) = the ath common fixed point of all ¢, vy <

(We have @,(a) = €,).
I, can be characterized as the least ordinal satisfying @.(0) =I5,

We want to make some comments concerning Fig. 1. All entries are so called
principle ordinals, i.e. those a € Ord (a#0) which satisfy 8+ o= a for all
B <a. They are listed in increasing order in the first row by the function
Py(y) = w”. Principal ordinals are indecomposable with respect to ordinal
addition and each ordinal y #0 may be uniquely written as a decreasing, finite
ordinal sum built up by principal ordinals (Cantor’s normal form theorem). The
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0 1 2 3 w €o
0 1 w o o w® €q
€o € &
w  PD,(0)

I, @:(0)=1I,

Fig. 1.

next theorem gives an appropnate choice and tells us which entries should be
used in order to avoid infinite regress. To be more precise we take a closer look
at the diagram and list all occurrences of some principal ordinal «, see Fig. 2.
Up to some point 6 we have @, («a) = o for all y < 4. These entries are of no help
if we want a notational system, they would be denoted by themselves. So we take
hold on the circled a = ¢5(8) hoping é < « in order to continue. But

o = ¢s(B) = ¢5(0) = 0,

and o0 < « firstly may fail as soon as a = 6, which implies =0 and a = ¢,(0) =
Iy by definition. Up to I; the process requires no infinite regress and can be used
to prove Theorem 4.3.1. The existence of the circled « entry follows from the fact
that ¢.(a)> ¢.(0) = «, where we use the normality (strict monotonicity and
continutty) of ¢,(-) and ¢y(a). It should be noted however that generally
¢ (@), a #0, fails to be continuous: otherwise the inequalities ¢,,(0) < ¢,,(1) <
¢,.+1(0) would imply ¢, (0) = ¢,(1), contradicting the strict monotonicity of ¢,,.

The following theorem can be used to establish a convenient notational system
and coding into @, cf. Schiitte {24].

o11 --- B 0%
0 4
1 %
2 4
E @ '
o

Fig. 2.
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Theorem 4.3.1. For each ordinal 0+ vy <I, there exist uniquely determined
ordinals oy, ..., a,, b1, ..., B, (n=1) where q;, 8, < D, 6, (=1,...,n) and
‘;pmﬁl =R qbcr,,ﬁn and Y = ¢’ﬂ:’1ﬁl +eet ¢&nﬁn-

Using this kind of Cantor normal form, we are now able to assign fundamental
sequences to limit ordinals y <I; by concentrating the definition always on the
rightmost term &, f,. In detail we proceed as follows by transfinite induction
(A, u are supposed to denote limit ordinals):

Po(B + 1)(n) = Do(B) - (n +2),
Dy(A)(n) = Py(A(n)),

P, 1(0)(n) = PL70),

Dy 1(B+ 1)(n) = O (Desi(B) +1),
Dy +1(A) (1) = Dy 1 1(A(R)),

D, (0)(n) = Py(,,)(0),

DB+ 1)(n) = By (Pi(B) + 1),

D, (1)(n) = @, (u(n)).

Because of the normality of the functions @, the last definition provides us with
a fundamental sequence converging to &, assuming already one converging to
p. Let us justify the second-last definition (the other definitions may be
established in a similar way).

Lemma 4.3.2. @,,,(P,(f)+1)— §,(B+1) whenever Al(n)— A, where —
denotes convergence.

Proof. Let y:=sup,., Py, (P:i(B) +1). We claim that y < ¢, (B +1). Certainly
D, (B) + 1< P (B + 1) since D,(B + 1) is principal. It follows that

‘pA(n)(d’A(ﬁ) +1)< ‘I’A(n)(q’l(ﬁ + 1)) =P (p + 1)

for all n < w because @,(f + 1) is a fixed point of all @5(6 < A).
By definition of vy it follows that y < @,(8 + 1) establishing our claim. On the

other hand y > @;(f) and it remains to prove that y is a fixed point of all
@;(0 < A). But

Ds(y) = Ps(sup Doy (Pr(B) + 1))

=sup By @y (Bu(B) + 1) = sup By (B:(B) + 1) = v,

n<w n<a, A{n)>>5

where the second equality holds since @, is continuous. Therefore y is a fixed
point of all @5(-), 6 <A, larger than their Sth fixed point yielding ®,(8 +1) < y,
which together with our claim finishes the proof.

Schmidt [23] gives a slightly different, although equivalent definition.
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Theorem 4.3.3. The assignment of fundamental sequences to limit ordinals A < I
given above determines a built up system of ordinal notation and therefore has the

Bachmann property.

It is straightforward but somewhat tedious to check the other requirements of
notational systems we defined above. We would nevertheless like to mention that
reasonable bounds for the cardinality of N(A,, x) (where A; denotes the k-fold
first argument iterate of ®(«, 0):= ¢,(0) evaluated at 0) can be found. To
deduce the following corollary one needs the analogue of Theorem 2.2 with
respect to the system ATR,, cf., Friedman, McAloon and Simpson [8].

Corollary 4.3.4. The Ramsey function K grows faster than any recursive function
f for which ATR,}f is total.

Analogous examples of even faster grower Ramsey functions may be con-
structed following the patterns of this paper.
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