A partition relation for triples using a model of Todorčević*

E.C. Milner
University of Calgary, Alta., Canada

K. Prikry
University of Minnesota, Minneapolis, MN, USA

Received 22 September 1989
Revised 29 June 1990

Abstract

Todorčević has shown that there is a ccc extension \mathcal{M} in which $\text{MA}_{\omega_1} + 2^\omega = \omega_2$ holds and also in which the partition relation $\omega_1 \rightarrow (\omega_1, \alpha)^3$ holds for every dencernable ordinal α. We show that the partition relation for triples

$$\omega_1 \rightarrow (\omega 2 + 1, 4)^3$$

holds in the model \mathcal{M}, and hence by absoluteness this is a theorem in ZFC.

1. Introduction

For an ordinal γ, a positive integer r and linear order types φ, ψ_i ($i < \gamma$), the partition relation

$$\varphi \rightarrow (\psi_i)^r_{i < \gamma}$$

(1.1)

means that whenever $(S, <)$ is an ordered set of order type $\text{tp}(S) = \gamma$ and \{Ki: $i < \gamma$\} is a partition of $[S]^r = \{X \subseteq S: |X| = r\}$, then there are $i < \gamma$ and $T \subseteq S$ such that $[T]^r \subseteq K_i$ and $\text{tp}(T) = \psi_i$. In the case when $\gamma = 2$ we write (1.1) as $\varphi \rightarrow (\psi_1, \psi_2)^r$, and the negation of this is expressed by replacing the arrow \rightarrow by a nonarrow \nrightarrow.

Very few partition relations of this kind are known when $r \geq 3$ and the order types are not cardinal numbers. Such relations were discussed in some detail in [5], and we proved in that paper that

$$\varphi \rightarrow (\omega + k, 4)^3$$

(1.2)

* Research supported by NSERC Grant No. A5198 and NSF Grant MCS 830361.
holds for any finite \(k \) and linear type \(\varphi \) which satisfies
\[
\varphi \rightarrow (\omega)^4_{\omega}. \tag{1.3}
\]
It was conjectured in [5] that the more general relation
\[
\varphi \rightarrow (\alpha, m)^3
\]
holds for all countable ordinals \(\alpha \) and finite \(m \), but we were unable to extend our method of proof of (1.2) to establish either of the next simplest cases of the conjecture
\[
\omega_1 \rightarrow (\omega 2, 4)^3, \tag{1.4}
\]
or
\[
\omega_1 \rightarrow (\omega + 2, 5)^3. \tag{1.5}
\]
In this paper we use some heavier artillery from [8] in order to prove that
\[
\omega_1 \rightarrow (\omega 2 + 1, 4)^3, \tag{1.6}
\]
which is slightly stronger than (1.4).

Our proof of (1.2) for the case \(\varphi = \omega_1 \) in [5] used the same type of argument employed by Baumgartner and Hajnal in [1]. Since
\[
\omega_1 \rightarrow (\omega + k, 4)^3 \tag{1.7}
\]
is an absolute statement relative to a ccc extension, it is sufficient to prove this under the additional assumption that Martin's Axiom \(\text{MA}_{\omega_1} \) holds. However, we could not prove (1.4) by using the same combinatorial tools. Here we will prove (1.6) using a model of Todorcević. He proved [8] that there is a ccc extension \(\mathcal{M} \) in which \(\text{MA}_{\omega_1} \) holds, \(2^\omega = \omega_2 \), and also in which the relation
\[
\omega_1 \rightarrow (\omega_1, \alpha)^2 \tag{1.8}
\]
holds for all \(\alpha < \omega_1 \). We prove that (1.6) holds in the model \(\mathcal{M} \) and so, by absoluteness, (1.6) is a theorem of ZFC. Note that (1.8) is independent of the axioms of ZFC since, by an earlier result of Hajnal [3], CH implies that \(\omega_1 \rightarrow (\omega_1, \omega + 2)^2 \). Let us remark that we only use the special case of (1.8) when \(\alpha = \omega 2 + 1 \); we were unable to obtain anything better by using the full strength of (1.8). Also, we should point out that the proof used in [5] to prove (1.7) could, by an argument due to Baumgartner and Hajnal, be adapted to prove (1.2) by using \(\text{MA} \) in place of \(\text{MA}_{\omega_1} \). This argument does not allow us to extend in the same way our proof of (1.6) to the more general relation \(\varphi \rightarrow (\omega 2 + 1, 4)^3 \) for an order type satisfying (1.3). Thus, for example, whether or not the relation
\[
\lambda \rightarrow (\omega 2, 4)^3
\]
holds is still open, where \(\lambda \) is the order type of the reals.
2. Notation and preliminary lemmas

We use the standard notation $[X]^{<\omega}$ to denote the set of all finite subsets of X. If (S, \leq) is a linearly ordered set and $x \in S$, then $S(\geq x) = \{ y \in S : y \geq x \}$. Also, if X, Y are subsets of S, then we write $X \prec Y$ if $x \prec y$ holds for all $x \in X$ and $y \in Y$. If $\{ K_i : i < \gamma \}$ is any partition of $[S]^\gamma$, then we write

$$\psi \in \text{homog}(K_i)$$

if there is a subset $T \subseteq S$ such that $\text{tp}(T) = \psi$, and T is homogeneous for the class K_i, i.e. if $[T]^\gamma \subseteq K_i$. For finite r, s and sets A, B, we denote by $[A]^r \otimes [B]^s$ the set of all subsets $X \subseteq A \cup B$ such that $|A \cap X| = r$ and $|B \cap X| = s$.

We need the following easily proved consequence of Ramsey’s Theorem.

Lemma 2.1. If r_i, k_i are finite and $f_i : [\omega]^\omega \rightarrow k_i (i < \omega_1)$, then there is a uniform ultrafilter \mathcal{U} on ω which contains an f_i-homogeneous set for each $i < \omega_1$.

Proof. Let $\alpha < \omega_1$ and suppose that we have already constructed f_β-homogeneous sets U_β for $\beta < \alpha$ so that the intersection of any finite number of these is infinite. Then there is an infinite set X such that $X \setminus U_\beta$ is finite for each $\beta < \alpha$, and by Ramsey’s Theorem [6] there is an f_α-homogeneous set $U_\alpha \subseteq X$. The sets $U_\alpha (\alpha < \omega_1)$ generate an ultrafilter \mathcal{U}. \(\square \)

We also need the following special case of Solovay’s Lemma (see e.g. [4, p. 287]).

Lemma 2.2. Assume MA_{ω_1}. If the sets $A_i \subseteq [\omega]^\omega (i < \omega_1)$ have the property that the intersection of any finite number of them is infinite, then there is an infinite set $X \subseteq \omega$ such that $X \setminus A_i$ is finite for all $i < \omega_1$.

3. A proof of (1.6)

We will use the same convention that was used in [5]; the letters A and B (possibly with suffixes or superfixes or primed) will always denote subsets of ω_1 which have respectively order types ω and ω_1 under the induced ordering.

As already observed in Section 1, it will be enough to prove that (1.6) holds in the model \mathcal{M}, i.e. we may and do assume that MA_{ω_1} holds and also that (1.8) holds with $\alpha = \omega_2 + 1$. Let $K_0 \cup K_1$ be any partition of $[\omega_1]^3$. We have to show that either

$$\omega_2 + 1 \in \text{homog}(K_0) \quad (3.1)$$

or

$$4 \in \text{homog}(K_1) \quad (3.2)$$
Lemma 3.1. Let \(A < B \) and assume that:

(i) \([A]^2 \otimes [B]^1 \subseteq K_0\),

(ii) the set \(\{ a \in A : \{ a \} \cup s \in K_1 \} \) is finite for each \(s \in [B]^2 \), and

(iii) \((\forall x \in A \cup B)(\forall B_1 \subseteq B)(\exists B_2 \subseteq B_1)(\forall s \in [B_2]^2)\{ x \} \cup s \in K_0\).

Then either (a) \(\omega \in \text{hom}(K_1) \), or (b) there is \(Z \subseteq A \cup B \) such that \(\text{tp}(A \cap Z) = \omega \), \(\text{tp}(B \cap Z) = \omega + 1 \) and \([Z]^3 \subseteq K_0 \) (i.e. (3.1) or (3.2) holds).

Proof. We will assume that (a) is false and deduce that (b) holds. Let \(B = \{ b_\alpha : \alpha < \omega_1 \} \), where \(b_0 < b_1 < \cdots \). We claim that there are \(\alpha < \omega_1 \), \(X \in [A]^\omega \) and \(Y \in \{ \{ b_\beta : \beta < \alpha \} \}^\omega \) such that

\[
[X]^1 \otimes [Y \cup \{ b_\alpha \}]^2 \subseteq K_0,
\]

and

\[
[Y]^2 \otimes [\{ b_\alpha \}]^1 \subseteq K_0.
\]

The lemma follows from the claim since, by Ramsey's Theorem and the assumption that (a) is false, we can assume that \(X \) and \(Y \) are both \(K_0 \)-homogeneous. Then by (i), (3.3) and (3.4) the lemma holds with \(Z = X \cup Y \cup \{ b_\alpha \} \).

Let \(\alpha < \omega_1 \) be fixed. We try to construct the sets \(X \), \(Y \) to satisfy (3.3) and (3.4) in \(\omega \) steps as follows: Let \(n < \omega \) and suppose that we have already constructed \(n \)-element sets \(X_n \subseteq A \) and \(Y_n \subseteq \{ b_\beta : \beta < \alpha \} \) so that

\[
[X_n]^1 \otimes [Y_n \cup \{ b_\alpha \}]^2 \subseteq K_0,
\]

and

\[
[Y_n]^2 \otimes [\{ b_\alpha \}]^1 \subseteq K_0
\]

both hold. If possible we now select \(x_n \in A \setminus X_n \) and \(y_n \in \{ b_\beta : \beta < \alpha \} \setminus Y_n \) so that (3.5) and (3.6) remain true with \(X_n \), \(Y_n \) replaced respectively by \(X_n \cup \{ x_n \} \) and \(Y_n \cup \{ y_n \} \). If it is not possible to choose suitable \(x_n \) and \(y_n \), the construction terminates and we define

\[
n_\alpha = n, \quad X^\alpha = X_n, \quad Y^\alpha = Y_n.
\]

If, for some \(\alpha \), this construction continues for infinitely many steps, then our claim is established. So we can assume that \(n_\alpha \), \(X^\alpha \), and \(Y^\alpha \) are defined as above for all \(\alpha < \omega_1 \). Now by Fodor's theorem [2] there is a stationary set \(S \subseteq \omega_1 \), an integer \(n \in \omega \), and fixed \(n \)-element sets \(X_n \) and \(Y_n \), so that (3.7) holds for each \(\alpha \in S \).

By a finite number of applications of the hypothesis (iii), it follows that there is an uncountable set \(T \subseteq S \) such that

\[
[X_n \cup Y_n]^1 \otimes [\{ b_\alpha : \alpha \in T \}]^2 \subseteq K_0.
\]

Choose \(\gamma, \alpha \in T \) with \(\gamma < \alpha \). By the hypothesis (ii), the set

\[
F = \{ x \in A : \{ x \} \cup s \in K_1 \} \quad \text{for some } s \in [Y_n \cup \{ b_\gamma, b_\alpha \}]^2
\]
is finite and so we can choose \(a \in A \setminus (F \cup X_n) \). Since \(\alpha \) belongs to \(S \) it follows that (3.5) and (3.6) both hold, and these also hold with \(b_\gamma \) in place of \(b_\sigma \) since \(\gamma \) belongs to \(S \). From these facts and (3.7) and by our choice of the element \(a \), it is now a simple matter to check that (3.5) and (3.6) both hold with \(X_n \) replaced by \(X_n \cup \{ a \} \) and \(Y_n \) replaced by \(Y_n \cup \{ b_\gamma \} \). But this contradicts the fact that \(n_\alpha = n \), since for \(\alpha \) the above construction could be continued for at least one more step. \(\square \)

The next lemma shows how we use the hypothesis that

\[\omega_1 \rightarrow (\omega_1, \omega_2 + 1)^2 \quad (3.9) \]

holds in \(M \).

Lemma 3.2. Assume that \(\text{MA}_{\omega_1} \) and (3.9) both hold. Let \(A, B \subseteq \omega_1 \) be such that \(A \prec B \) and \([A]^2 \otimes [B]^1 \subseteq K_0 \). Then either (3.1) or (3.2) holds.

Proof. Let \(\mathcal{U} \) be a uniform ultrafilter on \(A \). For \(s \in [B]^2 \) and \(i = 0 \) or \(1 \), define \(A_i(s) = \{ a \in A : \{ a \} \cup s \in K_i \} \). Then either \(A_0(s) \) or \(A_1(s) \) belongs to \(\mathcal{U} \). Suppose that there is a subset \(Y \subseteq B \) having order type \(\text{tp}(Y) = \omega_2 + 1 \) and such that \(A_i(s) \in \mathcal{U} \) for all \(s \in [Y]^2 \). Then either \([Y]^3 \subseteq K_0 \) and (3.1) holds, or there is \(t \in [Y]^3 \cap K_1 \). But in this latter case we can choose \(a \in \bigcap \{ A_i(s) : s \in [t]^2 \} \), and then \(\{ \{ a \} \cup t \}^3 \subseteq K_1 \) and (3.2) holds. Therefore, we may assume that, whenever \(Y \subseteq B \) has order type \(\omega_2 + 1 \), then there is some pair \(s \in [Y]^2 \) such that \(A_0(s) \) belongs to \(\mathcal{U} \). By (3.9) it follows that there is \(B' \subseteq B \) such that \(A_0(s) \) belongs to \(\mathcal{U} \) for all \(s \in [B']^2 \). Also, since \(\text{MA}_{\omega_1} \) holds, it follows by Lemma 2.2 that there is an infinite set \(A' \subseteq A \) such that \(A' \setminus A_0(s) \) is finite for all \(s \in [B']^2 \). Thus, replacing \(A \) by \(A' \) and \(B \) by \(B' \), we may assume that condition (ii) of Lemma 3.1 is satisfied.

Fix an element \(x \in A \cup B \) and a subset \(B_1 \subseteq B \) and consider the partition \([B_1]^2 = L_0 \cup L_1 \) in which \(s \in L_0 \) if and only if \(\{ x \} \cup s \in K_0 \). If there is \(Y \subseteq B_1 \) such that \(Y \) has order type \(\omega_2 + 1 \) and \([Y]^2 \subseteq L_1 \), then, by the same argument that was used in the preceding paragraph, it follows that either \([Y]^3 \subseteq K_0 \), or there is \(t \in [Y]^3 \) such that \(\{ \{ x \} \cup t \}^3 \subseteq K_1 \); in either case the lemma follows. Therefore, we can assume that there is no such \(Y \) and so by (3.9) again, it follows that there is \(B_2 \subseteq B_1 \) such that \(\{ x \} \cup s \in K_0 \) for all \(s \in [B_2]^2 \). In other words, the condition (iii) of Lemma 3.1 also holds. But condition (i) of that lemma holds by hypothesis, and so the result follows. \(\square \)

Specker [7] proved that the partition relation

\[\omega^2 \rightarrow (\omega^2, m)^2 \quad (3.10) \]

holds for any integer \(m \). The next lemma is a strengthening of this under the assumption that \(\text{MA}_{\omega_1} \) holds.
Lemma 3.3. Assume MA$_{\omega_1}$. Let $W_i (i < \omega)$ be pairwise disjoint infinite sets, $W = \bigcup \{W_i : i < \omega\}$ and let $f_\alpha : [W]^2 \to (\alpha < \omega_1)$. Then there is an uncountable set $B \subseteq \omega_1$ such that either (i) there are $l_0 < l_1 < l_2 < \cdots < \omega$ and sets $H_i \in [W_i]^\omega (i < \omega)$ such that $f_\alpha (s) = 0$ for all $\alpha \in B$ and $s \in \bigcup \{[H_i]^1 \otimes [H_j]^1 : i < j < \omega\}$, or (ii) for any positive integer m, there are m integers $l_0 < l_1 < \cdots < l_{m-1}$ and m sets $H_i \in [W_i]^m (i < m)$ such that $f_\alpha (s) = 1$ for all $\alpha \in B$ and $s \in \bigcup \{[H_i]^1 \otimes [H_j]^1 : i < j < m\}$.

Remark. Specker's Theorem corresponds to the case when $W_i = \{\xi : \omega i \leq \xi \leq \omega (i + 1)\} (i < \omega)$ and the $f_\alpha (\alpha < \omega_1)$ are all equal, say $f_\alpha = f$. In this case, if (i) holds then, by Ramsey's Theorem, either there is an infinite set X contained in some H_i such that $f(s) = 1$ for all $s \in [X]^2$ or, for each i there is an infinite set X contained in some H_i such that $f(s) = 1$ for all $s \in [X]^2$ or, for each i there is a set $H_i' \in [H_i]^\omega$ such that $f(s) = 0$ for all $s \in [H]^2$, where $H = \bigcup \{H_i : i < \omega\}$ has order type ω^2. On the other hand, if (ii) holds, then there is a set Y of cardinality m such that $|Y \cap H_i| = 1 (i < m)$ and $|Y|^2 \subseteq K_1$. Of course, the relation (3.10) is absolute and so it follows that this holds in ZFC. In fact, the proof of the lemma given below contains a ZFC proof of Specker's Theorem (see Remark (*) in the following proof).

Proof of Lemma 3.3. Without loss of generality we may assume that $W_i = \{(i, j) : i < j < \omega\} (i < \omega)$. For each $\alpha < \omega_1$, define a function $g_\alpha : [\omega]^4 \to 2^3$ as follows: If $s = \{a, b, c, d\}$ where $a < b < c < d < \omega$, then we set $g_\alpha (s) = \langle g_\alpha^0 (s), g_\alpha^1 (s), g_\alpha^2 (s) \rangle$, where

\[
g_\alpha^0 (s) = f_a (\{\langle a, b \rangle, \langle c, d \rangle \}),
\]

\[
g_\alpha^1 (s) = f_a (\{\langle a, c \rangle, \langle b, d \rangle \}),
\]

\[
g_\alpha^2 (s) = f_a (\{\langle a, d \rangle, \langle b, c \rangle \}).
\]

By Lemma 2.1, there is a uniform ultrafilter \mathcal{U} on ω which contains a g_α-homogeneous set for each $\alpha < \omega_1$, i.e. there are $G_\alpha \in \mathcal{U}$ such that g_α is constant on $[G_\alpha]^4$. By MA$_{\omega_1}$ and Lemma 2.2, there is an infinite set $G \subseteq \omega$ such that $G \setminus G_\alpha$ is finite for each $\alpha < \omega_1$. It follows that there is a finite set $F \subseteq \omega$ and an uncountable set $B \subseteq \omega_1$ such that $G' = GF \subseteq G_\alpha$ holds for all $\alpha \in B$. (Remark (*): In the case when the f_α are all equal, then we may set $G = G' = G_\alpha$, and we do not need Lemma 2.2.) Replacing B by an uncountable subset if necessary, we may assume that the value of g_α on $[G']^4$ is constant for all $\alpha \in B$, say $g_\alpha (s) = \langle i_0, i_1, i_2 \rangle$ for all $\alpha \in B$ and $s \in [G']^4$.

Let $L_n (n < \omega)$ be infinite pairwise disjoint subsets of G' and assume that $l_i < l_j$ holds for $i < j < \omega$, where $l_n = \min (L_n)$. Put $H_n = \{\langle l_n, y : y \in L_n \setminus \{l_n\} \} (n < \omega)$.

If $i_0 = i_1 = i_2 = 0$, then (i) holds. For, if $h = \langle l_m, y_m \rangle \in H_m, h' = \langle l_n, y_n \rangle \in H_n$ and $m < n$, then $f_\alpha (\{h, h'\}) = 0$.

If one or more of i_0, i_1, i_2 is equal to 1, then (ii) holds. We will verify this for the case when $i_2 = 1$; the other cases are similar. Choose m^2 integers $y_i \in L_i \setminus \{l_i\}$.
for \(0 \leq r, s < m\) so that
\[
l_{m-1}^0 < y_{m-1}^0 < \cdots < y_{m-2}^0 < \cdots < y_{m-2}^1 < \cdots < y_0^1 < y_0^1 < \cdots < y_0^{m-1}
\]
Then for \(\alpha \in B, s < m, i < m\) and \(i < j < m\), we have
\[
f\alpha((l_i, y_i^j), (l_j, y_j^j)) = g^2\alpha((l_i, l_j, y_j^j, y_j^i)) = i_2 = 1. \quad \square
\]

We need one additional lemma. This result follows from Lemmas 3.1, 3.2, and 5.2 of [5], but since it is essential for the present argument, and for the convenience of the reader, we give the proof.

Lemma 3.4. Assume \(\text{MA}_{\omega_1}\). Suppose that
\[
[A]^2 \otimes [B]^1 \not\subseteq K_0. \tag{3.11}
\]
whenever \(A, B \subseteq \omega_1\). Then there are subsets \(A'_n\) (\(n < \omega\)) and \(B'\) of \(\omega_1\) such that \(A_0 < A'_1 < \cdots < B'\) and
\[
[A'_m]^2 \otimes [A'_m \cup B']^1 \subseteq K_1
\]
holds for all \(m < n < \omega\).

Proof. By Lemma 2.1, for any \(A \subseteq \omega_1\), there is a uniform ultrafilter \(\mathcal{U}\) on \(A\) such that, for each \(\rho \in \omega_1\) there are \(i(\rho) < 2\) and \(A_{\rho} \in \mathcal{U}\) such that \([A_{\rho}]^2 \otimes [\{\rho\}]^1 \subseteq K_{i(\rho)}\). By Lemma 2.2 there is an infinite subset \(X \subseteq A\) such that \(X \setminus A_{\rho}\) is finite for all \(\rho < \omega_1\). There is an uncountable set \(B \subseteq \omega_1\) such that both \(X \setminus A_{\rho} = F\) and \(i(\rho) = i\) are constant for all \(\rho \in B\). Thus, if we put \(A' = X \setminus F\), then \([A']^2 \otimes [B]^1 \subseteq K_i\) from the hypothesis (3.11) it follows that \(i = 1\). It follows from this and a simple induction argument that there are subsets \(A_n\) (\(n < \omega\)) such that \(A_0 < A_1 < \cdots \) and \([A'_m]^2 \otimes [A'_m] \subseteq K_1\) holds for \(m < n < \omega\).

By Lemma 2.1 again, there is a uniform ultrafilter \(\mathcal{U}_n\) on \(A_n\) (\(n < \omega\)) such that for each \(\rho < \omega_1\) there are \(i(n, \rho) < 2\) and \(A(n, \rho) \in \mathcal{U}_n\) such that \([A(n, \rho)]^2 \otimes [\{\rho\}]^1 \subseteq K_{i(n, \rho)}\). By the same argument as above, for each \(n\) there are only countably many \(\rho\) such that \(i(n, \rho) = 0\). Hence there is \(B \subseteq \omega_1\) such that \(i(n, \rho) = 1\) for all \(n < \omega\) and all \(\rho \in B\). By Lemma 2.2, there is an infinite set \(X_n \subseteq A_n\) such that \(X_n \setminus A(n, \rho)\) is finite for all \(\rho \in B\).

For \(j \in \omega, \rho \in B\) and \(\sigma \in [B]^{<\omega}\) define
\[
F(j, \rho) = X_j \setminus A(j, \rho), \quad F(j, \sigma) = \bigcup \{F(j, \rho) : \sigma \in s\}
\]
Now consider the set \(P\) of all ordered pairs \((n, s)\) such that \(n \in \omega, s \in [B]^{<\omega}\) and
\[
B(n, s) = \{\rho \in B : F(j, \rho) \subseteq F(j, s)\} \quad \text{for all } j \leq n
\]
is uncountable. We order \(P\) by the rule that \((n, s) \preceq (n_1, s_1)\) if and only if \(n \leq n_1, s \subseteq s_1\) and \(s_1 \setminus s \subseteq B(n, s)\). Note that this implies that
\[
X_j \cap \bigcap \{A(j, \sigma) : \sigma \in s\} = X_j \cap \bigcap \{A(j, \sigma) : \sigma \in s_1\}
\]
holds for all \(j \leq n\).
We claim that P is ccc, i.e. if Q is an uncountable subset of P, then there are $q_1, q_2 \in Q$ and $p \in P$ such that $q_1 \leq p$ and $q_2 \leq p$. To see this, for any $p = \langle n, s \rangle \in P$, define $\bar{p} = \langle F_0, F_1, \ldots, F_n \rangle$, where $F_j = F(j, s)$. Since there are only countably many sequences of this kind, it follows that there are distinct elements $q_1 = \langle n, s_1 \rangle$ and $q_2 = \langle n, s_2 \rangle$ in Q which have a common first term and are such that $\bar{q}_1 = \bar{q}_2$. Put $s = s_1 \cup s_2$, $p = \langle n, s \rangle$. Since $F(j, s) = F(j, s_1) = F(j, s_2)$ for $j \leq n$, it follows that $p \in P$ and $q_1 \leq p$ and $q_2 \leq p$.

For $k < \omega$ and $\rho < \omega_1$, the sets

$$\mathcal{D}_k = \{ \langle n, s \rangle \in P : n \geq k \} \quad \text{and} \quad \mathcal{E}_\rho = \{ \langle n, s \rangle \in P : s \setminus \rho \neq \emptyset \}$$

are cofinal in $\langle P, \leq \rangle$ since, for a given element $\langle n, s \rangle \in P$ there is an uncountable set $B' \subseteq B(n, s)$ such that $F(n, \sigma) = F_j$ for all $j \leq m = \max(n, k)$ and for all $\sigma \in B'$, and so $\langle m, s \cup \{ \alpha \} \rangle \in \mathcal{D}_k \cap \mathcal{E}_\rho$ for $\alpha \in B'$ and $\alpha > \rho$. By MA$_{\omega_1}$ there is an ideal $\mathcal{I} \subseteq P$ which has a non-empty intersection with all the \mathcal{D}_k and \mathcal{E}_ρ. Since \mathcal{I} has non-empty intersection with all \mathcal{E}_ρ, it follows that $B' = \bigcup \{ s : \langle n, s \rangle \in \mathcal{I} \text{ for some } n \}$ is uncountable.

For $k < \omega$ choose any $\langle n, s \rangle \in \mathcal{D}_k \cap \mathcal{I}$ and define

$$A'_k = X_k \cap \bigcap \{ A(k, \sigma) : \sigma \in s \}.$$

Note that this definition of A'_k does not depend upon the particular choice of $\langle n, s \rangle$. For, if $\langle m, t \rangle \in \mathcal{D}_k \cap \mathcal{I}$, then there is a common upper bound of these two elements $\langle l, r \rangle \in \mathcal{D}_k \cap \mathcal{I}$, and then

$$X_k \cap \bigcap \{ A(k, \sigma) : \sigma \in s \} = X_k \cap \bigcap \{ A(k, \sigma) : \sigma \in t \} = X_k \cap \bigcap \{ A(k, \sigma) : \sigma \in r \}$$

Now for any $k < \omega$ and $\rho \in B'$, there is some $\langle n, s \rangle \in \mathcal{I}$ such that $n \geq k$ and $\rho \in s$. Since $A'_k \subseteq A(k, \rho)$ and $i(k, \rho) = 1$, it follows that $[A'_k]^2 \otimes \{ \rho \} \subseteq K_1$.

We now conclude the proof that (1.6) holds in \mathcal{M}.

If there are $A, B \subseteq \omega_1$ such that $[A]^2 \otimes [B]^1 \subseteq K_0$, then the result follows immediately from Lemma 3.2. Therefore, we may assume that

$$[A]^2 \otimes [B]^1 \not\subseteq K_0 \quad \text{(3.12)}$$

whenever $A, B \subseteq \omega_1$. Then by Lemma 3.4 there are sets A_n ($n < \omega$) and B such that

$$A_n < A_1 < \cdots < B \quad \text{and such that}$$

$$[A_m]^2 \otimes [A_n \cup B]^1 \subseteq K_1 \quad \text{(3.13)}$$

holds for $m < n < \omega$. By Lemma 3.3 (with $m = 2$), we can assume that either (i) there are infinite subsets $A'_i \subseteq A_i$ ($i < \omega$) such that $(a_m, a_n, b) \in K_0$ whenever $a_m \in A'_m$, $a_n \in A'_n$, $b \in B$ and $m < n$, or (ii) there are $H_0 \in [A_0]^2$, $H_1 \in [A_1]^2$ such that $(h_0, h_1, b) \in K_1$ whenever $h_i \in H_i$ ($i < 2$) and $b \in B$. If (i) holds then we contradict (3.12) by choosing a set A such that $[A \cap A_i]^1 = 1$ for all $i < \omega$. So we may suppose that (ii) holds. But in this case, since (3.13) holds, we have that $[Y]^1 \subseteq K_1$, where Y is a 4-element set such that $H_0 \subseteq Y$, $[Y \cap H_i]^1 = 1$ and $[Y \cap B]^1 = 1$, and so (3.2) holds. \Box
A partition relation for triples

References
